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Abstract

Using a moment interpretation of recent results on sum-of-squares decompositions of non-negative
polynomial matrices, we propose a hierarchy of convex linear matrix inequality (LMI) relaxations to
solve non-convex polynomial matrix inequality (PMI) optimization problems, including bilinear matrix
inequality (BMI) problems. This hierarchy of LMI relaxations generates a monotone sequence of lower
bounds that converges to the global optimum. Results from the theory of moments are used to detect
whether the global optimum is reached at a given LMI relaxation, and if so, to extract global minimizers
that satisfy the PMI. The approach is successfully applied to PMIs arising from static output feedback

design problems.

Index Terms

Polynomial matrix, nonconvex optimization, convex optimization, static output feedback design

. INTRODUCTION

Most of synthesis problems for linear systems can be formulatggbmomial matrix in-
equality (PMI) optimization problems in the controller parameters, a particular case of which are
bilinear matrix inequalities (BMI) [4]. Generally, these PMI problems rama-convexand hence,
difficult to solve. Only in very specific cases (static state feedback, dynamic output feedback
controller of the same order as the plant) suitable changes of variables or subspace projections

have been found to convexify the design problem and derive equivalent linear matrix inequality
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(LMI) formulations [2], [23], [22]. However, for several basic control problems such as PID
design, simultaneous stabilization or static output feedback design, no equivalent convex LMI
formulation is known. As a consequence, solving PMI problems is a difficult numerical challenge,
and there is still a lack of efficient computer-aided control system design (CACSD) algorithms
to address them satisfactorily.

Traditionally, non-convex PMI optimization problems can be tackled either locally or globally:

« Local methodgan be highly sensitive to the choice of the initial point, and generally provide
a guarantee of convergence to points satisfying necessary first order optimality conditions
only. Several local methods have been reported in the technical literature, but up to our
knowledge, the first and so far only publicly available implementation of a BMI solver is
PENBMI [13], [14], based on a penalty function and augmented Lagrangian algorihtm;

« Global methodsbased on branch-and-bound schemes and alike, are generally highly de-
manding computationally. Efficient LMI bounding strategies can be designed to derive tight
upper and lower bounds on non-convex objective functions and feasible sets, but one can
hardly avoid the combinatorial explosion inherent to branching schemes. Consequently these
global methods are restricted to small (if not academic) problem instances only.

In this paper, we propose another strategy to overcome the above shortcomings of local and

global methods.

« On the one hand, our method gdobal in the sense that it solves PMI problems and
when finite convergence occurs, it also provides a numecidificateof global optimality
(several distinct global optima can be found without any combinatorial branching strategy).

« On the other hand, our method uses the LMI formalism and makes extensive csavek
semidefinite programmin@DP). In particular, we only rely on efficient SDP codes already
available, which avoids the considerably difficult work of developing a specific algorithm
and solver.

The main idea behind the PMI optimization method described in this paper is along the lines
of that developed in [16] for scalar polynomial constraints. Based on the theosyrofof-
squares positive polynomiabend its dual theory ofnoments a hierarchy of LMI relaxations
of increasing dimensions is built up in such a way that the designer has to trade off between

the expected accuracy and the computational load, with the theorgtiaedntee of asymptotic
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convergenceo the global optimum. Moreover, and fasite convergence typically occurs in many
cases, numerical linear algebra procedures are available to detect global optimality and extract
global optimizers. Practice reveals that for small to medium global optimization problems, and
up to machine precision, finite convergence eventually occurs, that is, the global optimum is
reached at some LMI relaxation of reasonable dimension. See [6] for a description of a Matlab
implementation with an extensive set of numerical examples, and [8] for applications in systems
control.

Interestingly enough, the feasible set of any PMI problem is a semi-algebraic set and can be
also represented by finitely many polynomial scalar inequalities. However, typical in this latter
scalar representation istagh degreeoccurring for at least one polynomial, which makes the
scalar approach [1@mpractical in view of the present status of SDP solvers.

Our contribution is to extend the scalar moment approach of [16] to the matrix case, using
recent results by Kojima [15] and Hol and Scherer [11], [12] on sum-of-squares of polynomial
matrices, and deriving a dual theory of moments. In particular, in Section Il we provide the
matrix analogues of moment and localizing matrices defined in [16] for the scalar case, and a
specific test to detect global optimality at a given LMI relaxation. In Section Ill, we apply this
methodology to solve PMI problems coming from static output feedback (SOF) design problems.
A salient feature of our approach is the particular algebraic (or polynomial) formulation of the
SOF. Indeed, in contrast with the standard state-space BMI approach that introduces a significant
number of instrumental additional Lyapunov variables, the only decision variables of our SOF

PMI problem are precisely the entries of the feedback gain matrix.

II. LMI RELAXATIONS FORPMI PROBLEMS

In this section we expose the convex LMI relaxation methodology for non-convex PMI
optimization problems. We first state formally the problem to be solved and introduce some
notations. Then we briefly recall the main ideas for scalar polynomial optimization problems, in
order to smoothly generalize them to matrix problems. Two small numerical examples illustrate

the LMI relaxation procedure.
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A. PMI optimization

Let S,, denote the space of real x m symmetric matrices, and let the notatidn- 0 (resp.
A > 0) stand forA is positive definite (resp. positive semidefinite). Consider the optimization

problem
f* = min f(x)
st. G(z) =0,

(1)

where f is a real polynomial and~ : R* — S,,, a polynomial mapping, i.e. each enify;(z)
of the m x m symmetric matrixG(z) is a polynomial in the indeterminate € R". We will
refer to problem (1) as polynomial matrix inequalit{PMI) optimization problem. Note that
. if f andG have degree one, then problem (1) is a convegar matrix inequality(LMI)
optimization problem;
. iIf G has degree two with no square term, then problem (1) is a (generally non-convex)
bilinear matrix inequality(BMI) optimization problem. By a slight abuse of terminology,

BMI also sometimes refers to quadratic matrix inequalites.

This problem is a particular case of polynomial optimization problems considered in [16],
[20] and the many references therein. Indeed, the matrix constiint - 0 defines a semi-
algebraic sekC C R” that can be described explicitly in termsrafscalar polynomial inequalities
gi(z) > 0,4i=1,...,m. The polynomialsy; are obtained as follows. For every fixade R",
let

t— p(t,z) = det(tl,, — G(x))

be the characteristic polynomial 6f(x), and writep in the form
p(t,x) = 1"+ > (=1)'gi(x)t™",  teR 2)
=1

Hence, ag — p(t, z) has only real roots (becausx) is symmetric), Descartes’ rule of signs

[1, p. 41] applies. That is, all the roots pft, z) are nonnegative if and and only ¢f(x) > 0,

for all : = 1,...,m. Therefore, in principle, the PMI problem (1) can be solved using recent
LMI relaxation (also called semidefinite programming, or SDP relaxation) techniques developed
in [16], and implemented in the software GloptiPoly [6]. In particular this approach allows to

detect whether the global optimum is reached, and if so, to extract global minimizers, see [9].
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However, the latterscalar representation of the PMI is perhaps not always appropriate,
especially whenG(z) has high degree and/or dimension. Typically one polynomjat) in
(2) has high degree (for instance, in BMI problems polynomidl:) has potentially degree
2m). Recently, Hol and Scherer [11], [12] and Kojima [15] have tried to hamitlectly the
matrix inequality constraintG(x) > 0. Remarkably, they have derived a hierarchyspgcific
LMI relaxations, whose associated sequence of optimal values converges to the global optimum
f*. However, and so far, only theonvergencef the values has been obtained.

Our contribution is to complement these works by focusing ordtred of the LMI relaxations
defined in [11], [12], [15] and briefly mentioned in [15]. In fact, a direct derivation of these
LMI relaxations, in the spirit of the moment approach of [16], permits to retrieve the notions
of momentandlocalizing matrices Then, these dual LMI relaxations appear as genuine matrix
analogues of the scalar LMI relaxations of [16]. A key feature of this dual approach is that we
can apply verbatim thglobal optimality detectiorand global minimizer extractiorprocedures

already available in the scalar case, and implemented in GloptiPoly..

B. Moment and localizing matrices

Let R[zy,...,x,] denote the ring of real polynomials in the variabigs. . ., z,, also denoted

by P as anR-vector space, with associated canonical basisP*, given by

T
xXr — b(l’) = 1 €Ty Tg - Tn x% rixry - T1T, Tolsg -+ x?l x? e :| . (3)

Let y = {y.}aenn be a real-valued sequence indexed in the basis (3). A polyngmiaP is
also identified with its vectop = {p,}.cn» Of coefficients in the basis (3). For evepye P,
the infinite vectorp has only finitely many nontrivial entries. And so
z e p(z) = Y pax P, b(z))
aeN”
where (A, B) = trace(AT B) stands for the standard inner product of two matrices or vectors
A, B of compatible dimensions. For a fixed sequence {y,} indexed in the basis (3), let
L, : P~ R be the linear mapping
p = L Z PaYa-

aeN”
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Define the bilinear mapping,.), : P x P — R by

(r,q)y = Ly(pg) = (p, M(y)q)

for some infinite matrix)/(y), with rows and columns indexed in the basisVith o, 5 € N”,

the entry(a, 3) of M (y) is given by

[M()]as = Ly([b(2)b(x) " ]as) = Yasts-
A sequencey = {y,} is said to have a representingeasurey if
Yo = /xadu Va € N
and in this case
M(y) = / bbT dpy — / b(2)b(x)” u(dx).
One can check that
Ly(pa) = (p.M(y)a) = / (p, 00" q) du
= [ws@)ew.@udn) = [de

The infinite matrix M (y), with rows and columns indexed in the basisis then called the

(4)

moment matrixassociated with the measune Now, if we denote by, the canonical basis of
the R-vector subspac®, C P of real polynomials of degree at maost(the finite truncation of

b in (3) which consists of monomials of degree at mbstthen for allp, ¢ € P,

(r,0)y = (P, Mr(y)q)

where My (y) is the finite truncation of\/(y) with rows and columns indexed in the basjs It
immediately follows that ify has a representing measure, thep(y) = 0 for all £ = 0,1, ...

because
(p,p)y = (P, Mi(y)p) = /p2 dp >0, Vp € Py
Similarly, for a given polynomial € P, let (.,.),, : P x P — R be the bilinear mapping
(P, @) = (P, @)gy = Ly(gpa) = (P, M(gy)a)

where M (gy) is called thelocalizing matrixassociated withy andg € P. With a, 3,y € N”

one can check that

[M(gy)las = Ly ([9@)b@)b(2) as) = 3 & Yo
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If y has a representing measuravith support contained in the closed dete R" | g(z) > 0},

then
(P:D)gy = (P, Mi(gy)P) = /gp2 du >0, Vpe Py

so that the truncated localizing matrix satisfigl(gy) = 0, forall k = 0,1, ...

C. Scalar case

In this section, we briefly recall the results of [16]. Consider the (generally non-convex)
polynomial optimization problem
f* = min, f(2)
: ®)
st.  gi(x)>0, i=1,....m
where f(x) andg;(z) are scalar real multivariate polynomials of the indeterminateR". Let
={zeR": g(x) >0, i=1,...,m} (6)

denote the set of feasible solutions of (5), a semi-algebraic s&t' of

Problem (5) can be equivalently written as tim@ment optimization problem

o= [ s @)

/du-l/ du = 0.
K R—-K

In other words, we have replaced the (finite dimensional) nonconvex problem (5) witbrilaex
(evenlinear !) optimization problem, but on an infinite dimensional space, namely, the space of
measures oIR"”. At first glance, (7) seems to be just@phrasingof the original problem (5),
with no specific progress. However, we next use the fact thatare all polynomials in which
case, the formulation (7) can be further exploited.

Indeed, if € is compact, and under mild assumptions on the polynomjathat define/C,

solving the above problem (7) is in fact equivalent to solving

)

o(f
L,(1) = ®)
Ly(p
Ly(

f* = min, L
s.t.
>0, VpeP
p’g:) >0, YpeP, i=1,...,m.
Indeed, ifu is a feasible solution of (7), then its vector of moment&vell defined becausgk

is compact) is a feasible solution of (8), with same value. Conversely, under the assumption of
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Theorem 2.1 below, Putinar [21] has shown that if a vegtis a feasible solution of (8), then
y has a representing measurgwith support contained iiC, and so,u is feasible in (7), with
same value.

The meaning of the constraints are as follows:

« L,(1) =1 states thaj: should be a probability measure;
« L,(p*) >0 forall p e P is a necessary condition fgrto have a representing measure
« L,(p*)>0andL,(p?g;) >0, forallpe P andi=1,...,m, is a necessary and sufficient
condition foru to have its support contained in the semi-algebraickset
Observe that in problem (8), the linear map appears everywhere in the objective function
and in the constraints. That is, problem (7) has an equivalent formulation (8), stated only in
terms of themomentf the unknown measure.

Recalling (4), problem (8) has the equivalent formulation with inner products

9)
p,M(y)p) >0, VpeP

(p, M(giy)p) >0, YpeP, i=1,...,m
wheree is a vector of zeros, except the first entry equal to one. Note that in the above problem,
vectors, as well as moment and localizing matrices, are all infinite dimensional.
We now consider only momenig, associated with monomials* of degree at most = 2k,

for a givenk € N, so thaty € R* with

o ntr} (ntr)!
= r — nlr!

Getting rid of the inner products, we obtain thdruncated version of problem (9), that is,
f® = ming 3, fala
st. y=1
Mi(y) = 0
My_a,(giy) =0, i=1,...,m,

(10)

where My(y) = 0 and M;._4.(g;y) = 0 are linear matrix inequality (LMI) constraints in
corresponding to respective truncations of moment and localizing matrices, and here

2d; — 1 is the degree of polynomig; for i = 1,...,m. In other words, problem (10) is a
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convex LMI optimization problem. Obviously, the optimuff® is a lower bound on the global
optimum f* of the original problem, ang® > f*) wheneverk > k’. Problem (10) is referred
to as theLMI relaxation of order %k of problem (5).

Write My(y) = >, Baya and My_q,(g:y) = >, Clys for i = 1,...,m and appropriate
symmetric matrices3,, and C.. The dual of (10) is then the LMI problem

AE) = max A
NX,Z;

S.t. <BQ, X> + 2211<C(Z), ZZ> = f() — /\
<BOHX> + Zirll<c(i> Zz) = fom V0 7& |Oé‘ < 2k
X=0, Z+=0, i=1,...,m.

(11)

As shown in [16], the spectral decompositions of the positive semi-definite maki¢eprovide
coefficient vectors of some associateuims of squareés.o.s.) polynomialg;, and the above

LMI problem can be written as a polynomial s.0.s. problem

AF) = max A
Avpi

st. f—=A=po+ 22’;1 Di9i
Po, -y Pm S.0.S.

(12)

degpo, degp;g; <2k, i=1,...,m.
Theorem 2.1:Assume that
. there exists a polynomigh such thatp = p, + >, pig; for some s.o.s. polynomialg;,
i=0,1,...,m, and
. the level set{fx € R"|p > 0} is compact.
Then, ask — oo, f® 1 f*andA® 1 f* in LMI problems (10) and (11).

Proof: The proof can be sketched as follows, see [16] for details.cleR > 0 be fixed
arbitrary. The polynomiaf — f* + ¢ is strictly positive onkC. Then, by a representation theorem
of Putinar [21] .

f=F+e=npo+ ) pig
=1

for some s.o.s. polynomials;, i = 0,1,...,m. Let 2k > max(deg po, degp;g;). Then (f* —
€,Do,---,Pm) iS a feasible solution of (12) with value= f* — . By weak dualityA® < £,

and hencef* —e < \®) < ) < £ As e > 0 was arbitrary, the result follows. ]
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10

The Matlab software GloptiPoly [6], released in 2002, builds up and solves the above LMI
relaxations (10) of polynomial optimization problem (5). It was tested extensively on a set of
benchmark engineering problems coming from continuous optimization, combinatorial optimiza-
tion, polynomial systems of equations and control theory [6], [8]. In practice, it is observed that
the global optimum is reached numerically (i.e. at given reasonable computational accuracy) at
a relaxation ordek which is generally small (typically 1, 2 or 3). Moreover, the relative gap
|f®) — | f*|7 is generally small for alk, meaning that the LMI relaxations generate good
quality approximations.

At last but not least, a result of Curto and Fialkow [3] in the theory of moments, can be
exploited todetectwhether the global optimum is reached numerically at a given relaxation
order k, and to extractglobal minimizersz* € R". All these tasks can be performed with
standardnumerical linear algebra(singular value decomposition, Cholesky factorization) and
are implemented in GloptiPoly, see [9]. Thus, when some LMI relaxation is exact and the test
of global optimality is passed, one also obtains one (or several) global minimizers, a highly

desirable feature in most applications of interest.

D. Matrix case

To derive results in the matrix case, we proceed by close analogy with the scalar case described
in the previous section. We now consider the PMI optimization problem (1), whe®"” — S,,
is a polynomial mapping in the indeterminatec R™. So, each entry;;(x) = G;;(x) of the

matrix G(x) is a polynomial. Let
K:={zxeR": Gz) =0}
denote the set of feasible solutions of (1), which is a semi-algebraic $&t.of
Let P, : R* — P;* be the vector polynomial mappings

x — P(x) =Pb(z), z +— Q)= Qbx(x)

for somem x s, matricesP, Q, wheres,, is the dimension of the vector spagg as defined
previously. For simplicity of notation, and with € P}, we denote by~ € P;* the polynomial

vector mapping

r = (GQ)(x) = G(z) Q).
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11

Similarly, wheneverP, Q € P;*, the notation(P, ) stands for the polynomial mapping

v = (P,Q)(x) = (P(x),Q(x))

and wheneveR?, S are two polynomial matrices of same dimension, the notati®nS) stands

for the polynomial mapping
z = (R, S)(z) = (R(z), S(z)) = trace (R(z)" S(x)).
Define the bilinear mapping, ), : PI* x PI* — R by
(P,Q)cy = Ly({P,GQ)) = Ly((Pb(x), GQb(x))) = (vecP, My(Gy)vecQ)

for some matrixM,(Gy) that we call the truncatetbcalizing matrix associated withy and
with the polynomial mapping-, and wherevec denotes the vector obtained by stacking up the
columns of a matrix.

In particular (P, P)¢, = (vecP, M;(Gy)vecP), and so ify has a representing measyre
with support contained in the sét € R" | G(x) = 0}, then M, (Gy) = 0 because

(P, P)gy = (vecP, My(Gy)vecP) = /(P, GP)dy > 0, VP e R™**,
From its definition, the matrix\/;,(Gy) can be obtained from the moment mattix,(y) as
[Mi(Gy)lap = Ly ([(0xbr) @ Glag) (13)

for all «, 3, where® stands for the Kronecker product. As in the scalar case, we come up with

the following k-truncated linear problem

f® = min, L,(f
t. L,(1)=1
5 y(1) (14)
Ly(p2) >0 Vp € Py

L,((P,GP)) >0 VP e Py,
where2d — 1 or 2d, is the maximum degree of the polynomial entriesfr). Equivalently,
problem (14) can be restated as the LMI
Qv: ¥ = min Y faa
st. yo=1
My(y) = 0
My—a(Gy) = 0,

(15)
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12

where My (y) and M,._4(Gy) are the truncated moment and localizing matrices associated with
y andG.

As in the scalar case, writé/;(y) = > Baya and M;_q(Gy) = >, Coy, for appropriate
symmetric matrices3,,C,,. The dual problent); of (15) is the LMI problem

Qp: A max A

s.t. <X, Bo> +<Z, C(]> :f()—)\
(X,Ba) +(Z,Co) = fo, 0#|a| <2k
X >0, Z=*=O.

(16)

Next, let (A, X, Z) be a feasible solution of (16). Multiplying each side of the constraint

corresponding tax by the monomiak:* and summing up yields
(X, Baz®) +(Z2,> Coz®) =Y far® =X = f(z) =\ (17)
For the first term of C':he above sum,aone has )
(X, Ba®) = (X, bp(2)bi(2)") = (b(w), Xby())
and from the Cholesky factorizatioki = Zj qjqf, we obtain

(X,) Baa®) =) (bi(2).q)® = ) g;(2)°
e J J
for a family of polynomialsg; € P;.
Similarly, write down the Cholesky factorizatiafi = 3, v;v] and letQ; € R™** be such

that vecQ; = v,. Notice that

(2,) Car®) = Y (i(2)bi(2)" ® Gla) ,vyv]) == Y (Q()Q;(2)", G(x))

J J
for a family of polynomialsQ; € P;". Therefore, (17) reads now

flx) =X = qu(ﬂf)2 + Z (Q;(2)Q;(2)", G(x)).

As in Hol and Scherer [11], [12], we say that a polynomial maffik:) of dimensionm x m

and degreek is s.o.s. if it can be written in the form

R(x) = 3 Qi@Q @)
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for a family of polynomials@; € P;". Then, the dual (16) can be rewritten as a polynomial

S.0.S. problem

AE) = max A
)\,po,P
s.t. f—=A=po+ <R, G> (18)
po, R S.0.S.

degp(]a deg <R7 G> < 2k7

the matrix analogue of (11). Again, by weak duality?) < f* for all k. We next use a result
by Hol and Scherer [11], [12] and Kojima [15] to prove the following

Theorem 2.2:Assume that

. there exists a polynomial such thatp = p, + (R, G) for some s.0.s. polynomials, and
R, and
. the level set{x € R"|p > 0} is compact.
Then, ask — oo, f¥) 1 f*andA® 1 f* in LMI relaxations (15) and (16).
Proof: Observe thatf(*) < f* because with any feasible solutiay of the original
problem, with valuef(z,), one may associate the vecwpr= by (z,) as a feasible solution of
(15) with the same valug(z,). Next, under the assumption of the theorem, Hol and Scherer
[11], [12] and Kojima [15] have proved that*) in (18), satisfies\(¥) 1 f* ask — oco. But, by
weak duality, we have*) < f(*) < f* from which the result follows. [
Remark 2.3:Assumptions (i)-(ii) of Theorem 2.2 are not very restrictive. For instance, suppose
that one knows an a priori boundon the Euclidean norrjz*|| of a global minimizerc*. Then,
one introduces the new BMI constraififz) = diag {G(z), p* — ||z||*} = 0 and the feasibility
setk = {z € R" : G(x) = 0} for which Assumptions (i)-(ii) are satisfied. Indeed, det R™*!
be such that; = §;,,+; for all j =1,...,m + 1. Then, the polynomiak — p(z) = p* — ||x|]?
can be written ag = (ee”,G) and the level sefz € R* : p > 0} is compact.
We now prove a result that permits detectwhether the LMIQ, provides the optimal value
f*, and if so, global minimizers as well. This is important because it will permit to use the
extraction procedure already described in [9], and obtain global minimizers, exactly in the same
manner as in the scalar case. We strongly use an important theorem of Curto and Fialkow [3]

on (positive) flat extensions of moment matrices.
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Theorem 2.4:Suppose that an optimal solutign of the LMI Q, in (15) satisfies
s = rank My(y*) = rank My_4(y"). (19)

Theny* is the vector of moments (up to ordek) of an s-atomic probability measurg* with

support contained in the s&t. That is, there are distinct points{x;};_, C K such that

J=1 Jj=1

whered, denotes the Dirac measureat R”.
Proof: From (19),M;_..;(y*) is aflat extensiorof M,_,(y*), forall j =1,...,d, that is,

My_a4+;(y*) = 0 andrank Mj,_4y,(y*) = rank My_4(y*), j=1,...,d.

Therefore, by the flat extension theore,is the vector of moments (up to ord2k) of some
s-atomic probability measurg* on R", see [3] or [17, Theor. 1.3].

That is, there are distinct points{z;}5_, C R" such that

“*:Z%‘%a Z%‘Zl; v >0, =1,...,s.
J=1 j=1

Next, let {\(z;)}5_, be an arbitrary set of nonzero eigenvalues of the matfces;)}5_, C
Rm>m, with associated setu(z;) }5_, C R™ of (normalized) eigenvectors. That §(z;)u(r;) =
Axj)u(x;), with AM(z;) #0, forall j =1,...,s.

As s = rank M;_4(y*), then for each coordinate = 1,...,m, there exists interpolation
polynomials{h,;}i_, C R[z] of degree at most —d, i.e., h;; € P,_4 forall j =1,...,s, such
that

hij(x;) = dui(z;), J,l=1,...,s,

whereJ;; is the Kronecker symbol. See e.g. [17, Lemma 2.7].

For everyj =1,...,s, let H; € P" , be the polynomial vectoR" — R™,
r = H](.CL') = [hlj(x), hgj(ﬂf), ceey hmj(x)]T, j = 1, e, S

Then observe thall;(z;) = 0,,u(xy) for all j,k =1,...,s. In addition, by the feasibility of*
in the LMI Q, for everyj =1,...,s,
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0 < (vecH;, M;_q4(Gy*)vecH;) = /(Hj(x),G(x)Hj(x))du*

= > wlH;(@), Gla) Hy(w) = 7 (Hy(x;), Gla;) Hy(x;))
= YAE)-

Therefore, asy; > 0, it follows that A\(z;) > 0 for all j = 1,...,s. As the set of nonzero
eigenvalueg \(z;)}5_, was arbitrary, it thus follows that all eigenvalues@fz;) are nonneg-
ative, i.e.,G(z;) = 0, forall j =1,...,s. And so, the probability measuye' is supported on
the setkC, the desired result.

[

Using the condition (19) in Theorem 2.4, we can now extract global minimizéers R”,

exactly along the same lines described in [9]. It is illustrated in the examples below.

E. First example

Consider the 2x2 quadratic matrix inequality in 2 variables

f* = min, f(z)=—2?— 23
1 —4xx T (20)
st.  G(z)= e ' = 0.
7 4 — 22 — 23

The non convex bounded feasible &et= {z | G(z) > 0} is represented in Figure 1. There are
two global optimaz = [0, +-2], both with optimal valuef* = —4.

1) Scalarizing:First, we translate the PMI optimization problem (20) into a scalar polynomial
optimization problem, see Section II-A.

The quadratic matrix inequality(z) > 0 is feasible if and only if the characteristic polynomial
p(t,z) = det (tI — G(x)) = t* — (5 — 4w 29 — 27 — 23)t + (4 — 163179 — 227 — 25 + 42519 + 421 23)

has only non-negative real roots. According to Descartes’ rule of signs, this is the case if and

only if the coefficients ofp(¢, ) have alternating signs, i.e. if and only if

gi(z) = 5—41715U2—$%—x% >0

go(x) = 4—16z109 — 202 — 22 + 4adxy + 42123 > 0.

November 15, 2004 DRAFT



16
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Fig. 1. Example II-E. Non-convex PMI feasible set.

Our PMI optimization problem (20) is then equivalent to the scalar polynomial optimization
problem
f* = min, f(z)
st.  qi(z) >0
g2(z) = 0.
Applying GloptiPoly on this problem, using the LMI solver SeDuMi with default tunings, we

get the results summarized in Table I. We report there the LMI relaxation érdee computed
lower boundsf®) on the global optimum, the ranks of partitions of successive moment matrices,
as well as the number of scalar variables and the size of the LMI constraints. Note that we have to

start with the LMI relaxation of ordek = 2 since the scalarized problem features a polynomial
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LMI relaxation | Lower bound Ranks of Number of | Size of LMI
orderk F® moment matriced variables | constraints
2 -4.8382 3,4 14 6+1+1
3 -4.2423 3,57 27 10+3+3
4 -4.0947 3,6,10,12 44 15+6+6
5 -4.0353 3,6,10,14,16 65 21+10+10
6 -4.0062 3,6,10,15,21,28 90 28+15+15
7 -4.0000 2,2,2,2,2,2,2 119 36+21+21
TABLE |

EXAMPLE II-E. APPLYING GLOPTIPOLY ON THE SCALARIZED PMI.

go of degree2k = 4.

The global optimum is reached at the 7th LMI relaxation: the moment matrix has rank two
and the two global optima are extracted using the algorithm described in [9].

2) Keeping the matrix structureNow we apply the LMI relaxations described in section
[I-D. They keep the matrix structure of the PMI.

The first LMI relaxation of the PMI optimization problem (20) is given by

f(l) = min  —y — Yo2
1|
st. M(y) = Y10 | Y20 =0
Yo1 | Y11 Yo2
1—-4
Mo(Gly) = o - 0,

Y10 4 — Y20 — Yo2

where symmetric upper triangular entries are omitted.
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LMI relaxation | Lower bound Ranks of Number of | Size of LMI
orderk F® moment matriced variables | constraints
1 -4.0000 3 5 3+2
2 -4.0000 2,2 14 6+6
TABLE I

EXAMPLE |I-E. SOLVING THE LMI| RELAXATIONS OF THE PMI.

The second LMI relaxation is given by

f(Q) = min  —y — Yo2
1
Y10 | Y20
st My(y) = Yor | Y11 Yo2 - 0

Y20 | Y30 Y21 | Y40
Y11 | Y21 Y12 | Y31 Y22

Yoz2 | Y12 Yo3 | Y22 Y13 Yoa |
1 —dyn
Y10 4 — Y20 — Yoz

Ml(Gy) _ Y10 — 4y21 Y20 Y20 — 4ys1 = 0.

Y20 4dy10 — Y30 — Y12 Y30 4120 — Ya0 — Yo2

Yo1 — 4y12 Y11 Y11 — 4y Y21 Yo2 — 4y13

| Yn 4yo1 — Y21 — Yo3 Yor  4yin — Y31 — Y3 Y12 4Yo2 — Y22 — Yoa |
Solving these two LMI relaxations, we get the results summarized in Table Il. We see that,
in contrast with the scalarization technique, the global optimum is reached already at the first
LMI relaxation, at a very moderate cost. We only have to resort to the second LMI relaxation
in order to obtain a numerical certificate of global optimality and to extract the two solutions,
also at a very moderate cost when compared with the scalarization technique. Remarkably, we

have only used moment variablgs of order at most, in contrast tol4, in the scalar case.
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LMI relaxation | Lower bound Ranks of Number of | Size of LMI
orderk F® moment matriced variables | constraints
2 -1.8926 2,2 14 6+1+1
3 -1.8926 2,22 27 10+3+3
TABLE Il

EXAMPLE II-F. APPLYING GLOPTIPOLY ON THE SCALARIZED PMI.

LMI relaxation | Lower bound Ranks of Number of | Size of LMI
orderk F® moment matriced variables | constraints
1 -2.0000 2 5 3+2
2 -1.8926 2,2 14 6+6
TABLE IV

EXAMPLE |I-F. SOLVING THE LMI| RELAXATIONS BY KEEPING THE MATRIX STRUCTURE OF THEPMI.

F. Second example

Now change the objective function in example II-E to

f(x) = zq29.

1) Scalarizing: Solving the scalarized problem with GloptiPoly, we get the results reported
in Table Ill, showing that the global optimum is now reached at the second LMI relaxation, and
certified at the third LMI relaxation. The two extracted solutions are +[—1.3383, 1.4142],
with optimal valuef* = —1.8926. Here, we have used moment variablgsof order at most.

2) Keeping the matrix structureSolving the LMI relaxations of the PMI by keeping the
matrix structure, we obtain the results summarized in Table IV. The global optimum is reached
and certified at the second LMI relaxation. Here the advantage of keeping the matrix structure
of the PMI is less apparent, but we still have only used moment variables of order attmost

in contrast to6 in the scalar case.
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[11. APPLICATION TO STATIC OUTPUT FEEDBACK DESIGN

In this section we apply the LMI relaxation methodology of section Il to solve PMI optimiza-
tion problems arising from static output feedback (SOF) design problems. After recalling the
SOF problem statement and its standard BMI state-space formulation, we propose an alternative
PMI polynomial formulation. Then we illustrate the relevance of the LMI relaxation mechanism

on non-trivial PMI problems arising from SOF problems.

A. SOF design

Consider the linear system
T = Axr+ Bu
y = Cx

of ordern with m inputs andp outputs, that we want to stabilize by static output feedback
u= Ky.

In other words, given matriced € R™", B € R™™, C € RP*", we want to find matrix

K € R™*? such that the eigenvalues of closed-loop mattix BKC' all belong to a region
D={seC:a+b(s+s")+css* <0}

of the complex plane, where, b,c € R are given scalars and the star denotes the transpose
conjugate. Typical choices ate= ¢ = 0, b = 1 for the left half-plane (continuous-time stability)
andc = —a =1, b = 0 for the unit disk (discrete-time stability).

Problem SOF:Given matricesA, B, C, find matrix K such that eigenvalues of matrix +

BKC all belong to given stability regio®.

B. State-space BMI formulation

When following a standard state-space approach, the SOF problem can be formulated as the
BMI

(A+ BKC)*P+ (A+ BKC)P <0, P=P"»0

in decision variableds and P where < 0 and >~ 0 stand for positive and negative definite,
respectively. We see that SOF matfix(the actual problem unknown) contains: scalar entries,

whereas Lyapunov matrik (instrumental to ensuring stability) containg:+1) /2 scalar entries.
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Whenn is significantly larger thamnp, the important number of resulting Lyapunov variables

may be prohibitive.

C. PMI formulation

In this section we propose an alternative PMI formulation of the SOF problem featuring entries
of matrix K only. In order to get rid of the Lyapunov variables, we focus on a polynomial
formulation of the SOF problem, applying the Hermite stability criterion on the closed-loop
characteristic polynomial, in the spirit of [5].

1) Characteristic polynomialiLet x € R™ be the vector obtained by stacking the columns

of matrix K. Define
q(s,k) =det (sI —A— BKC) = Z qi(k)s'
i=0

as the characteristic polynomial of matrix + BKC. Coefficients of increasing powers of

indeterminates in polynomial ¢(s, ) are multivariate polynomials i, i.e.

Gi(K) =) ioh”
«
wherea € N describes all monomial powers.

2) Hermite stability criterion: The roots of polynomial(s, <) belong to stability regiorD

if and only if

H(k) =Y qi(r)q;(s)Hyj = 0

i=0 j=0
where H(x) = H*(x) € R™" is the Hermite matrix ofy(s, x). CoefficientsH;; = H; € R

depend on the stability regioR only, see [7].
3) Polynomial matrix inequality:Hermite matrix H(x) depends polynomially on vecto,

hence the equivalent notation
H(k) = Hok" =0 (21)

where matricesH, = H} € R"*" are obtained by combining matricés;;, and o € N
describes all monomial powers.

Lemma 3.1:Problem SOF is solved if and only if vectarsolves the PMI (21).
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D. Numerical aspects

In [10], we discuss various numerical aspects regarding the derivation of PMI (21). For

conciseness, they are only briefly mentioned here and not reported in full detail:

. Computing the characteristic polynomial: to build up polynomial ) we need to evaluate
coefficientsg;,, of the determinant of matrix/ — A — BKC. We proceed numerically by
interpolation: coefficients of(s, x) are determined by solving a linear system of equation
built on a perfectly conditioned truncated multivariate Vandermonde matrix;

« Building up the Hermite matrix: coefficientdl;; depend only on the stability regioP.
They are computed by solving a simple linear system of equations, as shown in [7]. In the
case of continuous-time stability, the Hermite matrix can be split down into two blocks of
approximate half size;

« Strict feasibility: to solve the strict PMI feasibility problem (21), we can solve the non-strict
problem

H(k) = M\

trying e.g. to maximize scalax > 0. In practice however the feasibility set of PMI (21) can
be unbounded in some directions akdcan grow unreasonably large. In our experiments
we setA to some small positive constant value;

« Minimizing the trace of the moment matrix: as noticed in [9] for such problems, in order to
improve convergence of the hierarchy of LMI relaxations, it is recommended to minimize

the trace of the moment matrik/;(y). Existence of a scalay > 0 such that
trace My(y) <~

ensures boundedness of all the momeptsand thus, solvability of the relaxations.

E. Numerical experiments

In this section we report numerical experiments showing that the methodology developed
in section Il can indeed prove useful for solving non-trivial SOF problems formulated in this
polynomial setting. The problems are extracted from the publicly available benchmark collection
COMPIlib [18]. These problems are formulated in continuous-time (redois the left half-
plane,a = ¢ =0, b = 1). LMI problems were built with the YALMIP Matlab interface [19] and
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solved with SeDuMi [25] with default tunings. When testing ranks of moment matrices, we use
a relative gap threshold df)—* between successive singular values. Numerical data are rounded
to 5 digits.

1) ExampleAC8 A model of a modern transport airplane with= 9 states,,» = 1 input
andp = 5 outputs. The state-space BMI formulation of Section I1I-B would introdifescalar
Lyapunov variables in addition to the feedback gain entries. Scalarization as in Section II-
A would result in a set of 9 scalar polynomial constraints of degree up to 18 in 5 variables.
Therefore, the first LMI relaxation in the hierarchy (10) would invo(\?sé) = 33649 variables.

By keeping the matrix structure, solving the first LMI relaxation (24 moment variables, LMI
size 5+4+6) returns a moment matrix, whose 4 largest singular values are000, 5.6595-107°,
2.3851 - 1077 and 2.2305 - 10~ 7. So matrixM; has numerical rank one, the global optimum is

reached, and factorizingy/; yields the stabilizing feedback matrix
K =|36275-10"% —3.8577-10"* —1.0121-10"> 1.7389-10"% 2.0960-10~* ] :

Observe that one obtains the global optimum at a relaxation that involves moments of order up
to 2 only.

2) ExampleREA3 A model of a nuclear reactor with = 12 states,,» = 1 input and
p = 3 outputs. The state-space BMI formulation would introdG8escalar Lyapunov variables
in addition to theb5 feedback gain entries. Scalarization would result in a set of 12 scalar
polynomial constraints of degree up to 24 in 3 variables. Therefore, the first LMI relaxation in
the hierarchy (10) would involvé’) = 2925 variables.

Solving the first LMI relaxation (10 variables, LMI size 6+6+4) returns a moment mafkix
whose 4 singular values af826.0, 1.0000, 2.1075 - 10~7 and 1.3116 - 10~%. Matrix M, has
numerical rank two.

Solving the second LMI relaxation (35 variables, LMI size 24+24+10) returns a moment
matrix M/, with singular value$327.0, 2.4620- 1073, 1.9798-1073, 3.9060 - 10-% and a moment
matrix M, whose 4 largest singular values at®025 - 107, 21.092, 15.397 and 4.6680. We
consider that both/; and M, have rank one so that the global optimum is reached. Factorizing

M, vyields the stabilizing feedback matrix

K = [ —1.1037-1077 —0.15120 —79.536 | -

One obtains the global optimum at a relaxation that involves moments of order4ipriy.
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3) ExampleHEL A model of the longitudinal motion of a helicopter, with = 4 states,
m = 2 inputs andp = 1 output.

Solving the first LMI relaxation (6 variables, LMI size 2+2+3) returns a moment matfix
whose 3 singular values afe0076, 2.6562 - 1072, 2.1971 - 1072 so matrix M; has numerical
rank two.

Solving the second LMI relaxation (15 variables, LMI size 6+6+6) returns a moment matrix
M, with singular valuesl.0085, 6.4009 - 1072, 6.9224 - 10~!° and a moment matrix/, whose
4 largest singular values ate0128, 8.0720 - 1072, 1.7875 - 1072, 8.0773 - 1071°. So matrix M,
has numerical rank two, whereas matfik has numerical rank three, and we cannot conclude.

Solving the third LMI relaxation (28 variables, LMI size 12+12+10) we obtain a moment
matrix M, with singular valued.1404, 9.8176-10'°, 4.5344- 10!, a moment matrix\/, with
4 largest singular values.1583, 1.1052 - 107, 8.0379 - 1071, 6.0171 - 107!, and a moment
matrix M; with 4 largest singular values 1605, 1.1716-1079, 3.8334-10719, 7.2405- 107!, All
these moment matrices have numerical rank one, so the global optimum is reached. Factorizing

M, yields the stabilizing feedback matrix

K= [ —0.11972  0.35500 | -

One obtains the global optimum at a relaxation that involves moments of order @ ority.
The global optimum, together with the non-convex set of stabilizing SOF gains, are represented

in Figure 2.

IV. CONCLUSION

We have proposed a methodology to solve, irsyastematicway, non-convex polynomial
matrix inequalities (PMI) problems. Based on a moment interpretation of recent results on
sum-of-squares decompositions of positivite polynomial matrices, a hierarchy of convex linear
matrix inequality (LMI) relaxations is built up, with a guarantee of convergence to the global
optimum of the original non-convex PMI problem. When finite convergence occurs (as observed
in practice), results from the theory of moments allowsl&tect global optimalityand extract
global optimizerswith the help of existing numerical linear algebra algorithms. It is planned to
incorporate PMI constraints into the next release of the GloptiPoly software [6].

The methodology is then applied to solve non-trivial static output feedback (SOF) problems

formulated as PMI problems. Since the number of variables as well as the number of constraints
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Fig. 2. ExampleHEL Non-convex set of stabilizing SOF gains (gray zone) and global optimum (black dot).

both grow relatively fast when building up the hierarchy of successive LMI relaxations, it is
important toreduce the number of variablda the SOF PMI problem as much as possible.
Our approach for solving SOF problems allows this by focusing on an algebragio/yoromial
formulation namely, the Hermite stability criterion is applied on the closed-loop characteristic
polynomial, resulting in PMI SOF stabilizability conditions involving feedback matrix gain
entries only, without additional Lyapunov variables.

One may argue that every PMI problem can be transformed into an equisalksiar poly-
nomial optimization problem by an application of Descartes’ rule of signs as in Section II-
A. Therefore, theoretically, one may solve a PMI problem by solving the hierarchy of LMI
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relaxations defined in [16], and implemented in the software GloptiPoly [6]. However, notice
that at least one polynomial in the scalar representation of the PMI has high degree, which
induces LMI relaxations of size too large for the present status of SDP solvers, see Examples
REA3and A8 of Section IlI-E. In constrast, the approach developed in the present paper takes
explictly into account the matrix structure of the PMI problems and the design has a better
control on the size growth of the successive LMI relaxations in the hierarchy.

As far as control applications are concerned, the PMI formulation must be extended to cope
with H, or H,, performance criteria. The key issue is to formulate these criteria algebraically,
without using state-space arguments. Similarly as for the SOF design problem, all the instru-
mental Lyapunov variables must be removed in order to derive a PMI formulation directly in
the controller parameters.

Several numerical aspects of PMI problems deserve to be studied in further detail. In our
opinion, the field of numerical analysis for polynomials (monovariate, multivariate, scalar or
matrix) is still mostly unexplored [24]. There is a crucial need for reliable numerical software
dealing with polynomials and polynomial inequalities. Other potentially interesting research
topic include reducing the number of constraints in a PMI (removing redundant semi-algebraic
constraints), detecting convexity (some PMI SOF problems are convex) or exploiting the structure

of the LMI relaxations in interior point schemes.
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