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Abstract

We present an original method for partitioning by automatic classi-
fication, using the optimization technique of tabu search. The method
uses a classical tabu search scheme based on transfers for the minimiza-
tion of the within variance; it introduces in the tabu list the indicator
of the object transfered. This method is compared with two stochastic
optimization-based methods proposed by the authors (one based on
simulated annealing and the other on a genetic algorithm), and with
the classical k-means and Ward methods. Results of the tabu search
are significantly better than the classical and genetic methods, and
slightly better than our simulated annealing method.

1 Introduction

Let Q be a set of n objects x1,...,x, with weights wq,...,w,, described
by p numeric variables. We look for k well-separated, homogeneous classes
C1,Cy, ..., C} that form a partition P such that the within-classes variance
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is minimized, where g, is the weighted centroid of C; and || || is the euclidean
norm on RP.

Many authors have proposed methods for partitioning objects (k-means
by Forgy (1965) and McQueen (1967), “nuées dynamiques” by Diday (1971),
transfers by Régnier (1965), Isodata by Ball and Hall (1967), etc.). However,
all these methods are different variations of local search and so, the solution
is only a local optimum of the criterion to be optimized. Moreover, they all
depend on an initial partition (usually a random one or given by the user)
and nearly all of them have the number k of classes as a parameter (or some
given thresholds that control the number of classes).

The convergence to a local optimum of the classical methods has led us to
consider modern global optimization methods, such as tabu search, simulated
annealing and genetic algorithms. We have proposed original algorithms for
the last two stochastic heuristics, described in Piza and Trejos (1996) and
Trejos (1996).



2 Tabu Search

Tabu Search (TS) is a method of search of the optimum (here a minimum)
in combinatorial optimization problems, and it was proposed by Glover
(1989,1990). Let S be the finite or countable set of states s of the prob-
lem, and f : § — R the function to be minimized. It is assumed we can
be define for each s € S a neighborhood N(s) of s, that is, a subset of
S formed by the states that can be reached in one step (of the algorithm)
from s. TS builds and handles a tabu list T' of moves that are forbidden,
that is, some states that cannot be reached, unless some special conditions
——called the aspiration criterion— are satisfied. By definition, the algorithm
moves from a current state s € S to another state s’ € N(s) defined by
f(s") = min{ f(x)/x € N(s) - T}.

The aspiration criterion establishes that a state s € N(s) N'T can be
reached from s if it has the minimum value that f has ever attained in the
previous steps of the algorithm.

Usually, a TS algorithm begins with a random state sy and it computes
iteratively —by move into the neighborhood of the current state— a sequence
of states s1, s9, s3, ... that may improve the criterion, but can also be worse
than the previous step. It is this feature that gives TS the capacity to avoid
local optima and reach the global optimum. TS ends at a maximum number
of iterations fixed by the user, big enough to let the algorithm visit many
“local valleys” of f.

It should be noted that TS makes a systematic use of the memory for
handling the tabu list, and for this reason the size of 7" must be limited.
Hence, a “forget strategy” is needed: it is necessary to define which state
must be deleted from 7" when it is full and a new state should be put into 7'.
Many forget strategies can be proposed: delete the worst state in 7', delete
the first state in 7T, etc.

TS has been used in many combinatorial optimization problems. See
for example Amorim, Barthélemy and Ribeiro (1992), Cvijovi¢ and Kli-
nowski(1995), Jung and Yum (1996) and Osman (1993).

2.1 Partitioning based on TS

We have applied the TS for the partitioning problem stated in the introduc-
tion. A state s is here a partition P into k classes of €2, and the cost function



to be minimized (the criterion) is the within-classes variance W.

A neighborhood N(P) of P will be the set of partitions P of Q defined
by the transfer of one object to a new class in P. That is, a new partition
P’ is defined by the choice of one object = € €2, which necessarily belongs
to a class C of P, and the choice of an index I" € {1,...,k}, " # [, such
that x will belong to Cy in P’. It should be noted that the above definition
of new partitions caan yield empty classes; this is not disturbing since fewer
number of classes does not decrease W. It is expected that partitions with
fewer than £ classes will be automatically discarded by the algorithm on the
long run; in fact, the theoretical best partition of the problem has exactly &
classes and no less (see Piza et al. (1994)).

When the partition P’ is defined from P, then it is not necessary to com-
pute the whole criterion W (P’) to establish whether it is the best partition
in the neighborhood of P. Indeed, when an object x moves from C; in P to
Cy in P', it is only necessary to compute the difference
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where |C;| is the cardinality of class C; and we suppose that all the objects
have the same weight w; = 1/n (a similar formula can be found in the case
of general weights). The centroids of the classes change in the following way:
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In our algorithm, the tabu list T contains all partitions P’ that contain,
as a subset of one of their classes, any class C; C €2 from which an element
x € C; has been moved in a former step (and included into another class).
For this, the class indicator of C; in enough for encoding these partitions
in the tabu list. For example, if n = 7 and k = 3, P = (C4,Cy, C3) with
Cy = {x9, 23,27}, Co = {x1,24,26},C3 = {x5} and object x5 moves from
C1 to (5, then the class indicator of C, that is 0110001, enters in 7. This
indicator forbids that the objects x5, x5 and x; will be together again, unless
the aspiration criterion is reached or this class indicator leaves 7. Thus, the
class indicators describe the elements of 7. That is to say, each element
of T is not only one partition, but the set of partitions such that one class
is specified (by the class indicator). We use the “first in—first out” forget



strategy for T' (that is, T is a queue). This encoding of the tabu list yielded
to better results than some others we also tried, such as W values, object
index and class index. We define the length of the tabu list as the number
of class indicators that describe the partitions in the tabu list, and denote it
|T|.

As in the TS scheme, a new partition P’ is accepted if it has the minimum
value of W in N(P) — T. In what follows, our algorithm will be called
TabuClus.

2.2 Example: French scholar notes

Let us consider a simple data set, known as the French scholar notes used by
Schektman (1978) (see Table 1).

Q Math Scien French Latin Sport
Jean 6 6 5 5.5 8
Alain 8 8 8 8 9
Anne 6 7 11 9.5 11
Monique | 14.5  14.5 15.5 15 8
Didier 14 14 12 12.5 10
André 11 10 5.5 7 13
Pierre 9.9 7 14 11.5 10
Brigitte 13 12.5 8.5 9.5 12
Evelyne 9 9.5 12.5 12 18

Table 1: The data set of the French scholar notes.

TabuClus found always the optimal partitions in & = 2,3 and 4 classes,
shown in Table 2, using |T'| = 5. Since the data table is quiet little, these opti-
mal partitions can be also found by exhaustive enumeration of all partitions,
whose quantity are given by Stirling numbers S(9,2) = 255,5(9,3) = 3025
and S(9,4) = 7770. Table 2 contains the centroids of the classes, given by
the variable means.



W | Classes Mat Sci  Fre Lat Gym
271.8 | Cy: JJALAdAn,P | 73 76 87 83 10.2
Cs: E,B,.D.M 12.6 126 12.1 122 12.0

235.0 | C;: J,AlLAn 83 80 6.2 6.8 10.0
Cy: AnPE 6.8 7.8 12,5 11.0 13.0

Cs: B,D.M 13.8 13.7 12.0 12.3 10.0

202.6 | Cy: J,Al 70 70 65 67 85
Cs: An,P.E 6.8 7.8 125 11.0 13.0

Cs: An,B 12.0 112 7.0 82 125

Cy: DM 14.2 142 137 13.7 9.0

Table 2: Partitions and class centroids found with TabuClus for the French
scholar notes

3 Two other partitioning methods based on
stochastic optimization

We have also applied two other global optimization techniques for the parti-
tioning problem: simulated annealing and a genetic algorithm.

3.1 Simulated Annealing

Simulated anneling (SA) is perhaps the best known of the three techniques of
combinatorial optimization we have used. It was proposed by Kirkpatrick et
al. (1983) and Cerny (1985), and it is based on an analogy with the annealing
method of Statistical Physics (see Aarts and Korst (1990) or Laarhoven and
Aarts (1988)), which deals with a control parameter ¢ that plays the role
of the temperature and the Metropolis rule that simulates the Boltzmann
distribution. We will not describe this general method, the interested reader
may consult one of the above references. However, we mention an important
feature: the SA algorithm converges, under some conditions, asymptotically
to a global optimum. These conditions of convergence deal (1) with the size
and the access probability of the neighborhoods of a state, (2) a condition
of reversibility and (3) a condition of connectivity. In any SA implementa-
tion there must be defined a cooling schedule: initial and final values of the
control parameter ¢, the decreasing law of ¢ and the length of Markov chains



associated with each value of c.

The partitioning algorithm based on SA which we have studied (see Piza
and Trejos (1996) for the details of the method), defines a new partition P’
from a partition P = (C4,...,Cy) by:

1. choosing at random an object x € €2,
2. choosing at random a class index ¢ € {1,... k},
3. puting x into the class Cy.

In case that the object = was not in class Cy in the previous step, this is
equivalent to make a random transfer, as used by Régnier (1965). We apply
then the usual SA algorithm; this method is similar to the clustering approach
proposed by Klein and Dubes (1989).

It should be noted that, with our method, the asymptotic convergence
conditions are satisfied: for the reversibility, it is possible to go back to a
previous configuration by the choice of the same object z and its previous
class index; for the connectivity, by a finite number of transfers it is possible
to go from any partition P; to any partition Py; the size of a neighborhood
of a partition P is n(k — 1); and the probability of generating a partition P’
from a partition P is ﬁ Simplification of AW is again important for
improving the time in the application of the method.

3.2 Genetic Algorithm

Genetic algorithms (GA) were proposed by Holland (1976) (see also Goldberg
(1989)). They are based on an analogy between the evolution of genes of
species and the adaptation of the solution of a combinatorial optimization
problem to its “environment” measured by a good value of the cost function,
also called fitness function. The reader interested in this topic may consult
the above references, here we will only present an outline of the GA we have
proposed for partitioning; some further details can be found in Piza et al.
(1997) or Piza and Trejos (1996).

The genetic partitioning algorithm we proposed is based on a “chromo-
somic” representation of a partition P = (C1,...,Cy), with n alleles 1, ..., n
and an alphabet of k letters; for example the “chromosome” (22311132) in-
dicates that C7 = {xy4, x5, 26}, Co = {x1, 29,28} and C3 = {z3,27}. It is



well known that the total variance is the sum of W and the between-classes
variance B, so minimizing W is equivalent to maximizing B. Since GA are
stated for maximizing functions, the cost function to be maximized in our
GA is B, which plays the role of the fitness function. The genetic operators
are (1) the classical selection proportional to B (roulette wheel), (2) crossover
(in this case, equivalent to the transfer of several objects at the same time)
and (3) mutation (equivalent to the transfer of a single object). However,
since this raw application of the classical GA did not yield good results, we
studied some new genetic operators:

e A forced crossover: we choose at random two partitions (parents)
Py, Py, and a class index ¢ from P;, then we copy this class of P, into
P,, constructing a new partition P’ (son). That is, using the “chromo-
somic” representation of partitions, if P = (a1 ... ), Py = (81...05,)
and a; = (, then P’ = (y1...7,) is defined by ~; := 5; if a; # ¢
and v; := «a; if a; = £. This operator has the advantage over classical
crossover that some useful knowledge about partitioning (the fact that
some elements are together in P;) is used.

o A weak mutation, equivalent to an exchange between two objects chosen
at random.

This GA method has been improved with the application of the Forgy’s
k-means method in each partition of the genetic population after some iter-
ations of the GA.

4 Comparative results

In Table 3 we show some comparative results of our partitioning methods
using TabuClus, SA and GA, as well as the classical ones of Forgy’s k-means
and Ward’s hierarchical method (the hierarchical tree is cut at a level such
that a partition is created with the indicated number of classes). The under-
lying data tables were the French scholar notes (9 individuals described by 5
variables), the Amiard’s fishes (23 fishes described by 16 variables) and the
Thomas’ sociomatrix (a square matrix 24 x 24) used in Cailliez and Pages
(1976), and the Fisher’s well-known Iris data (150 species of Iris described
by 4 variables). In the table we present the values of the criterion W and the



quality of the solutions obtained with each method, that is, the percentage
of the best solution shown, obtained in repetitions of the method.

The parameters of TabuClus, for each data set, were: for the French
scholar notes, the length of the tabu list |[T'| = 5 and the number of iterations
Iter = 10, for the Amiard’s fishes |T'| = 10 and [ter = 20, for the Thomas’
sociomatrix |T'| = 10 and Iter = 20 and for Fisher’s Iris data |T| is 10, 15,
15 and 20, and [Iter is 75, 100, 100 and 120 respectively for 2, 3, 4 and 5
classes.

It can be seen in Table 3 that the better results are obtained with the TS
and the SA, and these are significantly better than those obtained with the
classical methods. The chance for finding a better solution with our methods
is much greater than that with classical methods. Although not considered
here, search time with TS is usually less than that with SA.



French Scholar Notes (9 x 5)

TS SA GA kM Ward
# = 1000 # = 150 # =100 # = 10000
W % W % %4 % W % W
2 classes | 28.2 100% | 28.2 100% | 28.2 100% | 28.2 12% 28.8
3 classes | 16.8 100% | 16.8 100% | 16.8 95% | 16.8 12% | 17.3
4 classes | 10.5 100% | 10.5 100% | 10.5 97% 10.5 5% 10.5
5classes | 4.9 100% | 4.9 100% | 4.9 100% | 4.9 8% 4.9
Amiard’s Fishes (23 x 16)
TS SA GA kM Ward
# = 200 # = 150 # =100 # = 10000
W % W % %4 % W % W
2 classes | 69849 96% | 69368 100% | 69368 52% | 69849  49% -
3 classes | 32213 100% | 32213 100% | 32213 87% | 32213 8% 33149
4 classes | 18281 100% | 18281 100% | 22456 90% | 18281 9% 19589
5 classes | 14497  97% | 14497 100% | 20474 38% | 14497 1% 14497
Thomas’ Sociomatrix (24 x 24)
TS SA GA kM Ward
4 = 200 4 = 150 4 = 100 4 = 10000
W % W % %% % W % W
2 classes | 333.7  99% | 333.7 100% | 33.7 69% | 333.7 5% -
3 classes | 271.8 100% | 271.8 100% | 272.9 85% | 271.8 2% 279.3
4 classes | 235.0 100% | 235.0 100% | 250.8 24% | 235.0 0.15% | 239.4
5 classes | 202.6 98% | 202.4 100% | 223.8 4% 202.6 0.02% | 204.7
Fisher’s Iris (150 x 4)
TS SA GA kM Ward
4 — 25 4 = 150 4 =50 4 = 10000
44 % w % w % W % 44
2 classes | 0.999 100% | 0.999 100% | 0.999 100% | 0.999 100% -
3 classes | 0.521  76% | 0.521 100% | 0.521 100% | 0.521 4% -
4 classes | 0.378  60% | 0.378 55% | 0.378  82% | 0.378 1% —
5 classes | 0.312  32% | 0.329 100% | 0.312 6% 0.312 0.24% -

Table 3: Results (within-variance W) of partitioning using tabu search (TS),
simulated annealing (SA), genetic algorithm (GA), Forgy k-means (kM)
and Ward’s hierarchical method; # indicates the number of times that the
method was applied and % is the percentage of repetitions of the method
that found the best solution reported.




5 Concluding remarks

The tabu search method proposed for partitioning is an easy implementation
of the tabu search method. Its performance is better than that of the classical
methods (k-means and Ward) and its results are in nearly all cases compara-
ble with the simulated annealing-based method, even though in some cases
the SA method found the optimum in all cases and the tabu search did not.
Even though we do not report the time of execution, we have observed that
TabuClus is faster than the SA and GA methods.

However, the choice of the parameters is a delicate operation and should
be studied further. Indeed, the best solution may not be found if the tabu list
is too short or the number of iterations is not large enough. We recommend
to use short tabu lists, with |T| between 5 and 20, and a maximum number
of iterations between 200 and 1000, depending on the number of objects to
be clustered. The simulated annealing and the genetic algorithm methods
also share this problem of handling the parameters: the decreasing law of the
control parameter and the length of the Markov chains, in the SA case, and
the probabilities for appliying the genetic operators, the size of the population
and the stop criterion, in the GA case. If the data set has too many objetcs,
the tabu search method is slow, but its quality remains good as reported
here.

In the near future we will report on our present investigation on some
hybrid methods. Indeed, we are testing the use of SA in this TS method,
which we expect will help as a stoping criterion when the control parameter
tends to zero. Also, a genetic operator based on the Metropolis rule of SA,
may define a new kind of mutation and could help as a stoping criterion for
the GA. Genetic operators that handle a tabu memory can also be proposed.

Additionally, we are implementing the use of non-euclidean distances over
numerical data, as well as the adaptation of the methods to the case of
categorical data.
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