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Abstract: The objectives of this paper are twofold; we first demonstrate the

flexibility of the mesh adaptive direct search (mads) in identifying locally op-

timal algorithmic parameters. This is done by devising a general framework

for parameter tuning. The framework makes provision for surrogate objectives.

Parameters are sought so as to minimize some measure of performance of the

algorithm being fine-tuned. This measure is treated as a black-box and may be

chosen by the user. Examples are given in the text.

The second objective illustrates this framework by specializing it to the

identification of locally optimal trust-region parameters in unconstrained op-

timization. Parameters are identified that minimize, in a certain sense, the

computational time or the number of function evaluations required to solve a

set of problems from the CUTEr collection. Each function call may take several

hours and may not always return a predictable result. A surrogate function,

taylored to the experiment at hand, is used to guide the mads towards a local

solution.

∗Supported by FCAR grant NC72792, NSERC grant 239436-01, AFOSR F49620-01-1-0013

and ExxonMobil R62291.
†Supported by NSERC grant 299010-04

1



December 1, 2004 2

The parameters thus identified differ from traditionally used values, and are

used to solve problems from the CUTEr collection that remained otherwised

unsolved in a reasonable time using traditional values.

Key words: Trust-region methods, unconstrained optimization, mesh adaptive

direct search algorithms, black-box optimization, surrrogate functions, param-

eter estimation.

1 Introduction

Most algorithms, be it in optimization or any other field, depend more or less

critically on a number of parameters. Some parameters may be continuous,

such as an initial trust-region radius, or a scalar that dictates the precision at

which a subproblem needs to be solved. These parameters may be required

to remain between two, possibly infinite bounds, or may be constrained in a

more complex way. They may also be discrete, such as the maximal number

of iterations or the number of banned directions in a taboo search heuristic, or

even categorical, such as a boolean indicating whether exact or inexact Hessian

is used, or which preconditioner to use. The overall behaviour of the algorithm is

influenced by the values of these parameters. Unfortunately, for most practical

cases, it remains unclear how a user should proceed to determine good, let

alone optimal, values for those parameters. We devise a framework for fine-

tuning such parameters which is general enough to encompass most numerical

algorithms from engineering, numerical analysis and optimization. The design

of the framework relies on the observation that measures of performance can

be derived from the dependency of the algorithm on its parameters. These

measures are context- and problem-dependent and for this reason, we wish to

treat them as black boxes in the remainder of this paper. We shall however give

examples in the context of a particular application.

An optimization problem is formulated where such a measure of performance

is minimized as a function of the parameters, over a domain of acceptable values.

We use the recent mesh adaptive direct search (mads) [3] class of nonsmooth

optimization algorithms to solve this problem. mads may use a surrogate objec-

tive function to guide its search strategy. A surrogate function is a simplification

of the real objective function that possesses similar behaviour, but is believed to

be less costly to evaluate, or easier to manipulate, in some sense. For example,

suppose that the evaluation of the objective function requires a costly numeri-
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cal solution of a subproblem. Then, a natural surrogate might use only a crude

approximation of its solution. Surrogate functions may also be constructed by

approximation surfaces, such as Kriging models. The reader is invited to con-

sult [5] for a general framework for the use of surrogates in an optimization

context. With an application in mind, we shall restrict ourselves in the present

framework to the case where Ω is polyhedral.

As an illustration of how to use this framework, we address the study of stan-

dard parameters present in trust-region algorithms for unconstrained optimiza-

tion and try to identify some locally optimal values. We note that optimality

is not a well-defined concept in this case and the quality of a final solution de-

pends on the underlying method used to minimize the measure of performance.

In this illustration, the quality of a set of parameters is measured by the over-

all computational time or the overall number of function calls required by a

trust-region algorithm to solve to a prescribed precision a significant number

of test problems. In the numerical tests presented, the test problems originate

from the CUTEr [17] collection. We therefore formulate an optimization prob-

lem, where each evaluation of the objective function requires solving a collection

of test problems. The objective function is therefore time-consuming to com-

pute, is highly nonlinear and no derivative is available or even proved to exist.

Moreover, evaluating the objective twice with the same arguments may lead to

slightly different function values since the computational time is influenced by

the current machine load and fluctuates with network activity. In our context,

a surrogate function is obtained by applying the same trust-region algorithm to

a set of easier problems.

The trust-region parameters obtained by mads allow the solution of prob-

lems which remained otherwise unsolved in reasonable time by the trust-region

method.

Related work on locally optimal parameter identification in a similar trust-

region framework is presented in [15], where the parameter space is discretized

and a thorough search is carried out. However, even for a modest number of

discretized values, devising a mechanism able to compare so many variants of

an algorithm becomes an issue. In recent years, performance profiles [12] have

been extensively used to compare algorithms, but it remains unclear how to use

them to efficiently compare more than five or six. We circumvent this issue in

the present paper by delegating this task to another optimization algorithm.
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The paper is structured as follows. In Section 2, we describe a specific imple-

mentation of the mads class of algorithms, and highlight the main convergence

results. We also describe how a surrogate function can be used inside this al-

gorithm. Section 3 describes a standard trust-region algorithm, and discusses

the four algorithmic parameters which will be fine-tuned. In Section 4, we ap-

ply mads to identify locally optimal values for these parameters. Results are

presented in §5, discussed in §6 and we give concluding remarks in §7.

2 Mesh adaptive direct search algorithms

A general optimization problem may be stated as

min
p∈Ω

ψ(p). (1)

with ψ : Ω ⊆ R
` → R∪ {+∞}. The nature and structure of the function ψ and

the domain Ω limit the type of algorithms that may be used to attempt to solve

this problem. Global optimization is possible when the problem structure is suf-

ficiently rich and exploitable, and when the problem size is reasonable. However,

global optimization is frequently out of reach in acceptable time, and, under ap-

propriate smoothness assumptions, we are content with algorithms providing a

first-order critical solution. For example, when ψ is continuously differentiable

over Ω, an appropriate variant of Newton’s method combined with a globalizing

scheme would yield a critical point under reasonable assumptions. When ψ is

non-differentiable, discontinuous or fails to evaluate for some values of its argu-

ment p ∈ Ω, problem (1) cannot be satisfactorily approached by such a method.

This is often the case when evaluating the objective entices running a computer

code. In order to evaluate, the code may, for instance, have to solve a coupled

system of differential equations, and may for some internal reasons fail to re-

turn a meaningful value. In this case, the function value is simply considered

to be infinite. In a helicopter rotor blade design application [4], the objective

function failed to return a value two times out of three. Randomness may also

be present in the evaluation of a function, as in [26], where two evaluations of ψ

at the same point p return slightly different values. In this less optimistic case,

the best optimality condition which can be hoped for is to find a refined point.

We shed light on this concept in §2.3.

The mads class of algorithms, introduced in [3], is designed for such nons-

mooth optimization problems, and its convergence properties rely on Clarke’s
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nonsmooth calculus [6]. mads extends the generalized pattern search [2, 34]

(gps) class of algorithms by allowing a more general exploration of the space of

variables.

2.1 A general overview of mads with a surrogate function

The mads algorithm attempts to locate a minimizer of the function ψ over Ω

by means of the barrier function

ψΩ(p) =

{

+∞ if p 6∈ Ω
ψ(p) otherwise.

(2)

We will refer to ψ as being the truth function or, sometimes, simply the truth.

As is usual in nonlinear programming, a second function, playing the role

of a model, may be used to guide the algorithm and steer the iterates towards

promising regions. Suppose that σ : R
` → R ∪ {+∞} is a given function which

may be used as a model for ψ. In the context of non-differentiable optimization

and mads-type methods, a model is often referred to as a surrogate. The surro-

gate may be an approximation to the truth, or it may be a simplified function

whose behaviour is similar to that of the truth. An important feature of the

surrogate is that it must be easier to evaluate than the truth, in some sense, be

it less costly in terms of time or other. The previous sentences are left intention-

ally vague, since the formal convergence analysis is independent of the quality

of the approximation of ψ by σ. However, in practice, appropriate surrogates

may improve the convergence speed. A barrier surrogate σΩ is defined similarly

to (2).

mads is an iterative algorithm, where each iteration essentially consists of

two steps. First, a global exploration of the space of variables is conducted in

hopes of improving the incumbent pk ∈ R
` at iteration k. This flexible stage,

called the search step, returns a set of candidates but the truth function need

not be evaluated at all of them. To decide at which of these the truth ψΩ will

be evaluated, the value of the barrier surrogate function σΩ is computed at each

of them and they are subsequently ordered in increasing function values. We

may thus consider without loss of generality that the set of candidates has the

form L = {q1, q2, . . . , qm} and satisfies σΩ(q1) ≤ σΩ(q2) ≤ . . . ≤ σΩ(qm). A

candidate qj ∈ L will be considered promising if σΩ(qj) ≤ σΩ(pk) + v|σΩ(pk)|,

where v ∈ R+ ∪ {+∞} is a threshold supplied by the user. Candidates which

are not promising are eliminated from the search list.
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The truth function is then evaluated at the promising candidates in L. This

can be done in an opportunistic way, evaluating ψΩ(qi) with increasing values

of i and terminating the process as soon as ψΩ(qi) < ψΩ(pk). In this case, an

improved incumbent is found and we set pk+1 = qi.

Secondly, in the event where the search fails to identify an improved iterate,

a local exploration about pk is performed. This is called the poll step. Again,

the surrogate function is used to order the trial points. The convergence theory

prohibits pruning candidates given by the poll step. The convergence analysis

relies mostly on this step and it must obey stricter rules. In gps, the poll

is confined at each iteration to a fixed finite set of directions, while the set of

directions for the mads poll may vary at each iteration, and in the limit the

union of these poll directions over all iterations is dense in the whole space.

2.2 An iteration of a mads algorithm

We now present a lower-level description of the method. The reader is invited

to consult [3] for a complete algorithmic description and a detailed convergence

analysis. The version presented in the present work is specialized for our pur-

poses and some algorithmic choices were made. As a consequence, this allows

the use of much lighter notation.

Let S0 ⊂ Ω denote a finite set of initial guesses, provided by the user (a

strategy exploiting the surrogate to determine S0 is presented in §4.4). Set p0

to be the best initial guess in S0. A mads algorithm is constructed in such a

way that any trial point generated by the search or poll step is required to

lie on the current mesh, whose coarseness is governed by a mesh size parameter

∆k ∈ R+. The mesh is formally defined in Definition 2.1.

Definition 2.1 At iteration k, the current mesh is defined to be the union

Mk =
⋃

p∈Sk

{

p+ ∆kz : z ∈ Z
2`

}

,

where Sk is the set of points where the objective function ψ has been evaluated

by the start of iteration k and Z denotes the set of integers.

The objective of the iteration is to find a trial mesh point with a lower

objective function value than the current incumbent value ψΩ(pk). Such a trial

point is called an improved mesh point, and the iteration is called a successful

iteration. There are no sufficient decrease requirements: any improvement in
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ψΩ leads to a successful iteration. The iteration is said to be unsuccessful if no

improved point is found.

Most of the flexibility in the mads algorithm lies in the search step. On

the other hand, the poll step evaluates ψΩ at 2` trial points surrounding the

current incumbent. These neighbouring points are called the frame, and are

denoted by :

Fk = {pk ±∆kd : d ∈ Dk} , (3)

where Dk = {d1, d2, . . . , d`} is a basis in Z
`. To ensure convergence, the radii

of successive frames must converge to zero at a slower rate than the mesh size

parameter. The construction of the basis Dk proposed in [3] ensures that

‖∆kd‖∞ = O(
√

∆k) for all d ∈ Dk. (4)

Both the search (when k ≥ 1) and the poll may be opportunistic: the

iteration may be terminated as soon as an improved mesh point is detected.

Figure 1 shows an example of two consecutive frames in R
2. The figure on the

left represents iteration k. The mesh Mk is represented by the intersection of all

lines. Suppose that ∆k = 1
2 . The thick lines delimits the frame, i.e., the region

in which all four poll points must lie. In this example, the frame points q1 and

q3 are obtained by the randomly generated direction d1 = (0,−2), and q2 and

q4 are obtained by d2 = (2, 1). The figure on the right displays a possible frame

if iteration k is unsuccessful. The mesh is finer at iteration k+ 1 than it was at

iteration k, and there are more possibilities in choosing a frame. More precisely,

∆k+1 = 1
4∆k = 1

8 and, as in (4), the distance from the boundary of the frame to

the incumbent is reduced by a factor of 2 ; ‖ri−pk+1‖∞ =
√

1
4‖q

j−pk‖∞ for all

i, j. The directions used to construct the frame points r1 and r3 are d1 = (−3, 4),

and the directions for q2 and q4 are d2 = (4, 0). Moreover, suppose that iteration

k + 1 is successful at q3. Then iteration k + 2 would be initiated at pk+1 = q3

with a smaller mesh size parameter ∆k+1 = 1
2 .

When the poll step fails to generate an improved mesh point then the frame

is called a minimal frame, and the frame center pk is said to be a minimal frame

center. At iteration k, the rule for updating the mesh size parameter is

∆k+1 =







∆k/4 if pk is a minimal frame center,
4∆k if an improved mesh point is found, and ∆k ≤

1
4 ,

∆k otherwise.
(5)
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Figure 1: Two consecutive frames Fk, Fk+1 in R
2 with ∆k = 1

2 , ∆k+1 = 1
8 .

The above description is summarized in Algorithm 2.1.

Given the functions ψ and σ, the only steps that are not completely defined

in Algorithm 2.1 are the selection of the set of initial guesses S0 and the search

strategy. Particular choices in the framework of an application are discussed in

§4.4.

2.3 Convergence properties of mads

Since we are concerned in the present work with bound constraints on param-

eters, the convergence analysis of [3] greatly simplifies. We present here the

specialized results. The proofs of these results may all be found in [3]. The

analysis relies on Assumption 1.

Assumption 1 At least one initial guess p0 ∈ S0 ⊆ Ω has finite ψ(p0) value

and all iterates {pk} produced by Algorithm 2.1 lie in a compact set.

The mechanism of Algorithm 2.1 ensures the following property.

Lemma 2.2 The sequence of mesh size parameters satisfies

lim inf
k→+∞

∆k = 0.

Moreover, since ∆k shrinks only at minimal frames, it follows that there are

infinitely many minimal frame centers.

Definition 2.3 specifies important subsequences of iterates and limit directions.
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Algorithm 2.1: [A mads algorithm]

Step 0. [Initialization] Let S0 be given, p0 ∈ argmin{ψ(p) : p ∈ S0}, ∆0 >
0 and v ∈ R+ ∪ {+∞}. Set the iteration counter k = 0, and go to
Step 1.

Step 1. [search step] Let L = {q1, q2, . . . qm} ⊂ Mk be a finite (possibly
empty) set of mesh points such that σΩ(qi) ≤ σΩ(qj) ≤ σΩ(pk) +
v|σΩ(pk)| when 1 ≤ i < j ≤ m.

Let i0 be the smallest i ∈ {1, . . . ,m} such that ψΩ(qi) < ψΩ(pk).
If no such index i0 exists, go to Step 2.
Otherwise, declare k successful, set pk+1 = qi0 and go to Step 3.

Step 2. [poll step:] Construct the frame Fk = {q1, q2, . . . q2`} as in (3)
and order the points so that σΩ(qi) ≤ σΩ(qj) when 1 ≤ i < j ≤ 2`.

Let i0 be the smallest i ∈ {1, . . . , 2`} such that ψΩ(qi) < ψΩ(pk).
If no such index i0 exists, declare k unsuccessful and go to Step 3.
Otherwise, declare k successful, set pk+1 = qi0 and go to Step 3.

Step 3. [Parameter update] If iteration k was declared unsuccessful, then
pk is a minimal frame center and pk+1 is set to pk. Otherwise pk+1 is
an improved mesh point.

Update ∆k+1 according to (5). Increase k ← k + 1 and go back to
Step 1.

Definition 2.3 A subsequence of the mads iterates consisting of minimal frame

centers, {pk}k∈K for some subset of indices K, is said to be a refining subse-

quence if {∆k}k∈K converges to zero. Any accumulation point of {pk}k∈K will

be called a refined point.

Let {pk}k∈K be a convergent refining subsequence, with refined point p̂, and

let v be any accumulation point of the set { dk

‖dk‖
: pk + ∆kdk ∈ Ω, k ∈ K} ⊂ R

`.

Then v is said to be a refining direction for p̂.

Note that under Assumption 1, there always exists at least one convergent

refining subsequence, one refining point and a positive spanning set of refining

directions. We first present a basic result on refining directions, based on the

concept of Clarke generalized directional derivative [6, 19] in the tangent cone

(recall that the tangent cone to Ω at some p̂ ∈ Ω, noted TΩ(p̂), is defined to be

the closure of the set {µ(v − p̂) : µ ∈ R+, v ∈ Ω}).

Theorem 2.4 Let ψ be Lipschitz near a limit p̂ ∈ Ω of a refining subsequence,
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and v ∈ TΩ(p̂) be a refining direction for p̂. Then the Clarke generalized direc-

tional derivative ψ◦(p̂; v) of ψ at p̂ in the direction v is nonnegative, i.e.,

ψ◦(p̂; v) ≡ lim sup
y → p̂, y ∈ Ω,
t ↓ 0, y + tv ∈ Ω

ψ(y + tv)− ψ(y)

t
≥ 0.

The next result states that mads produces a limit point that satisfies some

necessary optimality conditions. The results are presented in a hierarchical way;

the weaker conclusion results from the weaker assumption on ψ which is lower

semicontinuity. In this case, we obain a locally minimal function value along

the directions explored by the refining subsequence. The main result is that the

Clarke derivatives of ψ at a refined point p̂ are nonnegative for all directions in

the tangent cone.

Theorem 2.5 Let p̂ ∈ Ω be a refined point of a refining subsequence {pk}k∈K ,

and assume that the set of refining directions for p̂ is dense in TΩ(p̂).

• If ψ is lower semicontinuous at p̂, then ψ(p̂) ≤ limk∈K ψ(pk),

• If ψ is Lipschitz near p̂, then ψ◦(p̂, v) ≥ 0 for every v ∈ TΩ(p̂),

• If ψ is Lipschitz near p̂ ∈ int(Ω), then 0 ∈ ∂ψ(p̂) ≡ {s ∈ R
` : ψ◦(x̂; v) ≥

vT s, ∀v ∈ R
`},

• If ψ is strictly differentiable [20] at p̂, then p̂ is KKT stationary point of

ψ over Ω.

The density assumption in Theorem 2.5 is not restrictive ; the ltmads im-

plementation ensures that it is true with probability one [3] when the sequence

of iterates produces by the algorithm converges.

Note that the above convergence results rely only on the poll step, and are

independent of the surrogate function and of the search step. Furthermore,

even though Algorithm 2.1 is applied to ψΩ instead of ψ, the convergence re-

sults are linked to the local smoothness of ψ and not ψΩ, which is obviously

discontinuous on the boundary of Ω.
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3 Trust-region methods

To successfully tackle a smooth nonlinear nonconvex programming problem from

a remote starting guess, the iteration must often be embedded into a globaliza-

tion method. The two most popular globalization methods are the linesearch

and the trust region. Their philosophies may be seen as dual; a linesearch strat-

egy computes a step length along a predetermined direction, while a trust-region

strategy considers all acceptable directions but limits the maximal step length.

In this section, we briefly review the latter.

3.1 A basic trust-region algorithm

Trust-region methods appear to date back to a 1944 paper in which they were

used to solve nonlinear least-squares problems [21]. For similar purposes, they

were independently used by Morrison [25] and Marquardt [22]. Later, Goldfeldt,

Quandt and Trotter [13] introduced updating rules for the size of the region, a

crucial step towards modern trust-region methods. In 1970, Powell [27] proved

global convergence of a particular trust-region algorithm. Different terminolo-

gies are used in the community, but substantial standardization appears as a

result of the survey [24]. Trust-region methods now form one of the most pop-

ular globalization schemes and are often praised for their robustness and flexi-

bility. They are used throughout optimization, from regularization problems to

derivative-free and interior-point methods. We trust that the reader’s appetite

for lists of references together with more historical notes and thorough theoret-

ical developments across the whole optimization spectrum will be satisfied by

the recent book [9].

For simplicity and because our later numerical tests will only concern such

problems, assume we wish to solve the unconstrained programming problem

min
x∈Rn

f(x) (6)

where f : R
n → R is a twice-continuously differentiable function. For problem

(6) to be well defined, we assume throughout that f is bounded below. The

philosophy of trust-region methods is to assume that f might be highly nonlinear

and/or costly to evaluate. At iteration k, instead of manipulating f directly, f

is replaced by a suitable local model mk which is easier and cheaper to evaluate.

However, from the very nature of a local model, it might not be wise to trust that

mk accurately represents f far from the current iterate xk. A region Bk ⊂ R
n,
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referred to as the trust region, is therefore defined around xk to represent the

extent to which mk is believed to reasonably model f . The trust region is

defined as the ball

Bk ≡ {xk + s ∈ R
n : ‖s‖ ≤ δk} ,

where δk > 0 is the current trust-region radius and ‖ · ‖ represents any norm on

R
n. To simplify the exposition, we choose the Euclidean norm but other choices

are acceptable [9].

Instead of applying a procedure to minimize f starting from xk, the model

mk is approximately minimized within Bk. If the decrease thus achieved is

sufficient and if the agreement between f andmk at the trial point is satisfactory,

the step is accepted and the radius δk is possibly increased. Otherwise, the step

is rejected and the radius is decreased. This last option indicates that mk might

have been trusted in too large a neighbourhood of xk .

Global convergence of trust-region schemes is ensured by mild assumptions

onmk and on the decrease that should be achieved at each iteration. In practice,

one of the most popular models is the quadratic model

mk(xk + s) = f(xk) +∇f(xk)T s+
1

2
sTHks,

where Hk = ∇2f(xk), or a symmetric approximation to it. For simplicity, we

assume in the remainder of this paper that Hk is the exact Hessian of f at xk.

Sufficient decrease in the model is established by considering the decrease

obtained at two points of Bk. The first is the Cauchy point xC

k—the minimizer

of mk along the steepest descent direction d = −∇mk(xk). The second is the

minimizer of mk along a direction of approximately minimal negative curvature,

referred to as the eigen point and noted xE

k . Sufficient decrease is achieved if the

decrease in mk is at least a fraction of that obtained at the best of these two

points:

mk(xk)−mk(xk + s) ≥ θ [mk(xk)−min {mk(xC

k),mk(xE

k)}] , (7)

where 0 < θ < 1 is a fixed value, independent of the iteration number.

Combining all of the above, a typical trust-region framework for problem (6)

may be stated as Algorithm 3.1.

We should alert the reader that the updating rule (8) at Step 4 of Algo-

rithm 3.1 is not the only one used in practice, but most likely the most common

one. Other rules involve polynomial interpolation of ρk = ρ(sk) as a function of
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Algorithm 3.1: [Basic Trust-Region Algorithm]

Step 0. [Initialization] An initial point x0 ∈ R
n and an initial trust-region

radius δ0 > 0 are given, as well as parameters η1, η2, α1 and α2 satis-
fying

0 ≤ η1 < η2 < 1 and 0 < α1 < 1 < α2.

Compute f(x0) and set k = 0.

Step 1. [Step calculation] Define a model mk(xk + s) of f(xk + s) in Bk

and compute a step sk ∈ Bk which satisfies (7).

Step 2. [Acceptance of the trial point] Compute f(xk + sk) and

ρk =
f(xk)− f(xk + sk)

mk(xk)−mk(xk + sk)
.

If η1 ≤ ρk, then set xk+1 = xk + sk; otherwise, set xk+1 = xk.

Step 3. [Trust-region radius update] Set

δk+1 =







α1‖sk‖ if ρk < η1
δk if η1 ≤ ρk < η2
max[α2‖sk‖, δk] if η2 ≤ ρk.

(8)

Increment k by one, and go to Step 1.

the step sk [11], while others devise more sophisticated functions to obtain the

new radius [18, 35].

Requirements on the function f and each model mk are gathered in Assump-

tion 2.

Assumption 2 The function f is bounded below and its Hessian matrix re-

mains bounded over a set containing all iterates xk. The model mk coincides

up to first order with f at xk, i.e., mk(xk) = f(xk) and ∇mk(xk) = ∇f(xk).

The lengthy subject of how to solve the subproblems at Step 1 of Algo-

rithm 3.1 while ensuring (7) is out of the scope of this paper. We shall however

return to this issue in Section 4 and argue that the method we have chosen in

our implementation to solve trust-region subproblems ensures this.
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3.2 Convergence properties of the basic algorithm

We recall in this section the important global convergence properties of Algo-

rithm 3.1 without proof. The proofs may be found in [9]. Quite remarkably,

Assumption 2 is all that is required to prove global convergence of the basic

trust-region framework. Note that no assumption is made on how the model

should be minimized within Bk but rather, (7) imposes a condition on the quality

of the resulting trial point.

Step 3 of Algorithm 3.1 is often referred to as the computation of achieved

versus predicted reduction. Achieved reduction is the actual reduction in the

objective f , defined by aredk = f(xk)− f(xk + sk). Predicted reduction is the

reduction suggested by the model, defined by predk = mk(xk) −mk(xk + sk).

The quotient ρk is thus simply aredk/predk. The step sk will be accepted

whenever aredk ≥ η1predk, an iteration we refer to as successful. If additionally,

aredk ≥ η2predk, we shall say that the iteration is very successful. Otherwise,

it is unsuccessful.

Critical to the global convergence is the fact that the difference between

the objective and model values at the trial point decreases quadratically with

δk, i.e., |aredk − predk| ≤ κδ2k, where κ > 0 is a constant, possibly dependent

on k [9, Theorem 6.4.1]. This fact ensures that after a finite number of un-

successful steps, a successful step will be generated [9, Theorem 6.4.2]. A first

result considers the situation where there are only a finite number of successful

iterations.

Theorem 3.1 Suppose that Assumption 2 holds. If there are only finitely many

successful iterations, then xk = x∗ for all sufficiently large k where x∗ is first-

order critical for (6).

The first stage in the global convergence analysis of Algorithm 3.1 is usually

summarized by Theorem 3.2, which addresses the case where an infinite number

of successful iterations occur.

Theorem 3.2 Suppose that Assumption 2 is satisfied. Then

lim inf
k→∞

‖∇f(xk)‖ = 0.

Theorem 3.2 was first proved by Powell [27] in a framework where η1 = 0, i.e.,

where all trial points are accepted as soon as they produce a decrease in the
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objective. This result proves that if {xk} has limit points, at least one of them

is critical. In fact, this is as good a convergence result as we can obtain when

η1 = 0 [36]. The framework of Algorithm 3.1 differs in that it is more demanding

on the trial point—sufficient reduction must be achieved. This sheds some light

on the importance of the value of η1 in the framework, for as the next result

shows, a much stronger conclusion holds in this case.

Theorem 3.3 Suppose Assumption 2 is satisfied, and that η1 > 0. Then

lim
k→∞

‖∇f(xk)‖ = 0.

In other words, Theorem 3.3 shows that all limit points are first-order critical

for (6). The distinction between Theorem 3.2 and Theorem 3.3 was reinforced

by the careful example of [36], where it is shown that an algorithm with η1 = 0

may very well produce limit points which are not critical.

The importance of the parameters η1 and η2, but also α1 and α2 of Algo-

rithm 3.1 will be of interest to us in the remainder of this paper. In particular,

we shall come back to the issue of reduction versus sufficient reduction.

4 Methodology

An objective of the paper is to address a long standing question of identifying

four optimal parameters found in a trust-region update (8), namely η1, η2, α1

and α2. In this section, we present a general methodology to address this issue.

4.1 A black-box approach to parameter estimation

Suppose that Algorithm A depends on a set of continuous parameters p re-

stricted to lie in Ω ⊂ R
`, where ` is typically small. Let PO = {Pi | i ∈ O} be

a set of nO ≥ 1 problem instances believed to be representative of the class of

problems for which Algorithm A was designed, or to be of particular interest in

the context of Algorithm A. Define a function ψ : Ω→ R so that for any p ∈ Ω,

ψ(p) is some measure of the performance of Algorithm A in solving the set of

problems Pi ∈ PO and such that the smaller the value of ψ(p), the better the

performance of the algorithm, in a context-dependent sense.

In an optimization context, examples of a function ψ would include the total

CPU time required to solve the complete test set, or the cumulative number of



December 1, 2004 16

iterations, of function evaluations or the number of problems unsuccessfully

solved. In other contexts, any appropriate measure may be used.

The above description qualifies as a black-box optimization problem in the

sense that a computer program must in general be run in order to evaluate ψ(·)

at a given parameter value p ∈ Ω. For all allowed values of the parameters p,

we seek to minimize a global measure of the performance of Algorithm A. In

other words, we wish to solve problem (1).

Problem (1) is usually a small-dimensional nondifferentiable optimization

problem with expensive black-box function evaluation. It therefore seems natu-

ral to use Algorithm mads to approach it. As an additional difficulty, evaluating

the objective function of (1) twice at the same value of p might produce two

sligthly different results.1

In the present context, there is a natural way to define a less expensive

surrogate function that would have an overall behaviour similar to that of ψ.

Let PS = {Pj | j ∈ S} be a set of nS ≥ 1 easy problems and for any p ∈ Ω,

define σ(p) to be the same measure (as with ψ) of performance of Algorithm

A in solving the set PS of problems. The quality of an approximation of the

behaviour of ψ by the surrogate function σ depends on nS and on the features

of the problems in PS. The more problems, the better the approximation, but

the cost of surrogate evaluations will increase. There therefore is a trade-off

between the quality and the cost of a surrogate function. It would thus make

sense to include in PS problems that are less expensive to solve and possibly,

we may choose S ⊂ O.

Note that this framework is sufficiently general to encompass algorithmic

parameter estimation in almost any branch of applied mathematics or engineer-

ing.

4.2 An implementation of Algorithm 3.1

Our implementation of the trust-region method is relatively conventional and

relies on the building blocks of the GALAHAD Library for Optimization [16].

Trust-region subproblems are solved by means of the Generalized Lanczos method

for Trust Regions GLTR [14, 16]. This method is attractive for its ability to natu-

rally handle negative curvature and to stop at the Steihaug-Toint point, i.e., the

intersection of the trust-region boundary with a direction of sufficiently negative

1And thus technically, ψ is not a function in the mathematical sense.
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curvature [31, 33]. It also ensures satisfaction of (7).

We now discuss the termination criteria of applying the trust-region Algo-

rithm 3.1 on the unconstrained problem

(Pi) ≡
{

min
x∈R

ni

fi(x).

where fi : R
ni → R, for i ∈ O ∪ S. The algorithm stops as soon as an iterate

xk satisfies

‖∇fi(xk)‖2 ≤ 10−5.

The trust-region algorithm is also terminated when this criterion was not met

in the first 1000 iterations. The measure ψ or σ is then set to +∞.

The trust-region subproblem

min
s∈Rn

∇fi(xk)T s+ 1
2s

T∇2fi(xk)s

s.t. ‖s‖2 ≤ δk

is successfully solved as soon as xk + s satisfies

‖∇fi(xk + s)‖2 ≤ min

[

1

10
, ‖∇fi(xk)‖

1/2
2

]

or ‖s‖2 = δk.

The initial trust-region radius was chosen according to

δ0 = max

(

1

10
‖∇fi(x0)‖2, 1

)

.

4.3 Measures of performance

In our experiments below, several functions ψ(·) are considered, but the evalu-

ation of each of them involves running a computer program which has a given

trust-region algorithm for unconstrained optimization solve a series of problems

with given values of the parameters. The parameters are p = (η1, η2, α1, α2)

from Step 4 of Algorithm 3.1, ` = 4 and

Ω =
{

p ∈ R
4 | 0 ≤ η1 < η2 < 1 and 0 < α1 < 1 < α2 ≤ 10

}

. (9)

Note that Assumption 1 is satisfied since the domain Ω is a full-dimensional

polyhedral bounded set. The upper bound on α2 was introduced on the one

hand to satisfy Assumption 1, and on the other hand because it does not appear

intuitive, or useful, to enlarge the trust-region by an arbitrarily large factor

on very successful iterations. Note the presence of the linear constraint η1 <
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η2 in (9). In order to agree with the bound-constrained framework of §2.3,

this linear constraint was hardcoded into mads , leaving only bounds in (9).

If a parameter value violates this linear constraint, the resulting value of the

objective is infinite.

To ensure that a change in ∆ in Algorithm 2.1 is comparable for all four

parameters, the latter are scaled using








η̃1
η̃2
α̃1

α̃2









=









1000
100

100
10

















η1
η2
α1

α2









. (10)

mads then works with the variables (η̃1, η̃2, α̃1, α̃2).

Suppose a set of nO unconstrained problems from the CUTEr [17] collection

is chosen. An evaluation of the black-box function ψ(·) is defined by the solu-

tion of these problems using Algorithm 3.1 and the current parameter values

p ∈ Ω. The outcome of this evaluation is either a real number—our measure of

performance—or an infinite value, resulting from a computer or algorithmic fail-

ure in one or more problems. Failures may occur because the maximum number

of iterations has been exceeded, because of memory or system-dependent errors

or perhaps because of a floating-point exception.

Noticeably, in the context of Algorithm 3.1, the same parameter values

pC = (η1, η2, α1, α2) =

(

1

4
,
3

4
,
1

2
, 2

)

(11)

are often recommended in the literature [7, 8, 10, 28, 29, 30]. We shall refer

to those as the classical parameter values. Our contention is to show that the

values (11) are arbitrary and that much better options are available. We use

Algorithm mads to identify them. In our tests, the first trial point considered

by mads is pC. The measures of performance which we choose are the number

of function evaluations and the total CPU time. If we denote by ϕi(p) and τi(p)

the number of function evaluations and CPU time, respectively, which were

necessary to solve problem Pi with the parameters p, we may define

ψ1(p) =
∑

i∈O

ϕi(p). (12)

Note that since we are only considering unconstrained minimization, this mea-

sure is equivalent to the number of iterations and is justified in the frequent case

where objective function evaluations are computationally costly and dominate
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the other internal work of the algorithm. If evaluating the objective function is

relatively cheap compared to the algorithm’s internal work, which might be the

case when the dimension of the problem is large and the linear algebra therefore

more expensive, then the overall cpu-time is an obvious choice for measuring

performance. For this purpose, we define

ψ2(p) =
∑

i∈O

τi(p). (13)

From the mads point of view, each objective function evaluation requires the

computation of nO values : either ϕi(·) or τi(·) for i ∈ O.

4.4 The surrogate function σ

In the present context, a function evaluation consists in solving a list of problems

with Algorithm 3.1 and combining the results on each problem into a unique

real number. A surrogate function σ, as described in §4.1, was defined through

a set of relatively simple unconstrained problems. The objective function on the

other hand, was defined by a list of much harder problems. They were chosen

as follows.

The trust-region algorithm described in Section 4.2 was run on the 163 un-

constrained regular problems from the CUTEr collection, using the default di-

mensions. From those, some problems failed to be solved for memory reasons

and some reached the maximum number of iterations of 1000. Two test lists

were extracted from the results. The first consists in those problems for which

ni < 1000 and 0.01 ≤ τi(p
C) ≤ 30 (measured in seconds), and we shall refer to

it as the surrogate list S. The surrogate list contains 54 problems of small to

moderate dimension, 2 ≤ ni ≤ 500 and such that
∑

i τi(p
C) = 68.1999 seconds.

In other words, we may expect that running through the whole surrogate list,

i.e., evaluating the surrogate, should not take much longer than two minutes.

Problems in this list and their characteristics are summarized in Table 5. The

second list, or objective list O, consists in those problems for which ni ≥ 1000

and τi(p
C) ≤ 3600. This yields a list of 55 problems with 1000 ≤ ni ≤ 20000

and such that
∑

i τi(p
C) = 13461 seconds, which amounts to 3 hours, 44 minutes

and 35 seconds. The latter duration is the time that one objective function eval-

uation may be expected to take. Problems in this list and their characteristics
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are summarized in Table 4. The surrogate functions are simply

σ1(p) =
∑

j∈S

ϕj(p) and σ2(p) =
∑

j∈S

τj(p). (14)

A surrogate function plays three important roles in the present context.

First, it is used as if it were the real objective function, for the sole purpose

of obtaining a better starting point than pC before restarting the procedure

with the objective function defined by the objective list. Its purpose is thus to

postpone the long computations until a neighbourhood of a local minimizer is

reached. No surrogate approximation of σ was used. Starting from pC given

by (11), mads terminates with some solution pS. After having obtained these

parameters, we can now apply mads on the truth function ψ and use the sur-

rogate function σ to guide the algorithm. The set of initial guesses was chosen

as S0 = {pC, pS}.

Secondly, the surrogate is used to order trial points generated by the mads

poll or search steps, as described in §2.1. If the surrogate is appropriate, the

ordering should produce a sucessful iterate for the real objective function before

all directions have been explored.

Finally, the third role of the surrogate is to eliminate from consideration

the trial search points at which the surrogate function value exceeds the user

threshold value v, which is in our case set to 0.1.

In the present application, the search strategy differs from one iteration to

another, and goes as follows. When k = 0, the search consists of a 64 points

latin hypercube sampling of Ω in hopes of identifying promising basins [23, 32].

At iteration k ≥ 1, the search consists in evaluating the surrogate barrier

function at 8 randomly generated mesh points.

In addition, the search step conducts the dynamic search described in [3].

It is only called after a successful iteration, and essentially consists in evaluating

ψ at the next mesh point in a previously successful direction.

5 Numerical results

All tests were run on a 500 MHz Sun Blade 100 running SunOS 5.8. The

implementation of mads is a C++ package called nomad.2

2May be downloaded from www.gerad.ca/NOMAD.
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5.1 Improving the initial solution

The first run consisted in applying mads to the surrogate function σ2 from the

classical parameters pC. Results are reported in Table 1. The first column con-

tains the number of mads function evaluations required to improve the measure

to the value in the second column. The other columns contain the corresponding

parameter values.

#f evals σ2(p) η̃1 η̃2 α̃1 α̃2

1 67.6099 250 75 50 20
3 66.11 538.86719 77.480469 43.765625 17.914062
57 56.94 221.65625 89.175781 39.511719 23.042969
138 56.53 221.65625 89.300781 39.402344 23.136719
139 54.42 221.65625 89.675781 39.074219 23.417969
141 53.88 221.65625 89.675781 39.074219 22.917969
154 53.67 221.65625 90.175781 39.074219 22.667969
194 52.57 221.6875 90.175781 38.996094 22.792969
224 52.43 221.625 90.203125 38.996094 22.792969
289 52.35 221.625 90.207031 38.996094 22.792969

Table 1: Minimization of the surrogate function to improve the initial solution.
The measure σ2(p) is in seconds.

mads stopped after 310 function evaluations as the mesh size parameter ∆k

dropped below the stopping tolerance of 10−6. The best set of parameters

pS = (0.221625, 0.90207031, 0.38996094, 2.2792969)

was identified at the 289th evaluation. This strategy allowed to improve the

truth initial value from 13461 to 11498.026, i.e., down to 3 hours and 12 minutes.

Note that the value of the surrogate at pC had to be evaluated again during

the first iteration and that its differred by approximately 1% from the one we

had first obtained §4.4 before building the surrogate. This is an illustration of

the non-deterministic aspect of such objective functions.

5.2 Performance profiles

Comparison between the initial and final values of the mads objective function,

i.e., the benchmarking of the trust-region method on a set of nonlinear un-

constrained programs for the initial and final values of the parameters, will be



December 1, 2004 22

presented using performance profiles. Originally introduced in [12], we briefly

recall here how to read them.

Suppose that a given algorithmAi from a competing set A reports a statistic

uij ≥ 0 when run on problem j from a test set S, and that the smaller this

statistic the better the algorithm is considered. Let the function

ω(u, u∗, α) =

{

1 if u ≤ αu∗

0 otherwise

be defined for all u, u∗ and all α ≥ 1. The performance profile of algorithm Ai

is the function

πi(α) =

∑

j∈S ω(ui,j , u
∗
j , α)

|S|
with α ≥ 1,

where u∗j = mini∈A uij . Thus πi(1) gives the fraction of the number of problems

for which algorithm Ai was the most effective, according to the statistics uij ,

πi(2) gives the fraction for which algorithm Ai is within a factor of 2 of the

best, and limα→∞ πi(α) gives the fraction of examples for which the algorithm

succeeded.

5.3 Minimizing the total computing time

From the parameter values suggested by the surrogate function in Table 1 used

as new starting point, Algorithm 2.1 was restarted using the objective function.

The stopping condition this time was to perform a maximum of 150 truth eval-

uations. Based on the estimate of roughly 3 hours and 45 minutes per function

evaluation, this amounts to an expected total running time of just about three

weeks. Fragments of the evolution of ψ2(·) are given in Table 2.

The final iterate

p∗ = (0.22125, 0.94457031, 0.37933594, 2.3042969)

produced by mads gives a value ψ2(p
∗) = 10192.305, and therefore reduces the

total computing time to just under 2 hours and 50 minutes ; a reduction of

25% of the computing time. This p∗ is clearly in favour of a sufficient decrease

condition rather than of η1 ≈ 0.

The values ψ2(p
C) and ψ2(p

∗) can be visualized in the profile of Fig. 2 which

compares the cpu-time profiles of Algorithm 3.1 applied to the objective list for

the initial and final parameter values. The profile of Fig. 3 presents a similar

comparison, using the number of function evaluations.
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#f evals ψ2(p) η̃1 η̃2 α̃1 α̃2

1 11498.026 221.625 90.207031 38.996094 22.792969
5 11241.236 221.375 90.207031 38.871094 22.917969
7 10757.544 221.375 90.207031 38.871094 23.417969
13 10693.04 219.375 90.207031 38.871094 24.417969
40 10691.432 219.25 90.207031 38.871094 24.417969
42 10617.409 219.25 90.207031 38.621094 24.417969
73 10617.409 219.25 90.207031 38.621094 24.417969
74 10279.853 221.25 94.457031 37.996094 23.042969
77 10183.954 221.25 94.457031 37.933594 23.042969
97 10183.954 221.25 94.457031 37.933594 23.042969
98 10195.392 221.25 94.457031 37.933594 23.042969
115 10195.392 221.25 94.457031 37.933594 23.042969
116 10192.305 221.25 94.457031 37.933594 23.042969
142 10192.305 221.25 94.457031 37.933594 23.042969

Table 2: Minimization of the objective function from improved starting point.
The measure ψ2(p) is in seconds.

6 Discussion

The above results must be interpreted in the light of the objective function used

in the minimization procedure. Fig. 2 and Fig. 3 result from a minimization of

ψ2(·). Almost certainly, a minimization of ψ1(·) would have produced a different

set of parameters. Moreover, the simplicity of ψ1(·) and ψ2(·) is counterbalanced

by their disadvantage of computing global measures. More sophisticated objec-

tives in the present application could penalize the fact that a particular problem

took a long time to fail for some parameter values while for others, failure was

quickly detected. Similarly, they do not treat differently problems which are

uniformly solved in a fraction of a second for nearly all parameter values and

problems whose running time varies with great amplitude. Such effects might,

and do, cause mads to elect against exploring certain regions.

To illustrate this point, we note that the parameter values recommended

by mads differ significantly from those recommended in [15]. In a separate,

preliminary, series of tests, the objective function σ2(·) was minimized over (9)

without using the scaling (10) and without using surrogates. The final iterate

thus produced turned out to be

pA = (0.000008, 0.9906, 0.3032, 3.4021),
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Figure 2: Profile comparing the CPU time required for one evaluation of the
mads objective for the initial and final parameter values.

which is rather close to the recommendations of [15] and seems to indicate that

enforcing sufficient descent is not particularly beneficial in practice. The value

ψ2(p
A) = 13707 is surprisingly higher than ψ2(p

C) = 13461. However, the

corresponding profile appears significantly better than the reference algorithm

using pC as illustrated by Fig. 4 and Fig. 5, where we refer to pA as the alternative

parameter value. Problems with long solution times are gathered in Table 3.

The first three of those do not appear to influence the behaviour of mads by

much, as their solution time varies little. Some problems failed to be solved for

any values of the parameter. Among those, GENHUMPS is particularly detrimental

to the measure ψ2(p
A) as the failure takes 10 times longer to be detected than at

p∗. Likely, the value pA would produce much better results if GENHUMPS were not

present. We see nonetheless in the present case that mads performed its task as

it should have and that, perhaps, it is the objective function ψ2(·) which should

take such outliers into account, since the presence of problems like GENHUMPS

cannot be anticipated.

A phenomenon of a much more optimistic kind is revealed by problem

CRAGGLVY which could not be solved in less than 1000 iterations using pc, which

took 83.3 seconds, but was solved in 20 iterations and 6.59 seconds using p∗.
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Figure 3: Profile comparing the number of function evaluations required for one
evaluation of the mads objective for the initial and final parameter values.

Problem Pi τi(p
C) τi(p

A) τi(p
∗)

DIXON3DQ 2728.24 1286.14 1572.75
EIGENALS 1768.25 1119.76 1177.19
NCB20B 1444.47 964.25 1152.8
CHAINWOO 1224.25 F 1372.78 F 1224.1 F
GENHUMPS 615.29 F 4028.99 F 444.96 F

Table 3: Problems with relatively high and varying solution times. A ‘F’ indi-
cates a failure. CPU times are in seconds.

7 Conclusion

We presented a general framework for the optimization of algorithmic parame-

ters, which is general enough to be applied to many branches of engineering and

computational science. Using the algorithm presented in [1], this framework

may also be extended to the case where some parameters are categorical. The

framework is illustrated on an example which at the same time addresses the

long-standing question of determining locally optimal trust-region parameters in

unconstrained minimization. The Mads algorithm for non-smooth optimization

of expensive functions [3] is at the core of the framework.

The very notion of optimality for such problems is not well defined. Hence,
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Figure 4: Profile comparing the CPU time required for one evaluation of the
mads objective for the initial, final and alternative parameter values.

our aim in designing this framework was to suggest values for the parameters

which seem to perform better, in a sense specified by the user, on a set of

problems which are context-dependent and can also be specified by the user.

In real applications, we believe this black-box approach is beneficial since it

allows users to take full advantage of their knowledge of the context to design

appropriate test sets and performance measures. As our numerical experience

indicates, the choice of objective to be optimized will likely influence the results.

We reserve the exploration of more elaborate objective functions, making

provision for outliers, and the study of scaling strategies for mads for future

work. We also wish to explore modifications of the algorithm to accept integer

and categorical parameters and more general constraints.

Appendix: Tables

Tables 4 and 5 report numerical results on the objective and surrogate lists

respectively using traditional values of the parameters. The headers of the

columns are as follows. The column titled n gives the number of variables,

#f eval is the number of function evaluations, Time is the CPU time in seconds,

‖∇f(x∗)‖2 is the Euclidean norm of the gradient at the final point, and f(x∗)



December 1, 2004 27

02 12 22�
�

��� �

��� �

��� �

��� �

�

i
)	

(


� ��
 ��
 ��� ����
 ��������������� ������������
 � �"!���� ��#$������� %'&)(*�+� �,��� %

-/. 021 1�3 -�0�.4+0/5�1 6 1 7�. 8/9 3 7�:0�. 9 ;�< :=0=9 3 >2;

Figure 5: Profile comparing the number of function evaluations required for one
evaluation of the mads objective for the initial, final and alternative parameter
values.

is the final objective value. The Exit column gives the exit code of the solver.

An exit code of 0 indicates a success and an exit code of 2 indicates that the

maximal number of evaluations, set to 1000, was reached.

Acknowledgments We wish to thank Gilles Couture for developping nomad,

the c++ implementation of mads.

References

[1] C. Audet and J. E. Dennis, Jr. Pattern search algorithms for mixed variable

programming. SIAM Journal on Optimization, 11(3):573–594, 2000.

[2] C. Audet and J. E. Dennis, Jr. Analysis of generalized pattern searches.

SIAM Journal on Optimization, 13(3):889–903, 2003.

[3] C. Audet and J. E. Dennis, Jr. Mesh adaptive direct search algorithms

for constrained optimization. Technical Report G–2004–04, Les Cahiers du

GERAD, Montréal, 2004.
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BDQRTIC 5000 18 5.2400 0.1404E-06 0.2001E+05 0
BROYDN7D 5000 331 443.6999 0.7049E-06 0.1749E+04 0
BRYBND 5000 15 5.8300 0.4633E-07 0.6970E-16 0
CHAINWOO 4000 1001 1224.2506 0.1818E+03 0.1217E+05 2
COSINE 10000 14 1.8300 0.1258E-06 -0.9999E+04 0
CRAGGLVY 5000 1001 83.3004 0.3276E-05 0.1688E+04 2
DIXMAANA 3000 12 0.5300 0.9559E-06 0.1000E+01 0
DIXMAANB 3000 12 0.4600 0.4180E-08 0.1000E+01 0
DIXMAANC 3000 14 0.5500 0.3559E-06 0.1000E+01 0
DIXMAAND 3000 15 0.6400 0.3850E-06 0.1000E+01 0
DIXMAANE 3000 15 7.1900 0.4101E-06 0.1000E+01 0
DIXMAANF 3000 26 37.2900 0.4084E-06 0.1000E+01 0
DIXMAANG 3000 24 30.9100 0.1895E-06 0.1000E+01 0
DIXMAANH 3000 22 12.8400 0.4658E-07 0.1000E+01 0
DIXMAANI 3000 17 178.4300 0.2117E-06 0.1000E+01 0
DIXMAANJ 3000 35 455.6000 0.2268E-06 0.1000E+01 0
DIXMAANL 3000 40 461.4600 0.3689E-06 0.1000E+01 0
DIXON3DQ 10000 10 2728.2402 0.4521E-07 0.7349E-13 0
DQDRTIC 5000 13 1.2500 0.2305E-17 0.5191E-36 0
DQRTIC 5000 53 2.3300 0.4194E-06 0.7316E-08 0
EDENSCH 2000 21 0.9800 0.7168E-06 0.1200E+05 0
EG2 1000 4 0.0600 0.5958E-08 -0.9989E+03 0
EIGENALS 2550 98 1768.2498 0.5615E-06 0.1189E-10 0
ENGVAL1 5000 18 2.4700 0.4160E-07 0.5549E+04 0
EXTROSNB 1000 1001 78.2900 0.4567E-05 0.3825E-06 2
FLETCBV3 5000 1001 314.5186 0.3291E+02 -0.6676E+07 2
FLETCHBV 5000 1001 314.9600 0.3083E+10 -0.6562E+15 2
FLETCHCR 1000 1001 77.1401 0.4758E+01 0.2897E+03 2
FMINSRF2 5625 140 151.8100 0.9511E-06 0.1000E+01 0
FMINSURF 5625 122 134.0901 0.7822E-07 0.1000E+01 0
FREUROTH 5000 18 2.3700 0.6173E-06 0.6082E+06 0
GENHUMPS 5000 1001 615.2895 0.6048E+04 0.8634E+08 2
INDEF 5000 1001 260.5709 0.7193E+02 -0.3090E+14 2
LIARWHD 5000 20 1.7400 0.5457E-08 0.7421E-17 0
MODBEALE 20000 23 38.4600 0.4206E-07 0.6602E-15 0
NCB20 5010 86 639.8300 0.3638E-07 -0.1456E+04 0
NCB20B 5000 23 1444.4702 0.2534E-06 0.7351E+04 0
NONCVXU2 5000 1001 647.5209 0.2864E+02 0.7246E+05 2
NONCVXUN 5000 1001 708.7709 0.3753E+02 0.6178E+05 2
NONDIA 5000 8 0.6100 0.1947E-08 0.1173E-16 0
NONDQUAR 5000 164 415.1200 0.8056E-06 0.2349E-06 0
PENALTY1 1000 62 0.4300 0.9703E-07 0.9686E-02 0
POWELLSG 5000 25 1.8500 0.4753E-06 0.2520E-08 0
POWER 10000 44 54.7400 0.8258E-06 0.7139E-10 0
QUARTC 5000 53 2.3600 0.4194E-06 0.7316E-08 0
SCHMVETT 5000 11 3.8500 0.3894E-07 -0.1499E+05 0
SINQUAD 5000 16 2.7200 0.5097E-06 -0.6757E+07 0
SPARSQUR 10000 28 17.1000 0.3063E-06 0.2756E-09 0
SROSENBR 5000 11 0.5600 0.1871E-06 0.1774E-16 0
TESTQUAD 5000 18 37.9700 0.4908E-07 0.3760E-16 0
TOINTGSS 5000 23 3.6000 0.2688E-06 0.1000E+02 0
TQUARTIC 5000 15 1.2000 0.3883E-09 0.1884E-15 0
TRIDIA 5000 17 28.4000 0.4698E-07 0.8546E-17 0
WOODS 4000 66 6.0900 0.7967E-06 0.4410E-12 0

Table 4: Results on the objective list
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Name n #f eval Time (s) ‖∇f(x∗)‖2 f(x∗) Exit

3PK 30 74 0.1400 0.3417E-06 0.1720E+01 0
ARGLINA 200 6 0.4500 0.1373E-12 0.2000E+03 0
BIGGS6 6 27 0.0200 0.8514E-06 0.5656E-02 0
BOX3 3 9 0.0300 0.2102E-08 0.2384E-14 0
BROWNAL 200 7 0.3000 0.1280E-08 0.3614E-19 0
BROWNBS 2 26 0.0200 0.0000E+00 0.0000E+00 0
BROWNDEN 4 13 0.0200 0.1079E-09 0.8582E+05 0
CHNROSNB 50 69 0.3200 0.2874E-07 0.6269E-16 0
CLIFF 2 30 0.0200 0.1494E-07 0.1998E+00 0
CUBE 2 48 0.0200 0.1135E-08 0.3223E-17 0
DECONVU 61 93 2.9100 0.2916E-06 0.4045E-09 0
DENSCHND 3 34 0.0300 0.4029E-07 0.3540E-09 0
DIXMAANK 15 12 0.0200 0.2982E-10 0.1000E+01 0
DJTL 2 171 0.0800 0.7967E-07 -0.8952E+04 0
ERRINROS 50 74 0.2500 0.2803E-07 0.3990E+02 0
GENROSE 500 465 28.5399 0.1275E-06 0.1000E+01 0
GROWTHLS 3 186 0.1200 0.2505E-07 0.1004E+01 0
GULF 3 58 0.1800 0.3461E-06 0.4802E-12 0
HAIRY 2 82 0.0400 0.1126E-10 0.2000E+02 0
HEART6LS 6 1001 0.5900 0.5826E+03 0.6271E-01 2
HEART8LS 8 263 0.2500 0.2651E-07 0.2172E-18 0
HIELOW 3 15 2.7300 0.2429E-07 0.8742E+03 0
HIMMELBF 4 205 0.1100 0.2911E-07 0.3186E+03 0
HUMPS 2 1001 0.4400 0.2628E+02 0.9715E+04 2
LOGHAIRY 2 1001 0.4400 0.1496E-02 0.6201E+01 2
MANCINO 100 24 11.6100 0.1149E-06 0.1679E-20 0
MARATOSB 2 1001 0.3400 0.6104E+02 -0.8601E+00 2
MEYER3 3 1001 0.5400 0.8330E+00 0.8820E+02 2
OSBORNEA 5 74 0.0900 0.3196E-07 0.5465E-04 0
OSBORNEB 11 25 0.1900 0.4666E-06 0.4014E-01 0
PALMER1C 8 1001 0.6800 0.1781E-02 0.9761E-01 2
PALMER1D 7 54 0.0600 0.9458E-06 0.6527E+00 0
PALMER2C 8 1001 0.5900 0.8995E-04 0.1449E-01 2
PALMER3C 8 651 0.3100 0.3740E-07 0.1954E-01 0
PALMER4C 8 85 0.0800 0.2544E-06 0.5031E-01 0
PALMER6C 8 234 0.1300 0.8616E-06 0.1639E-01 0
PALMER7C 8 1001 0.4100 0.6120E-03 0.6020E+00 2
PALMER8C 8 273 0.1400 0.9022E-06 0.1598E+00 0
PENALTY2 200 18 0.3900 0.4437E-07 0.4712E+14 0
PFIT1LS 3 630 0.2800 0.8950E-06 0.4115E-08 0
PFIT2LS 3 247 0.1000 0.3223E-06 0.1512E-13 0
PFIT3LS 3 280 0.1100 0.2982E-08 0.4987E-18 0
PFIT4LS 3 515 0.2100 0.4567E-06 0.5412E-14 0
SENSORS 100 22 11.1300 0.3931E-12 -0.1967E+04 0
SISSER 2 15 0.0200 0.5015E-06 0.4738E-09 0
SNAIL 2 80 0.0400 0.2978E-09 0.2217E-19 0
TOINTGOR 50 12 0.0400 0.5451E-07 0.1374E+04 0
TOINTPSP 50 21 0.0200 0.3395E-07 0.2256E+03 0
TOINTQOR 50 11 0.0200 0.4696E-07 0.1175E+04 0
VARDIM 200 31 0.0200 0.1863E-09 0.3238E-26 0
VAREIGVL 50 15 0.0900 0.4279E-06 0.2535E-10 0
VIBRBEAM 8 1001 2.3900 0.1001E-03 0.1564E+00 2
WATSON 12 11 0.0400 0.2012E-07 0.6225E-09 0
YFITU 3 77 0.0600 0.5824E-08 0.8460E-12 0

Table 5: Results on the surrogate list
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