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Abstract

A parametric algorithm for identifying the Pareto set of a biobjective integer program is proposed.
The algorithm is based on the weighted Chebyshev (Tchebycheff) scalarization, and its running time
is asymptotically optimal. A number of extensions are described, including: a technique for handling
weakly dominated outcomes, a Pareto set approximation scheme, and an interactive version that provides
access to all Pareto outcomes. Extensive computational tests on instances of the biobjective knapsack
problem and a capacitated network routing problem are presented.

1 Introduction

Biobjective integer programming (BIP) is an extension of the classical single-objective integer programming
problem motivated by a variety of real world applications in which it is necessary to consider two or more
criteria when selecting a course of action. Examples may be found in business and management, engineering,
and many other areas where decision-making requires consideration of competing objectives. Examples of
the use of BIPs can be found in capital budgeting [4], location analysis [14], and engineering design [25].

1.1 Terminology and Definitions

A general biobjective or bicriterion integer program (BIP) is formulated as

vmax f(x) = [f1(x), f2(x)]
subject to x ∈ X ⊂ Zn,

(1)

where fi(x), i = 1, 2 are real-valued criterion functions. The set X is called the set of feasible solutions and
the space containing X is the solution space. Generally, X is the subset of Zn contained in a region defined
by a combination of equality and inequality constraints, as well as explicit bounds on individual variables.
We define the set of outcomes as Y = f(X), and call the space containing Y the objective space or outcome
space.

A feasible solution x ∈ X is dominated by x̂ ∈ X, or x̂ dominates x, if fi(x̂) ≥ fi(x) for i = 1, 2 and at
least one of the two inequalities is strict. The same terminology can be applied to points in outcome space,
so that y = f(x) is dominated by ŷ = f(x̂) and ŷ dominates y. If x̂ dominates x and fi(x̂) > fi(x) for
i = 1, 2, then the dominance relation is strong, otherwise it is weak (and correspondingly in outcome space).

A feasible solution x̂ ∈ X is said to be efficient if there is no other x ∈ X such that x dominates x̂. Let
XE denote the set of efficient solutions of (1) and let YE denote the image of XE in the outcome space, that
is YE = f(XE). The set YE is referred to as the set of Pareto outcomes of (1). An outcome y ∈ Y \ YE is
called non-Pareto. An efficient solution x̂ ∈ X is weakly efficient if there exists x ∈ X weakly dominated by
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x̂, otherwise x̂ is strongly efficient. Correspondingly, ŷ = f(x̂) is weakly or strongly Pareto. The Pareto set
YE is uniformly dominant if all points in YE are strongly Pareto.

The operator vmax means that solving (1) is understood to be the problem of generating efficient solutions
in X and Pareto outcomes in Y . Note that in (1), we require all variables to have integer values. In a
biobjective mixed integer program, not all variables are required to be integral. The results of this paper
apply equally to mixed problems, as long as YE remains a finite set.

Because several members of X may map to the same outcome in Y , it is often convenient to formulate
a multiobjective problem in the outcome space. For BIPs, problem (1) then becomes

vmax y = [y1, y2]
subject to y ∈ Y ⊂ R2.

(2)

Depending upon the form of the objective functions and the set X, BIPs are classified as either linear or
nonlinear. In linear BIPs, the objective functions are linear and the feasible set is the set of integer vectors
within a polyhedral set. All other BIPs are considered nonlinear.

1.2 Previous Work

A variety of solution methods are available for solving BIPs. These methods have typically either been
developed for (general) multiobjective integer programs, and so are naturally applicable to BIPs, or they
have been developed specifically for the biobjective case. Depending on the application, the methods can
be further classified as either interactive or non-interactive. Non-interactive methods aim to calculate either
the entire Pareto set or a subset of it based on an a priori articulation of a decision maker’s preferences.
Interactive methods also calculate Pareto outcomes, but they do so based on a set of preferences that are
revealed progressively during execution of the algorithm.

Overviews of different approaches to solving multiobjective integer programs are provided by Climaco
et al. [9] and more recently by Ehrgott and Gandibleux [10, 11] and Ehrgott and Wiecek [12]. In gen-
eral, the approaches can be classified as exact or heuristic and grouped according to the methodological
concepts they use. Among others, the concepts employed in exact algorithms include branch and bound
techniques [1, 32, 40, 41, 42, 46], dynamic programming [51, 52], implicit enumeration [27, 35], reference
directions [22, 33], weighted norms [2, 3, 13, 23, 34, 44, 47, 49], weighted sums with additional con-
straints [8, 14, 34], and zero-one programming [5, 6]. Heuristic approaches such as simulated annealing,
tabu search, and evolutionary algorithms have been proposed for multiobjective integer programs with an
underlying combinatorial structure [11]. Lee and Pulat [29] and Sedeño-Noda and González-Mart́ın [45] have
developed methods for bicriterion integer network flows.

The algorithms of particular relevance to this paper are specialized approaches for biobjective programs
based on a parameterized exploration of the outcome space. In this paper, we focus on a new algorithm, called
the WCN algorithm, for identifying the complete Pareto set that takes this approach. The WCN algorithm
builds on the results of Eswaran et al. [13], who proposed an exact algorithm to compute the complete Pareto
set of BIPs based on Chebyshev norms, as well as Solanki [47], who proposed an approximate algorithm also
using Chebyshev norms, and Chalmet et al. [8], who proposed an exact algorithm based on weighted sums.

The specialized algorithms listed in the previous paragraph reduce the problem of finding the set of
Pareto outcomes to that of solving a parameterized sequence of single-objective integer programs (called
subproblems) over the set X. Thus, the main factor determining the running time is the number of such
subproblems that must be solved. The WCN algorithm is an improvement on the work of Eswaran et al. [13]
in the sense that all Pareto outcomes are found by solving only 2|YE | − 1 subproblems. The number of
subproblems solved by Eswaran’s algorithms depends on a tolerance parameter and can be much larger
(see (8)). In addition, our method properly identifies weakly dominated outcomes, excluding them from the
Pareto set. The algorithm of Chalmet et al. [8] solves approximately the same number of subproblems (as does
an exact extension of Solanki [47]’s approximation algorithm), but the WCN algorithm (and Eswaran’s) also
finds the exact values of breakpoints (with respect to the weighted Chebyshev norm) between adjacent Pareto
outcomes, where no such parametric information is available from either [8] or [47] and only approximate
information is available with Eswaran’s algorithm.
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Although we focus mainly on generating the entire Pareto set, we also investigate the behavior of the
WCN algorithm when used to generate approximations to the Pareto set, and we present an interactive
version based on pairwise comparison of Pareto outcomes. The interactive WCN algorithm can generate
any Pareto outcomes (as compared to Eswaran’s interactive method which can only generate outcomes on
the convex upper envelope of Y ). The comparison may be supported with tradeoff information. Studies
on tradeoffs in the context of the augmented (or modified) weighted Chebyshev scalarization have been
conducted mainly for continuous multiobjective programs [19, 20, 21]. A similar view of global tradeoff
information applies in the context of BIPs.

The remainder of this paper is organized as follows: In Section 2, we briefly review the foundations of the
weighted-sum and Chebyshev scalarizations in biobjective programming. The WCN algorithm for solving
BIPs is presented in Section 3. Section 4 describes details of the implementation using the SYMPHONY
framework [39]. Results of a computational study are given in Section 5. Section 6 recaps our conclusions.

2 Fundamentals of Scalarization

The main idea behind what we term probing algorithms for biobjective discrete programs is to combine the
two objectives into a single criterion, i.e., to scalarize the objective.. The combination is parameterized in
some way so that as the parameter is varied, optimal outcomes for the single-objective programs correspond
to Pareto outcomes for the biobjective problem. The main techniques for constructing parameterized single
objectives are weighted sums (i.e., convex combinations) and weighted Chebyshev norms (and variations).
The algorithms proceed by solving a sequence of subproblems (probes) for selected values of the parameters.

2.1 Weighted Sums

A single-objective mathematical program can be derived from a multiobjective program by taking a non-
negative linear combination of the objective functions [16]. Without loss of generality, the weights can be
scaled so they sum to one. Each selection of weights produces a different single-objective problem, and opti-
mizing the resulting problem produces a Pareto outcome. For biobjective problems, the combined criterion
is parameterized by a single scalar 0 ≤ α ≤ 1:

max
y∈Y

(αy1 + (1− α)y2). (3)

An optimal outcome for any single-objective program (3) lies on the convex upper envelope of outcomes,
i.e., the Pareto portion of the boundary of conv(Y ). Such an outcome is said to be supported. Not every
Pareto outcome is supported. In fact, the existence of unsupported Pareto outcomes is common in practical
problems. Thus, no algorithm that solves (3) for a sequence of values of α can be guaranteed to produce
all Pareto outcomes, even in the case where fi is linear for i = 1, 2. A Pareto set for which some outcomes
are not supported is illustrated in Figure 1. In the figure, yp and yr are Pareto outcomes, but any convex
combination of the two objective functions (linear in the example) produces one of ys, yq, and yt as the
optimal outcome. The points yp and yr are referred to as convex dominated solutions. The convex upper
envelope of the outcome set is marked by the dashed line.

The algorithm of Chalmet et al. [8] searches for Pareto points over subregions of the outcome set. These
subregions are generated in such a way as to guarantee that every Pareto point lies on the convex upper
envelope of some subregion, ensuring that every Pareto outcome is eventually identified. The algorithm
begins by identifying outcomes that maximize y1 and y2, respectively. Each iteration of the algorithm then
searches an unexplored region between two known Pareto points, say ys and yt. The exploration (or probe)
consists of solving the problem with a weighted-sum objective and “optimality constraints” that enforce a
strict improvement over min{ys

1, y
s
1} and min{yt

2, y
t
2}. If the constrained problem is infeasible, then there is

no Pareto outcome in that region. Otherwise the optimal outcome yq is generated and the region is split
into the parts between yp and yq and between ys and yt. The algorithm continues until all subregions have
been explored in this way.
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Figure 1: Example of the convex upper envelope of outcomes.

Note that yq need not lie on the convex upper envelope of all outcomes, only of those outcomes between
ys and yt, so all Pareto outcomes are generated. Also note that at every iteration, a new Pareto outcome
is generated or a subregion is proven empty of outcomes. Thus, the total number of subproblems solved is
2|YE |+ 1.

2.2 Weighted Chebyshev Norms

The Chebyshev norm in R2 is the max norm (l∞ norm) defined by ‖y‖∞ = max{|y1|, |y2|}. The related
distance between two points y1 and y2 is

d(y1, y2) = ‖y1 − y2‖∞ = max{|y1
1 − y2

1 |, |y1
2 − y2

2 |}.

A weighted Chebyshev norm in R2 with weight 0 ≤ β ≤ 1 is defined as ‖(y1, y2)‖β
∞ = max{β|y1|, (1−β)|y2|}.

The ideal point y∗ is (y∗1 , y∗2) where y∗i = maxx∈X fi(x) maximizes the single-objective problem with criterion
fi. Methods based on weighted Chebyshev norms select outcomes with minimum weighted Chebyshev
distance from the ideal point. Figure 2 shows the southwest quadrant of the level lines for two values of β
for an example problem.

The following are well-known results for the weighted Chebyshev scalarization [49].

Theorem 1 If ŷ ∈ YE is a Pareto outcome, then ŷ solves

min
y∈Y

{‖y − y∗‖β
∞} (4)

for some 0 ≤ β ≤ 1.

The following result of Bowman [7], used also in [13], was originally stated for the efficient set but it is useful
here to state the equivalent result for the Pareto set.
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Figure 2: Example of weighted Chebyshev norm level lines.

Theorem 2 If the Pareto set for (2) is uniformly dominant, then any solution to (4) corresponds to a Pareto
outcome.

For the remainder of this section, we assume that the Pareto set is uniformly dominant. Techniques for
relaxing this assumption are discussed in Section 3.2 and their computational properties are investigated in
Section 5.

Problem (4) is equivalent to

minimize z
subject to z ≥ β(y∗1 − y1),

z ≥ (1− β)(y∗2 − y2),
y ∈ Y,

(5)

where 0 ≤ β ≤ 1.
As in [13], we partition the set of possible values of β into subintervals over which there is a single unique

optimal solution for (5). More precisely, let YE = {yp | p ∈ 1, . . . , N} be the set of Pareto outcomes to (2),
ordered so that p < q if and only if yp

1 < yq
1. Under this ordering, yp and yp+1 are called adjacent Pareto

points. For any Pareto outcome yp, define

βp = (y∗2 − yp
2)/(y∗1 − yp

1 + y∗2 − yp
2), (6)

and for any pair of Pareto outcomes yp and yq, p < q, define

βpq = (y∗2 − yq
2)/(y∗1 − yp

1 + y∗2 − yq
2). (7)

Equation (7) generalizes the definition of βp,p+1 in [13]. We obtain:

1. For β = βp, yp is the unique optimal outcome for (4), and

βp(y∗1 − yp
1) = (1− βp)(y∗2 − yp

2) = ‖y∗ − yp‖β
∞.
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Figure 3: Relationship between Pareto points yp, yq, and yr and the weights βr and βpq.

2. For β = βpq, yp and yq are both optimal outcomes for (4), and

βpq(y∗1 − yp
1) = (1− βpq)(y∗2 − yq

2) = ‖y∗ − yp‖β
∞ = ‖y∗ − yq‖β

∞.

This relationship is illustrated in Figure 3. This analysis is summarized in the following result [13].

Theorem 3 If we assume the Pareto outcomes are ordered so that

y1
1 < y2

1 < · · · < yN
1

and
y1
2 > y2

2 > · · · > yN
2

then
β1 > β12 > β2 > β23 > · · · > βN−1,N > βN .

Also, yp is an optimal outcome for (5) with β = β̂ if and only if βp−1,p ≤ β̂ ≤ βp,p+1.

If yp and yq are adjacent outcomes, the quantity βpq is the breakpoint between intervals containing values
of β for which yp and yq, respectively, are optimal for (5). Eswaran et al. [13] describe an algorithm for
generating the complete Pareto set using a bisection search to approximate the breakpoints. The algorithm
begins by identifying an optimal solution to (5) for β = 1 and β = 0. Each iteration searches an unexplored
region between pairs of consecutive values of β that have been probed so far (say, βp and βq). The search
consists of solving (5) with βp < β = β̂ < βq. If the outcome is yp or yq, then the interval between β̂ and
βp or βq, respectively, is discarded. If a new outcome yr is generated, the intervals from βp to βr and from
βr to βq are placed on the list to investigate. Intervals narrower than a preset tolerance ξ are discarded. If
β̂ = (βp + βq)/2, then the total number of subproblems solved in the worst case is approximately

|YE |(1− lg(ξ(|YE | − 1))). (8)
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Eswaran also describes an interactive algorithm based on pairwise comparisons of Pareto outcomes, but that
algorithm can only reach supported outcomes.

Solanki [47] proposed an algorithm to generate an approximation to the Pareto set, but it can also be used
as an exact algorithm. The algorithm is controlled by an “error measure” associated with each subinterval
examined. The error is based on the relative length and width of the unexplored interval. This algorithm
also begins by solving (5) for β = 1 and β = 0. Then for each unexplored interval between outcomes yp

and yq, a “local ideal point” is (max{yp
1 , yq

1},max{yp
2 , yq

2}). The algorithm solves (5) with this ideal point
and constrained to the region between yp and yq. If no new outcome to this subproblem is found, then the
interval is explored completely and its error is zero. Otherwise a new outcome yr is found and the interval
is split. The interval with largest error is selected to explore next. The algorithm proceeds until all intervals
have error smaller than a preset tolerance. If the error tolerance is zero, this algorithm requires solution of
2|YE | − 1 subproblems and generates the entire Pareto set.

3 An Algorithm for Biobjective Integer Programming

This section describes an improved version of the algorithm of Eswaran et al. [13]. Eswaran’s method has
two significant drawbacks:

• It cannot be guaranteed to generate all Pareto points if several such outcomes fall in a β-interval of
width smaller than the tolerance ξ. If ξ is small enough, then all Pareto outcomes will be found (under
the uniform dominance assumption). However, the algorithm does not provide a way to bound ξ to
guarantee this result.

• As noted above, the running time of the algorithm is heavily dependent on ξ. If ξ is small enough to
provide a guarantee that all Pareto outcomes are found, then the algorithm may solve a significant
number of subproblems that produce no new information about the Pareto set.

Another disadvantage of Eswaran’s algorithm is that it does not generate an exact set of breakpoints. The
WCN algorithm generates exact breakpoints, as described in Section 2.2, and guarantees that all Pareto
outcomes and the breakpoints are found by solving a sequence of 2|YE | − 1 subproblems. The complexity
of our method is on par with that of Chalmet et al. [8], and the number of subproblems solved is asymptot-
ically optimal. However, as with Eswaran’s algorithm, Chalmet’s method does not generate or exploit the
breakpoints. One potential advantage of weighted-sum methods is that they behave correctly in the case of
non-uniformly dominant Pareto sets, but Section 3.2.2 describes techniques for dealing with such sets using
Chebyshev norms.

3.1 The WCN Algorithm

Let P (β̂) be the problem defined by (5) for β = β̂ and let N = |YE |. Then the WCN (weighted Chebyshev
norm) algorithm consists of the following steps:

Initialization Solve P (1) and P (0) to identify optimal outcomes y1 and yN , respectively, and the ideal
point y∗ = (y1

1 , yN
2 ). Set I = {(y1, yN )} and S = {(x1, y1), (xN , yN )} (where yj = f(xj)).

Iteration While I 6= ∅ do:

1. Remove any (yp, yq) from I.

2. Compute βpq as in (7) and solve P (βpq). If the outcome is yp or yq, then yp and yq are adjacent
in the list (y1, y2, . . . , yN ).

3. Otherwise, a new outcome yr is generated. Add (xr, yr) to S. Add (yp, yr) and (yr, yq) to I.
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By Theorem 3, every iteration of the algorithm must identify either a new Pareto point or a new break-
point βp,p+1 between adjacent Pareto points. Since the number of breakpoints is N − 1, the total number of
iterations is 2N − 1 = O(N). Any algorithm that identifies all N Pareto outcomes by solving a sequence of
subproblems over the set X must solve at least N subproblems, so the number of iterations performed by
this algorithm is asymptotically optimal among such methods.

3.2 Algorithmic Enhancements

The WCN algorithm can be improved in a number of ways. We describe some global improvements in this
section.

3.2.1 A Priori Upper Bounds

In step 2, any new outcome yr will have yr
1 > yp

1 and yr
2 > yq

2. If no such outcome exists, then the subproblem
solver must still re-prove the optimality of yp or yq. In Eswaran’s algorithm, this step is necessary, as which
of yp and yq is optimal for P (β̂) determines which half of the unexplored interval can be discarded. In the
WCN algorithm, generating either yp or yq indicates that the entire interval can be discarded. No additional
information is gained by knowing which of yp or yq was generated.

Using this fact, the WCN algorithm can be improved as follows. Consider an unexplored interval between
Pareto outcomes yp and yq. Let ε1 and ε2 be positive numbers such that if yr is a new outcome between
yp and yq, then yr

i ≥ min{yp
i , yq

i }+ εi, for i = 1, 2. For example, if f1(x) and f2(x) are integer-valued, then
ε1 = ε2 = 1. Then it must be the case that

‖y∗ − yr‖βpq∞ + min{βpqε1, (1− βpq)ε2} ≤ ‖y∗ − yp‖βpq∞ = ‖y∗ − yq‖βpq∞ (9)

Hence, we can impose an a priori upper bound of

‖y∗ − yp‖βpq∞ −min{βpqε1, (1− βpq)ε2} (10)

when solving the subproblem P (βpq). This upper bound effectively eliminates all outcomes that do not
have strictly smaller Chebyshev norm values from the search space of the subproblem. The outcome of
Step 2 is now either a new outcome or infeasibility. Detecting infeasibility generally has a significantly lower
computational burden than verifying optimality of a known outcome, so this modification generally improves
overall performance.

3.2.2 Relaxing the Uniform Dominance Requirement

Many practical problems violate the assumption of uniform dominance of the Pareto set made in the WCN
algorithm. While probing algorithms based on weighted sums (such as that of Chalmet et al. [8]) do not
require this assumption, algorithms based on Chebyshev norms must be modified to take non-uniform dom-
inance into account. If the Pareto set is not uniformly dominant, problem P (β) may have multiple optimal
outcomes, some of which are not Pareto.

An outcome that is weakly dominated by a Pareto outcome is problematic, because both may lie on the
same level line for some weighted Chebyshev norms, hence both may solve P (β) for some β encountered in
the course of the algorithm. For example, in Figure 4, the dashed rectangle represents the optimal level level
of the Chebyshev norm for a given subproblem P (β). In this case, both yp and yq are optimal for P (β),
but yp weakly dominates yq. The point yr, which is on a different “edge” of the level line is also optimal,
but is neither weakly dominated by nor a weak dominator of either yp or yq. If an outcome y is optimal for
some P (β), it must lie on an edge of the optimal level line and cannot be strongly dominated by any other
outcome. Solving (5) using a standard branch and bound approach only determines the optimal level line
and returns one outcome on that level line. As a secondary objective, we must also ensure that the outcome
generated is as close as possible to the ideal point, as measured by an lp norm for some p < ∞. This ensures
that the final outcome is Pareto. There are two approaches to accomplishing this goal, which we cover in
the next two sections.
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Figure 4: Weak domination of yr by yp.

Augmented Chebyshev norms. One way to guarantee that a new outcome found in Step 2 of the WCN
algorithm is in fact a Pareto point is to use the augmented Chebyshev norm defined by Steuer [48].

Definition 1 The augmented Chebyshev norm is defined by

‖(y1, y2)‖β,ρ
∞ = max{β|y1|, (1− β)|y2|}+ ρ(|y1|+ |y2|),

where ρ is a small positive number.

The idea is to ensure that we generate the outcome closest to the ideal point along one edge of the optimal
level line, as measured by both the l∞ norm and the l1 norm. This is done by actually adding a small
multiple of the l1 norm distance to the Chebyshev norm distance. A graphical depiction of the level lines
under this norm is shown in Figure 5. The angle between the bottom edges of the level line is

θ1 = tan−1[ρ/((1− β + ρ)],

and the angle between the left side edges is

θ2 = tan−1[ρ/((β + ρ)].

The problem of determining the outcome closest to the ideal point under this metric is

min z + ρ(|y∗1 − y1|+ |y∗2 − y2|)
subject to z ≥ β(y∗1 − y1)

z ≥ (1− β)(y∗2 − y2)
y ∈ Y.

(11)

Because y∗k − yk ≥ 0 for all y ∈ Y , the objective function can be rewritten as

min z − ρ(y1 + y2). (12)

For fixed ρ > 0 small enough:
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Figure 5: Augmented Chebyshev norm. Point yp is the unique minimizer of the augmented-norm distance
from the ideal point.

• all optimal outcomes for problem (11) are Pareto (in particular, they are not weakly dominated); and

• for a given Pareto outcome y for problem (11), there exists 0 ≤ β̂ ≤ 1 such that y is the unique outcome
to problem (11) with β = β̂.

In practice, choosing a proper value for ρ can be problematic. Too small a ρ can cause numerical difficulties
because the weight of the secondary objective can lose significance with respect to the primary objective.
This situation can lead to generation of weakly dominated outcomes despite the augmented objective. On
the other hand, too large a ρ can cause some Pareto outcomes to be unreachable (i.e., not optimal for
problem (11) for any choice of β). Steuer [48] recommends 0.001 ≤ ρ ≤ 0.01, but these values are completely
ad hoc. The choice of ρ that works properly depends on the relative size of the optimal objective function
values and cannot be computed a priori. In some cases, values of ρ small enough to guarantee detection of
all Pareto points (particularly for β close to zero or one) may already be small enough to cause numerical
difficulties.

Combinatorial methods. An alternative strategy for relaxing the uniform dominance assumption is to
implicitly enumerate all optimal outcomes to P (β) and eliminate the weakly dominated ones using cutting
planes. This increases the time required to solve P (β), but eliminates the numerical difficulties associated
with the augmented Chebyshev norm. To implement this method, the subproblem solver must be allowed
to continue to search for alternative optimal outcomes to P (β) and record the best of these with respect to
a secondary objective. This is accomplished by modifying the usual pruning rules for the branch and bound
algorithm used to solve P (β). In particular, the solver must not prune any node during the search unless it
is either proven infeasible or its upper bound falls strictly below that of the best known lower bound, i.e., the
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best outcome seen so far with respect to the weighted Chebyshev norm. This technique allows alternative
optima to be discovered as the search proceeds.

An important aspect of this modification is that it includes a prohibition on pruning any node that
has already produced an integer feasible solution (corresponding to an outcome in Y ). Although such a
solution must be optimal with respect to the weighted Chebyshev norm (subject to the constraints imposed
by branching), the outcome may still be weakly dominated. Therefore, when a new outcome ŷ is found, its
weighted Chebyshev norm value is compared to that of the best outcome found so far. If the value is strictly
larger, the solution is discarded. If the value is strictly smaller, it is installed as the new best outcome seen
so far. If its norm value is equal to the current best outcome, it is retained only if it weakly dominates that
outcome. After determining whether to install ŷ as the best outcome seen so far, we impose an optimality cut
that prevents any outcomes that are weakly dominated by ŷ from being subsequently generated in further
processing of the current node. To do so, we determine which of the two constraints

z ≥ β(y∗1 − y1) (13)
z ≥ (1− β)(y∗2 − y2) (14)

from problem (4) is binding at ŷ. This determines on which “edge” of the level line the outcome lies. If
only the first constraint is binding, then any outcome ȳ that is weakly dominated by ŷ must have ȳ1 < ŷ1.
This corresponds to moving closer to the ideal point in l1 norm distance along the edge of the level line.
Therefore, we impose the optimality cut

y2 ≥ ŷ2 + ε2, (15)

where εi is determined as in Section 3.2.1. Similarly, if only the second constraint is binding, we impose the
optimality cut

y1 ≥ ŷ1 + ε1. (16)

If both constraints are binding, this means that the outcome lies at the intersection of the two edges of the
level line. In this case, we arbitrarily impose the first cut to try to move along that edge, but if we fail, then
we impose the second cut. After imposing the optimality cut, the current outcome becomes infeasible and
processing of the node (and possibly its descendants) is continued until either a new outcome is determined
or the node proves to be infeasible.

One detail we have glossed over is the possibility that the current value of β may be a breakpoint
between two previously undiscovered Pareto outcomes. This means there is a distinct outcome on each edge
of the optimal level line. In this case, it does not matter which of these outcomes is produced—only that
the outcome produced is not weakly dominated. Therefore, once we have found the optimal level line, we
confine our search for a Pareto outcome to only one of the edges (the one on which we discover a solution
first). This is accomplished by discarding any outcome discovered that has the same weighted Chebyshev
norm value as the current best, but is incomparable to it, i.e., is neither weakly dominated by nor a weak
dominator of it.

Hybrid methods. A third alternative, which is effective in practice, is to combine the augmented Cheby-
shev norm method with the combinatorial method described above. To do so, we simply use the augmented
objective function (12) while also applying the combinatorial methodology described above. This has the
effect of guarding against values of ρ that are too small to ensure generation of Pareto outcomes, while at
the same time guiding the search toward Pareto outcomes. In practice, this hybrid method tends to reduce
running times over the pure combinatorial method. Computational results with both methods are presented
in Section 5.

3.3 Approximation of the Pareto Set

If the number of Pareto outcomes is large, the computational burden of generating the entire set may be
unacceptable. In that case, it may be desirable to generate just a subset of representative points, where a
“representative” subset is one that is “well-distributed over the entire set” [47]. Deterministic algorithms
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using Chebyshev norms have been proposed to accomplish that task for general multicriteria programs
that subsume BIPs [24, 26, 28], but the works of Solanki [47] and Schandl et al. [44] seem to be the only
specialized deterministic algorithms proposed for BIPs. None of the papers known to the authors offer in-
depth computational results on the approximation of the Pareto set of BIPs with deterministic algorithms.
(See Ruzika and Wiecek [43] for a recent review.)

Solanki’s method minimizes a geometric measure of the “error” associated with the generated subset
of Pareto outcomes, generating the smallest number of outcomes required to achieve a prespecified bound
on the error. Schandl’s method employs polyhedral norms not only to find an approximation but also to
evaluate its quality. A norm method is used to generate supported Pareto outcomes while the lexicographic
Chebyshev method and a cutting-plane approach are proposed to find unsupported Pareto outcomes.

Any probing algorithm can generate an approximation to the Pareto set by simply terminating early.
(Solanki’s algorithm can generate the entire Pareto set by simply running until the error measure is zero.)
The representativeness of the resulting approximation can be influenced by controlling the order in which
available intervals are selected for exploration. Desirable features for such an ordering are:

• the points should be representative, and

• the computational effort should be minimized.

In the WCN algorithm, both of these goals are advanced by selecting unexplored intervals in a first-in-first-
out (FIFO) order. FIFO selection increases the likelihood that a subproblem results in a new Pareto outcome
and tends to minimize the number of infeasible subproblems (i.e., probes that do not generate new outcomes,
when terminating the algorithm early). It also tends to distribute the outcomes across the full range of β.
Section 5 describes a computational experiment demonstrating this result.

3.4 An Interactive Variant of the Algorithm

After employing an algorithm to find all (or a large subset of) Pareto outcomes, a decision maker intending
to use the results must then engage in a second phase of decision making to determine the one Pareto point
that best suits the needs of the organization. In order to select the “best” from among a set of Pareto
outcomes, the outcomes must ultimately be compared with respect to a single-objective utility function. If
the decision maker’s utility function is known, then the final outcome selection can be made automatically.
Determining the exact form of this utility function for a particular decision maker, however, is a difficult
challenge for researchers. The process usually involves restrictive assumptions on the form of such a utility
function, and may require complicated input from the decision maker.

An alternative strategy is to allow the decision maker to search the space of Pareto outcomes interactively,
responding to the outcomes displayed by adjusting parameters to direct the search toward more desirable
outcomes.

An interactive version of the WCN algorithm consists of the following steps:

Initialization Solve P (1) and P (0) to identify optimal outcomes y1 and yN , respectively, and the ideal
point y∗ = (y1

1 , yN
2 ). Set I = {(y1, yN )} and S = {(x1, y1), (xN , yN )} (where yj = f(xj)).

Iteration While I 6= ∅ do:

1. Allow user to select (yp, yq) from I. Stop if user declines to select. Compute βpq as in (7) and
solve P (βpq).

2. If no new outcome is found, then yp and yq are adjacent in the list (y1, y2, . . . , yN ). Report this
fact to the user.

3. Otherwise, a new outcome yr is generated. Report (xr, yr) to the user and add it to S. Add
(yp, yr) and (yr, yq) to I.
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This algorithm can be used as an interactive “binary search,” in which the decision maker evaluates a
proposed outcome and decides whether to give up some value with respect to the first objective in order to
gain some value in the second or vice versa. If the user chooses to sacrifice with respect to objective f1, the
next probe finds an outcome (if one exists) that is better with respect to f1 than any previously-identified
outcome except the last. In this way, the decision maker homes in on a satisfactory outcome or on a pair
of adjacent outcomes that is closest to the decision maker’s preference. Unlike many interactive algorithms,
this one does not attempt to model the decision maker’s utility function. Thus, it makes no assumptions
regarding the form of this function and neither requires nor estimates parameters of the utility function.

3.5 Analyzing Tradeoff Information

In interactive algorithms, it can be helpful for the system to provide the decision maker with information
about the tradeoff between objectives in order to aid the decision to move from a candidate outcome to a
nearby one. In problems where the boundary of the Pareto set is continuous and differentiable, the slope of
the tangent line associated with a particular outcome provides local information about the rate at which the
decision maker trades off value between objective functions when moving to nearby outcomes.

With discrete problems, there is no tangent line to provide local tradeoff information. Tradeoffs between
a candidate outcome and another particular outcome can be found by computing the ratio of improvement
in one objective to the decrease in the other. This information, however, is specific to the outcomes being
compared and requires knowledge of both outcomes. In addition, achieving the computed tradeoff requires
moving to the particular alternate outcome used in the computation, perhaps bypassing intervening outcomes
(in the ordering of Theorem 3) or stopping short of more distant ones with different (higher or lower) tradeoff
rates.

A global view of tradeoffs for continuous Pareto sets, based on the pairwise comparison described above,
is provided by Kaliszewski [21]. For a decrease in one objective, the tradeoff with respect to the other is
the supremum of the ratio of the improvement to the decrease over all outcomes that actually decrease the
first objective and improve the second. Kaliszewski’s technique can be extended to discrete Pareto sets as
follows.

With respect to a particular outcome yp, a pairwise tradeoff between yp and another outcome yq with
respect to objectives i and j is defined as

Tij(yp, yq) =
yq

i − yp
i

yp
j − yq

j

.

Note that Tji(yp, yq) = Tij(yp, yq)−1. In comparing Pareto outcomes, we adopt the convention that objective
j is the one that decreases when moving from yp to yq, so the denominator is positive and the tradeoff is
expressed as units of increase in objective i per unit decrease in objective j. Then a global tradeoff with
respect to yp when allowing decreases in objective j is given by

TG
ij (yp) = max

y∈Y :yj<yp
j

yi − yp
i

yp
j − yj

. (17)

The tradeoff analysis is illustrated in Figure 6.
Computing TG

ij (yp) requires knowledge of all Pareto outcomes in {y ∈ Y : yj < yp
j }. In an interactive

setting, however, outcomes are generated dynamically. The best that can be done is to provide a lower
bound on the global tradeoff based on the subset of {y ∈ Y : yj < yp

j } generated up to that point. This
approximate tradeoff information can be computed at each iteration of the interactive algorithm and reported
to the decision maker.

This tradeoff measure must be taken with a grain of salt, as it can lead the decision maker away from
convex dominated outcomes near the current one. An alternative measure can be constructed that minimizes
the ratio in (17), but such a measure would tend to focus attention too much on those outcomes.
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yp

Figure 6: Tradeoff measures TG
12(y

p) and TG
21(y

p) illustrated.

4 Implementation

4.1 The SYMPHONY Callable Library

As part of this work, we have incorporated generic implementations of several of the algorithms discussed
here into SYMPHONY [39], a customizable open-source callable library for solving mixed-integer linear
programs available for download at www.BranchAndCut.org. These algorithms have been incorporated into
version 5.0 of the library and can be accessed through either the native C interface or an extended version of
the Open Solver Interface (OSI) available through the COIN-OR Foundation Web site [30]. Instance data is
passed to SYMPHONY using the same interface as is used for single-criterion problems, except that the user
is also required to pass a second objective function. SYMPHONY accepts input data in MPS format, using
the COIN-OR MPS file parser, or in AMPL/GMPL format, using the parser available with GLPK [31].
It is also possible to pass data through a library call or to use the FlopC++ modeling language [17] to
build models using C++ objects. This functionality is similar to ILOG’s Concert technology [18]. More
information on the library and its interface are available in the user’s manual [37] and in a recent paper that
discusses the new features in version 5.0 [39].

The main algorithms implemented in SYMPHONY are the WCN algorithm, the ACN algorithm, a hybrid
version of these two algorithms, the bisection algorithm, and an algorithm for finding only the supported
solutions. This latter algorithm can be thought of as a heuristic useful for obtaining an approximation
of the complete set of Pareto outcomes. In addition, by setting various parameters, such as the probing
order (LIFO or FIFO) and the maximum number of solutions to be generated, a wide variety of heuristic
procedures can also be obtained. All algorithms are implemented within a single function consisting of a
main loop that constructs the appropriate sequence of single-criterion MILPs and solves them by making a
call to the underlying SYMPHONY library. In addition, some modifications to the underlying library were
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needed. These are described in Section 4.2 below.
The underlying solver uses an implementation of the well-known branch and cut algorithm, which has been

very successful in solving a wide variety of discrete optimization problems, including many notably difficult
classes of combinatorial problems. SYMPHONY was originally developed to facilitate the implementation
of custom solvers for such difficult combinatorial problems and has a number of customization features for
this purpose, including the ability to generate application-specific valid inequalities and to define specialized
branching rules. SYMPHONY has been used to develop customized solvers for a variety of combinatorial
problem classes. Using the algorithms described here, all of these solvers can now be easily utilized with
multiple objectives. The problem classes for which there are already solvers available include the traveling
salesman and vehicle routing problems, the set partitioning problem, the mixed postman problem, the
capacitated network routing problem (described below), and the knapsack problem. SYMPHONY can also
be utilized as a generic MILP solver, employing the COIN-OR Cut Generation Library to generate valid
inequalities and strong branching on fractional variables to perform the subproblem partitioning required by
the branch and bound algorithm.

4.2 Customizing the Library

In order to support implementation of the WCN algorithm, we made a number of changes to SYMPHONY’s
internal library. To eliminate weakly dominated outcomes, we use the method described in Section 3.2.2. To
accommodate this method, we had to modify SYMPHONY to allow the enumeration of alternative optima
using optimality cuts, as described in section 3.2.2. We also added to SYMPHONY the ability to compare
and track solutions according to two objective function values, rather than just one.

Numerical issues are particularly difficult when implementing algorithms for enumerating Pareto out-
comes, as one is frequently forced to deal with small weights and objective function values defined on very
different scales. It was therefore necessary to define a number of new error tolerances. As usual, we had
to specify an integer tolerance for determining whether a given variable was integer valued or not. For
this value, we used SYMPHONY’s internal error tolerance, which in turn depends on the LP solver’s error
tolerance. We also had to specify the minimum Chebyshev norm distance between any two distinct out-
comes. From this parameter and the parameter β, we determined the minimum difference in the value of the
weighted Chebyshev norm for two outcomes, one of which weakly dominates the other. This was used to set
SYMPHONY’s granularity parameter, which is used to determine when a new best solution has been found
as well as for node fathoming. We also added a parameter for specifying the weight ρ for the secondary
objective in the augmented Chebyshev norm method. Selection of this parameter value is discussed below.
Finally, we had to specify a tolerance for performing the bisection method of Eswaran. Selection of this
tolerance is also discussed below.

4.3 Applications

We tested the algorithm on two different applications. The first is a solver for bicriterion knapsack problems
and utilizes the generic SYMPHONY library with cutting planes generated by COIN-OR’s Cut Generation
Library. For this application, we wrote several parsers for reading files in the formats for which data files
are readily available electronically. For all other aspects of the solver, the implementation was the generic
one provided by SYMPHONY.

The second application is a solver for so-called capacitated network routing problems (CNRPs). This
general class of models is described in [38] and is closely related to the single-source fixed-charge network
flow problem, a well known and difficult combinatorial optimization problem, in which there is a tradeoff
between the fixed cost associated with constructing a network and the variable cost associated with operating
it. Here also, we wrote a customized parser for the input files (which use slight modifications of the TSPLIB
format) and generating the formulation. In addition, we have implemented generators for a number of
problem-specific classes of cutting planes. The implementation details of this solver will be covered in a
separate paper.
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5 Computational Study

5.1 Setup

Our computational study includes instances of the bicriterion knapsack problem from the test set described
in [15] with between 10 and 50 variables. In addition, we solved instances of a CNRP model known as the
cable trench problem (CTP) [50] constructed from data available in the library of vehicle routing problem
instances maintained by author Ralphs [36]. Because the CTP is a difficult model, we created the instances
by randomly sampling sets of 15 customers to create networks that were generally easy enough to solve
repeatedly in the several tests that we ran, but varied enough to draw reasonably broad conclusions about
the methods.

Although there are several articles that describe specialized exact algorithms for the bicriterion knapsack
problem (see, e.g., those listed in the survey [11]), it is not our intent to draw direct comparisons with the
computational performance of these methods. WCN is a general-purpose integer algorithm, and our main
purpose is to draw comparisons with other methods in the same class. Thus, we do not use specialized
subproblem solvers. Also, we found that the knapsack cut generators slowed the code down substantially
and introduced severe numerical instabilities in the ACN and hybrid codes, so we turned these solver features
off.

The computational platform was an SMP machine with four Intel Xeon 700MHz CPUs and 2G of memory
(memory was never an issue). These experiments were performed with SYMPHONY 5.0. SYMPHONY is
designed to work with a number of LP solvers through the COIN-OR Open Solver Interface. For the runs
reported here, we used the OSI CPLEX interface with CPLEX 8.1 as the underlying LP solver.

In designing the computational experiments, there were several comparisons we wanted to make. First, we
wanted to compare our exact approach to the bisection algorithm of Eswaran in terms of both computational
efficiency and ability to produce all Pareto outcomes. Second, we wanted to compare the various approaches
described in Section 3.2.2 for relaxing the uniform dominance assumption. Third, we wanted to test various
approaches to approximating the set of Pareto outcomes. The results of these experiments are described in
the next section.

5.2 Results

We report here on four experiments, each described in a separate table. In each table, the methods are
compared to the WCN method (with the combinatorial method for eliminating weakly dominated outcomes),
which is used as a baseline. All numerical data are reported as differences from the baseline method to make
it easier to spot trends. On each chart, the group of columns labeled Iterations gives the total number
of subproblems solved. The column labeled Outcomes Found gives the total number of Pareto outcomes
reported by the algorithm. The Max Missed column contains the maximum number of missing Pareto
outcomes in any interval between two Pareto outcomes that were found. This is a rough measure of how
the missing Pareto outcomes are distributed among the found outcomes, and therefore indicates how well
distributed the found outcomes are among the set of all Pareto outcomes. The entries in these columns
in the Totals row are arithmetic means, with the exception of Max Missed, which is a maximum. Finally,
the column labeled CPU seconds is the running time of the algorithm on the platform described earlier.
For the knapsack problems, the results given are totals (maximums for Max Missed) for problems in each
size class. Our test set included 20 problems of sizes 10 and 20, and 10 problems of sizes 30, 40, and 50.
For the CNRPs, we summarize the totals (maximums for Max Missed) for 34 problems with 15 customers
each. In addition, we show the individual results for one particularly difficult problem (att48). Because this
particular instance is an outlier and because results for this instance are displayed separately, we have not
included it in the totals shown for the CNRP.

In Table 1, we compare the WCN algorithm to the bisection search algorithm of Eswaran for three
different tolerances, ξ = 10−1, 10−2, and 10−3. (Our implementation of Eswaran’s algorithm uses the
approach described in Section 3.2.2 for eliminating weakly dominated outcomes.) Even at a tolerance of
10−3, some outcomes are missed for the largest knapsack instances and the CNRP instance att48, which
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has a large number of nonconvex regions in its frontier. It is clear that the tradeoff between tolerance and
running time favors the WCN algorithm for this test set. The tolerance required in order to have a reasonable
expectation of finding the full set of Pareto outcomes results in a running time far exceeding that for the
WCN algorithm. This is predictable, based on the crude estimate of the number of iterations required in
the worst case for Eswaran’s algorithm given by (8) and we expect that this same behavior would hold for
most classes of BIPs.

In Table 2, we compare the WCN algorithm with the ACN method described in Section 3.2.2 (i.e.,
the WCN method using augmented Chebyshev norms to eliminate weakly dominated solutions). Here,
the columns are labeled with the secondary objective function weight ρ that was used. The ACN method is
much faster for large secondary objective function weights (as one would expect). For the knapsack problems,
ρ = 10−4 results in identification of all Pareto outcomes. These problems are well-behaved numerically with
well-scaled data and objective function values that are all of the same order of magnitude, so finding a
value of ρ that works well was relatively easy. When we solved these instances using cutting planes to
improve bounds, however, this introduced numerical instability sufficient to cause some instances to exhibit
both missed solutions and generation of weakly dominated solutions. The CNRP instances were much less
well behaved. The results demonstrate why it is not possible in general to determine a weight for the
secondary objective function that both ensures the enumeration of all Pareto outcomes and protects against
the generation of weakly dominated outcomes. For ρ = 10−4, the ACN algorithm generates more outcomes
than the WCN (which generates all Pareto outcomes) for some instances. This is because the ACN algorithm
is producing weakly dominated outcomes in these cases, due to the value of ρ being set too small. Even
setting the tolerance separately for each instance does not have the desired effect, as there are instances
for which the algorithm produced both one more or more weakly dominated outcomes and missed Pareto
outcomes. For these instances, it is not possible to choose a proper tolerance.

In Table 3, we compare WCN to the hybrid algorithm also described in Section 3.2.2. The value of ρ
used is displayed above the columns of results for the hybrid algorithm. As described earlier, the hybrid
algorithm has the advantages of both the ACN and the WCN algorithms and allows ρ to be set small enough
to ensure correct behavior, as the combinatorial method will eliminate any spurious weakly dominated
outcomes generated. For the knapsack instances, the results are identical to the non-hybrid ACN algorithm.
This is because for these instances, the strongly dominated solutions are located naturally during the search
process. In the cases where ACN produced weakly nondominated solutions, the dominating solutions were
produced in another branch of the search tree, rather than in a descendant of the subproblem that produced
the weakly dominated solution. Therefore, the optimality cuts that force the continued search have no effect.
The CNRP instances exhibit a much more obvious effect from the hybrid algorithm, missing substantially
fewer solutions than the non-hybrid, although at an increased cost of running time. As expected, the table
shows that as ρ decreases, running times for the hybrid algorithm increase. However, it appears that choosing
ρ approximately 10−5 results in a reduction in running time without a great loss in terms of accuracy. We
also tried setting ρ to 10−6 and in this case, the full Pareto set is found for every problem, but the advantage
in terms of running time is insignificant.

Finally, we experimented with a number of approximation methods. As discussed in Section 3.3, we chose
to judge the performance of the various heuristics on the basis of both running time and the distribution
of outcomes found among the entire set, as measured by the maximum number of missed outcomes in
any interval between found outcomes. The results described in Table 1 indicate that Eswaran’s bisection
algorithm does in fact make a good heuristic based on our measure of distribution of outcomes, but the
reduction in running times does not justify the loss of accuracy. The ACN algorithm with a relatively large
value of ρ also makes a reasonable heuristic and the running times are much better. One disadvantage of
these two methods is that it would be difficult to predict a priori the behavior of these algorithms, both in
terms of running time and number of Pareto outcomes produced. To get a predictable number of outcomes
in a predictable amount of time, we simply stopped the WCN algorithm after a fixed number of outcomes
had been produced. The distribution of the resulting set of outcomes depends largely on the order in which
the outcome pairs are processed, so we compared a FIFO ordering to a LIFO ordering. One would expect
the FIFO ordering, which prefers processing parts of outcomes that are “far apart” from each other, to
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outperform the LIFO ordering, which prefers processing pairs of outcomes that are closer together. Table
4 shows that this is in fact the case. In these experiments, we stopped the algorithm after 15 outcomes
were produced (the table only includes problems with more than 15 Pareto outcomes). The distribution of
outcomes for the FIFO algorithm is dramatically better than that for the LIFO algorithm. Of course, other
orderings are also possible. We also tried generating supported outcomes as a possible heuristic approach.
This can be done extremely quickly, but the distribution of the outcomes produced was poor.

6 Conclusion

We have described an algorithm for biobjective discrete programs (BIPs) based on weighted Chebyshev
norms. The algorithm improves on the similar method of Eswaran et al. [13] by providing a guarantee that
all Pareto outcomes are identified with a minimum number of solutions of scalarized subproblems, as well
as by producing the exact values of all breakpoints. The method thus matches the complexity of the best
methods available for such problems. Our computational experience indicates that the WCN algorithm is
robust across problem classes and is much less sensitive to numerical instabilities and tolerance settings than
other probing methods. Overall, it works better “out of the box” and requires less tuning to work properly.
To make the ACN algorithm work properly requires tuning and the proper selection of the Chebyshev weight
parameter, which cannot be done a priori. The results also show that the hybrid algorithm with a small
Chebyshev weight is a reasonable alternative that exhibits both the improved efficiency of the ACN algorithm
and the stability of the WCN algorithm. The WCN algorithm also extends naturally to approximation of
the Pareto set and to nonparametric interactive applications. We have described an extension of a global
tradeoff analysis technique to discrete problems.

We incorporated the algorithm into the SYMPHONY branch-cut-price framework and demonstrated that
it performs effectively on a test suite of biobjective knapsack and capacitated network routing problems.
Topics for future research include studies of the performance of a parallel implementation of the WCN
algorithm and extension to more than two objectives.

Acknowledgement. Authors Saltzman and Wiecek were partially supported by ONR Grant N00014-97-
1-0784.
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