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Abstract

We study analyticity, differentiability, and semismoothness of Löwner’s operator and
spectral functions under the framework of Euclidean Jordan algebras. In particular, we
show that many optimization-related classical results in the symmetric matrix space
can be generalized within this framework. For example, the metric projection operator
over any symmetric cone defined in a Euclidean Jordan algebra is shown to be strongly
semismooth. The research also raises several open questions, whose solution would be
of general interest for optimization.

1 Introduction

We are interested in functions (scalar valued or vector valued) associated with Euclidean
Jordan algebras. Details on Euclidean Jordan algebras can be found in Koecher’s 1962
lecture notes [23] and the monograph by Faraut and Korányi [14]. Here we briefly describe
the properties of Euclidean Jordan algebras that are necessary for defining our functions.
For research on interior point methods for optimization problems under the framework of
Euclidean Jordan algebras, we refer to [15, 45] and references therein, and for research on
P -properties of complementarity problems, see [19, 53].

Let F be the field R or C. Let V be a finite-dimensional vector space over F endowed
with a bilinear mapping (x, y) → x·y (product) from V × V into V. The pair A := (V, ·) is
called an algebra. For a given x ∈ V, let L(x) be the linear operator of V defined by

L(x)y := x · y for every y ∈ V .

An algebra A is said to be a Jordan algebra if, for all x, y ∈ V:
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(i) x · y = y · x;

(ii) x · (x2 · y) = x2 · (x · y), where x2 := x · x.

For a Jordan algebra A = (V, ·), we call x · y the Jordan product of x and y.
A Jordan algebra A is not necessarily associative. That is, x · (y · z) = (x · y) · z may

not hold in general. However, it is power associative, i.e., for any x ∈ V, xr · xs = xr+s for
all integers r, s ≥ 1 [14, Theorem 2]. If for some element e ∈ V, x · e = e · x = x for all
x ∈ V, then e is called a unit element of A. The unit element, if exists, is unique. A Jordan
algebra A does not necessarily have a unit element. In this paper A = (V, ·) is always
assumed to have a unit element e ∈ V. Let F[X] denote the algebra over F of polynomials
in one variable with coefficients in F. For x ∈ V, define F(x) := {p(x) : p ∈ F[X] } and
J(x) := {p ∈ F[X] : p(x) = 0 } . (F(x), ·) is a subalgebra generated by x and e and J(x) is
an ideal. Since F[X] is a principal ring, the ideal J(x) is generated by a monic polynomial
which is called the minimal polynomial of x [23, p.28]. For an introduction on the concepts
of rings, ideals and others in algebra, see [29, 55].

For x ∈ V, let ζ(x) be the degree of the minimal polynomial of x, which can be equiva-
lently defined as

ζ(x) := min{ k : {e, x, x2, . . . , xk} are linearly dependent }.

This number is always bounded by dim(V), the dimension of V. Then the rank of A is well
defined by

r := max{ ζ(x) : x ∈ V } .

An element x ∈ V is said to be regular if ζ(x) = r. The set of regular elements is open
and dense in V and there exist polynomials a1, a2, . . . , ar : V → F such that the minimal
polynomial of every regular element x is given by

tr − a1(x)tr−1 + a2(x)tr−2 + · · · + (−1)rar(x) .

The polynomials a1, a2, . . . , ar are uniquely determined and aj is homogeneous of degree
j, i.e., aj(ty) = tjaj(y) for every t ∈ F and y ∈ V, j = 1, 2, . . . , r [14, Proposition II.2.1].
The polynomial tr − a1(x)tr−1 + a2(x)tr−2 + · · · + (−1)rar(x) is called the characteristic
polynomial of a regular x. For a regular x, the minimal polynomial and the characteristic
polynomial are the same. Since aj are homogeneous polynomials of x and the set of regular
elements is open and dense in V, the definition of a characteristic polynomial is extendable
to all x ∈ V. We call tr(x) := a1(x) and det(x) := ar(x) the trace and the determinant of
x, respectively.

A Jordan algebra A = (V, ·), with a unit element e ∈ V, defined over the real field R is
called a Euclidean Jordan algebra, or formally real Jordan algebra, if there exists a positive
definite symmetric bilinear form on V which is associative; in other words, there exists on
V an inner product denoted by 〈·, ·〉V such that for all x, y, z ∈ V:

(iii) 〈x · y, z〉V = 〈y, x · z〉V.
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A Euclidean Jordan algebra is called simple if it is not the direct sum of two Euclidean
Jordan algebras. Every Euclidean Jordan algebra is, in a unique way, a direct sum of
simple Euclidean Jordan algebras [14, Proposition III.4.4].

Here is an example of (simple) Euclidean Jordan algebras. Let Sm be the space of m×m
real symmetric matrices. An inner product on this space is given by

〈X,Y 〉Sm := Tr(XY ) ,

where for X,Y ∈ Sm, XY is the usual matrix multiplication of X and Y and Tr(XY ) is the
trace of matrix XY . Then, (Sm, ·) is a Euclidean Jordan algebra with the Jordan product
given by

X · Y =
1
2
(XY + Y X) , X, Y ∈ Sm .

In this case, the unit element is the identity matrix I in Sm.
Recall that an element c ∈ V is said to be idempotent if c2 = c. Two idempotents c and

q are said to be orthogonal if c · q = 0. One says that {c1, c2, . . . , ck} is a complete system
of orthogonal idempotents if

c2j = cj , cj · ci = 0 if j 6= i, j, i = 1, 2, . . . , k , and
k∑

j=1

cj = e .

An idempotent is said to be primitive if it is nonzero and cannot be written as the sum of two
other nonzero idempotents. We call a complete system of orthogonal primitive idempotents
a Jordan frame. Then, we have the following important spectral decomposition theorem.

Theorem 1 ([14, Theorem III.1.2]) Suppose that A = (V, ·) is a Euclidean Jordan algebra
and the rank of A is r. Then for any x ∈ V, there exists a Jordan frame {c1, c2, . . . , cr}
and real numbers λ1(x), λ2(x), . . . , λr(x), arranged in the decreasing order λ1(x) ≥ λ2(x) ≥
· · · ≥ λr(x), such that

x =
r∑

j=1

λj(x)cj = λ1(x)c1 + λ2(x)c2 + · · · + λr(x)cr .

The numbers λ1(x), λ2(x), . . . , λr(x) (counting multiplicities), which are uniquely deter-
mined by x, are called the eigenvalues and

∑r
j=1 λj(x)cj the spectral decomposition of x.

Furthermore,

tr(x) =
r∑

j=1

λj(x) and det(x) =
r∏

j=1

λj(x) .

In fact, the above theorem is called the second version of the spectral decomposition,
on which our analysis relies. It also follows readily that a Jordan frame has exactly r

elements. The arrangement that λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) allows us to consider the
function λ : V → Rr. Strictly speaking, the Jordan frame {c1, c2, . . . , cr} in the spectral
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decomposition of x also depends on x. We do not write this dependence explicitly for the
sake of simplicity in notation. Let σ(x) be the set consisting of all distinct eigenvalues of
x. Then σ(x) contains at least one element and at most r. For each µi ∈ σ(x), denote
Ji(x) := {j : λj(x) = µi} and

bi(x) :=
∑

j∈Ji(x)

cj .

Obviously, {bi(x) : µi ∈ σ(x)} is a complete system of orthogonal idempotents. From
Theorem 1, we obtain

x =
∑

µi∈σ(x)

µibi(x) ,

which is essentially the first version of the spectral decomposition stated in [14] as the
uniqueness of {bi(x) : µi ∈ σ(x)} is guaranteed by [14, Theorem III.1.1].

Since, by [14, Proposition III.1.5], a Jordan algebra A = (V, ·) over R with a unit element
e ∈ V is Euclidean if and only if the symmetric bilinear form tr(x ·y) is positive definite, we
may define another inner product on V by 〈x, y〉 := tr(x ·y), x, y ∈ V. By the associativity of
tr(·) [14, Proposition II.4.3], we know that the inner product 〈·, ·〉 is also associative, i.e., for
all x, y, z ∈ V, it holds that 〈x · y, z〉 = 〈y, x · z〉. Thus, for each x ∈ V, L(x) is a symmetric
operator with respect to this inner product in the sense that

〈L(x)y, z〉 = 〈y,L(x)z〉 , ∀ y, z ∈ V .

Let ‖ · ‖ be the norm on V induced by this inner product

‖x‖ :=
√

〈x, x〉 =
( r∑

j=1

λ2
j(x)

)1/2
, x ∈ V .

Let φ : R → R be a scalar valued function. Then, it is natural to define a vector valued
function associated with the Euclidean Jordan algebra A = (V, ·) [3, 24] by

φV(x) :=
r∑

j=1

φ(λj(x))cj = φ(λ1(x))c1 + φ(λ2(x))c2 + · · · + φ(λr(x))cr , (1)

where x ∈ V has the spectral decomposition x =
∑r

j=1 λj(x)cj . In a seminal paper [34],
Löwner initiated the study of φV for the case V = Sm. Korányi [24] extended Löwner’s result
on the monotonicity of φSm to φV. For nonsmooth analysis of φV over the Euclidean Jordan
algebra associated with symmetric matrices, see [5, 6, 49] and over the Euclidean Jordan
algebra associated with the second order cone (SOC), see [4, 16]. In recognition of Löwner’s
contribution, we call φV Löwner’s operator (function). When φ(t) = t+ := max(0, t), t ∈ R,
Löwner’s operator becomes the metric projection operator

x+ = (λ1(x))+c1 + (λ2(x))+c2 + · · · + (λr(x))+cr

over the convex cone
K := {y2 : y ∈ V}
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under the inner product 〈·, ·〉. Actually, K is a symmetric cone [14, Theorem III.2.1], i.e.,
K is a self-dual homogeneous closed convex cone.

Recall that a function f : Rr → (−∞,+∞] is said to be symmetric if for any permutation
matrix P in Rr, f(υ) = f(Pυ), i.e, the function value f(υ) does not change by permuting
the coordinates of υ ∈ Rr. Then, the spectral function f ◦ λ : V → R is defined as

(f ◦ λ)(x) = f(λ1(x), λ2(x), . . . , λr(x)) . (2)

See [32] for a survey and [40] for the latest development of the properties of f ◦λ associated
with (Sm, ·). In this paper, we shall study various differential properties of f ◦ λ and φV
associated with the Euclidean Jordan algebras in a unified way.

The organization of this paper is as follows. In Section 2, we present several basic
results needed for further discussion. In section 3, we study important properties of the
eigenvalues, Jordan frames and Löwner’s operator over simple Euclidean Jordan algebras.
We then investigate the differential properties of the spectral functions in Section 4 and
conclude the paper in Section 5.

2 The Building Blocks

Let V be the linear space Cn or Rn. A function g : V → F is said to be analytic at z̄ ∈ V
if there exists a neighborhood N (z̄) of z̄ such that g in N (z̄) can be expanded into an
absolutely convergent power series in z − z̄:

∞∑

j1,j2,...,jn=0

āj1j2···jn(z1 − z̄1)j1(z2 − z̄2)j2 · · · (zn − z̄n)jn ,

where all āj1j2···jn ∈ F. If g is analytic at z̄ ∈ V = Rn, then g is also called real analytic at
z̄.

Let L(V) be the vector space of linear operators from V into itself. Denote by I ∈ L(V)
the identity operator, i.e., for all x ∈ V, Ix = x. For any T ∈ L(V) the spectrum σ(T ) of
T is the set of complex numbers ζ such that ζI − T is not one-to-one. By the definition
of σ(T ), for any µ ∈ σ(T ), there exists a vector 0 6= v ∈ V such that (T − µI)v = 0. The
number µ is called an eigenvalue of T , and any corresponding v is called an eigenvector.
Suppose that M1,M2, . . . ,Ms are s linear subspaces in V such that V = M1 +M2 + · · ·+Ms

and for all uj ∈ Mj such that
∑s

j=1 uj = 0 implies uj = 0, j = 1, 2, . . . , s. Then V is the
direct sum of M1,M2, . . . ,Ms and is denoted by

V = M1 ⊕ M2 ⊕ · · · ⊕ Ms .

Each x ∈ V can be expressed in a unique way of the form x = u1 + u2 + · · · + us, uj ∈ Mj ,
j = 1, 2, . . . , s. Denote operators Pj ∈ L(V) by

Pjx = uj , j = 1, 2, . . . , s.
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The Pj is called the projection operator onto Mj along M1 ⊕ · · · ⊕Mj−1 ⊕Mj+1 ⊕ · · · ⊕Ms,
j = 1, 2, . . . , s. According to [22, p.21], we have

P2
j = Pj, PjPi = 0 if i 6= j, i, j = 1, 2, . . . , s,

s∑

j=1

Pj = I. (3)

Conversely, let P1,P2, . . . ,Ps ∈ L(V) be operators satisfying (3). If we write Mj :=
Pj(V), then V is an direct sum of Mj , j = 1, 2, . . . , s. Here for any operator T ∈ L(V),
T (V) is the range space of T .

If M1,M2, . . . ,Ms are mutually orthogonal with respect to an inner product 〈·, ·〉, then
V = M1 ⊕ M2 ⊕ · · · ⊕ Ms is called the orthogonal direct sum of M1,M2, . . . ,Ms and Pj

is the orthogonal projection operator onto Mj with respect to the inner product 〈·, ·〉 ,
j = 1, 2, . . . , s. The orthogonal projection operators {Pj : j = 1, 2, . . . , s} satisfy

Pj = P∗
j ,P2

j = Pj , PjPi = 0 if i 6= j, i, j = 1, 2, . . . , s,
s∑

j=1

Pj = I , (4)

where P∗
j is the adjoint (operator) of Pj , j = 1, 2, . . . , s. For details, see [22, Chapter 1].

2.1 Functions of Symmetric Operators and Symmetric Matrices

Let {u1, u2, . . . , un} be an orthonormal basis of Rn with an inner product 〈·, ·〉. Let Sn ⊂
L(Rn) be the set consisting of all symmetric operators in L(Rn). Let X be a fixed but
arbitrary symmetric operator in Sn. The representation of the symmetric operator X with
respect to the basis {u1, u2, . . . , un} is the matrix X ∈ Sn defined by

[Xu1 Xu2 · · · Xun] = [u1 u2 · · · un]X , (5)

where [u1 u2 · · · un] is the matrix of columns u1, u2, . . . , and un. Conversely, for any given
X ∈ Sn, the operator defined by (5) is a symmetric operator in Sn.

Let On be the set of n× n real orthogonal matrices. Then for any X ∈ Sn, there exist
an orthogonal matrix V ∈ On and n real values λ1(X), λ2(X), . . . , λn(X), arranged in the
decreasing order λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X), such that X has the following spectral
decomposition

X = V diag(λ(X))V T =
n∑

j=1

λj(X)vjv
T
j , (6)

where vj is the jth column of V , j = 1, 2, . . . , n. Denote ṽj = [u1 u2 · · · un]vj , j =
1, 2, . . . , n. Then {ṽ1, ṽ2, . . . , ṽn} is another orthonormal basis of Rn. Let Pj be the orthog-
onal projection operator onto the linear space spanned by ṽj, i.e.,

Pjx = 〈ṽj , x〉 ṽj , ∀ x ∈ Rn .
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For each j ∈ {1, 2, . . . , n}, Pj is a symmetric operator in S(V) and its matrix is given by
Pj = vjv

T
j . Hence, the symmetric operator X ∈ S(V), with matrix X as its representation

with respect to the basis {u1, u2, . . . , un}, satisfies

X =
n∑

j=1

λ̃j(X )Pj , (7)

where λ̃j(X ) := λj(X) is the jth largest eigenvalue of X (i.e. X and X share the same set
of eigenvalues) with the corresponding eigenvector ṽj, j = 1, 2, . . . , n.

Let f : Rn → (−∞,∞] be a symmetric function. Then one can define the scalar valued
function f ◦ λ : Sn → R by

(f ◦ λ)(X) := f(λ1(X), λ2(X), . . . , λn(X)) , (8)

where X ∈ Sn has the spectral decomposition (6). The composite function f ◦ λ inher-
its many properties of f . See Lewis [32] for a survey. In [31], Lewis showed that f is
(continuously) differentiable at λ(X) if and only f ◦ λ is differentiable at X and

∇(f ◦ λ)(X) = V diag(∇f(λ(X)))V T , (9)

which agrees with the formula given in Tsing, Fan, and Verriest [54, Theorem 3.1] when f
is analytic at λ(X).

Let φ : R → R be a scalar function. Then the matrix valued function φSn(X) at X is
defined by

φSn(X) :=
n∑

j=1

φ(λj(X))vjv
T
j = V diag(φ(λ1(X)), φ(λ2(X)), . . . , φ(λn(X)))V T . (10)

Correspondingly, one may define φSn(X ) by

φSn(X ) :=
n∑

j=1

φ(λ̃j(X ))Pj , (11)

where X is the symmetric operator with its representation given by the matrix X. By (6)
and (7), we obtain

[φSn(X )u1 φSn(X )u2 · · · φSn(X )un] = [u1 u2 · · · un]φSn(X) . (12)

The functions φSn and φSn have been well studied since Löwner [34]. See [2, 21].
Let φ be continuous in an open set containing σ(X). Let ϕφ be any function such that

ϕφ is differentiable at each λj(X) and

(ϕφ)′(λj(X)) = φ(λj(X)) , j = 1, 2, . . . , n.

Define fφ : Rn → R by

fφ(x) :=
n∑

i=1

ϕφ(xi) , x ∈ Rn . (13)
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Then, fφ is symmetric and differentiable at λ(X), and by (9),

∇(fφ ◦ λ)(X) = φSn(X) =
n∑

j=1

φ(λj(X))uju
T
j . (14)

Let ξ1 > ξ2 > · · · > ξn̄ be all the n̄ distinct values in σ(X). For each k = 1, 2, . . . , n̄, let
Jk(X) := {j : λj(X) = ξk}. Let Y ∈ Sn have the following spectral decomposition

Y = Wdiag(λ(Y ))W T =
n∑

j=1

λj(Y )wjw
T
j ,

with λ1(Y ) ≥ λ2(Y ) ≥ · · · ≥ λn(Y ) and W ∈ On. Define

P̃k(Y ) =
∑

j∈Jk(X)

wjw
T
j . (15)

Then, X =
∑n̄

k=1 ξkP̃k(X) and φSn(X) =
∑n̄

k=1 φ(ξk)P̃k(X).
For each ξk ∈ σ(X), by taking φk(ζ) be identically equal to one in an open neighborhood

of ξk, and identically equal to zero in an open neighborhood of each ξj with j 6= k, we know
that for all Y ∈ Sn sufficiently close to X,

P̃k(Y ) = (φk)Sn(Y ) , k = 1, 2, . . . , n̄ . (16)

This equivalence and (14) allow us to state the analyticity of each operator P̃k at X,
k = 1, 2, . . . , n̄; and the analyticity of φSn at X when φ is analytic in an open set containing
σ(X). First, we need the following theorem from [54, Theorem 3.1].

Theorem 2 Let X ∈ Sn. Suppose that f : Rn → (−∞,∞] is a symmetric function. If f
is real analytic at the point λ(X), then the composite function f ◦ λ is analytic at X.

By (14), (15), (16), and Theorem 2, we have the following proposition, which does not
require a proof.

Proposition 3 Let φ : R → R be real analytic in an open set (may not be connected)
containing σ(X). Then, φSn(·) is analytic at X and for all Y ∈ Sn sufficiently close to X,

φSn(Y ) = ∇(fφ ◦ λ)(Y ) .

In particular, each P̃k(·) is analytic at X, k = 1, 2, . . . , n̄.

2.2 Hyperbolic Polynomials

In order to study Löwner’s operator φV and the spectral function f ◦λ, we need some results
under the framework of hyperbolic polynomials. Let V = Rn. Suppose that p : V → R is a
homogeneous polynomial of degree r on V and q ∈ V with p(q) 6= 0. Then p is said to be

8



hyperbolic with respect to q, if the univariate polynomial t 7→ p(x+ tq) has only real zeros,
for every x ∈ V.

Let p be hyperbolic with respect to q of degree r. Then, for each x ∈ R, t 7→ p(tq − x)
has only real roots. Let λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) (counting multiplicities) be the r roots
of p(tq−x) = 0. We say that λj(x) is the jth largest eigenvalue of x (with respect to p and
q). Then for x ∈ V,

p(tq − x) = p(q)
r∏

j=1

(t− λj(x))

and

p(x+ tq) = (−1)rp(−tq − x) = p(q)
r∏

j=1

(t+ λj(x)) .

The univariate functional t 7→ p(tq − x) is the characteristic polynomial of x (with respect
to p, in direction q). Let σk(x) :=

∑k
j=1 λj(x), 1 ≤ k ≤ r, be the sum of the k largest

eigenvalues of x.
A fundamental theorem of G̊arding [17] shows that λr(·) is positively homogeneous and

concave on V. This implies that the (closed) hyperbolic cone

K(p, q) := {x : λr(x) ≥ 0 },

associated with p in direction q, is convex. By exploring G̊arding’s theorem further,
Bauschke et al. [1] showed that for each 1 ≤ k ≤ r, σk(·) is positively homogeneous
and convex on V. This, by Rockafellar [43], implies that each λj(·) is locally Lipschitz
continuous and directionally differentiable. Actually, by following Rellich’s approach [42]
for Hermitian matrices, we can further show that for any fixed x ∈ V and h ∈ V, there
exist r functions ν1, ν2, . . . , νr : R → R, which are analytic at ε = 0, such that for all ε ∈ R
sufficiently small,

{ν1(ε), ν2(ε), . . . , νr(ε)} = {λ1(x+ εh), λ2(x+ εh), . . . , λr(x+ εh)} . (17)

The proof can be sketched as follows. For any ε ∈ R,

p(tq − (x+ εh)) = p(q)(tr + s1(ε)tr−1 + · · · + sr−1(ε)t+ sr(ε)) ,

where s1, s2, . . . , sr are polynomials of ε. Since p is hyperbolic with respect to q, all the
roots of tr + s1(ε)tr−1 + · · ·+ sr−1(ε)t+ sr(ε) = 0 are reals when ε ∈ R. Then, by a similar
argument to the proof in Rellich [42, p.31], we can conclude that there exist r functions
ν1, ν2, . . . , νr : R → R, which are analytic at ε = 0, such that (17) holds for all ε ∈ R
sufficiently small.

Let A = (V, ·) be a Euclidean Jordan algebra of rank r introduced in Section 1. By
letting p(x) := det(x), x ∈ V, we see from Theorem 1 that p is hyperbolic with respect to e
of degree r since p(e) = det(e) = 1 6= 0. Therefore, by [1, Corollaries 3.3 and 5.7] and (17),
we have
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Proposition 4 Let A = (V, ·) be a Euclidean Jordan algebra and f : Rr → (−∞,∞] be a
symmetric convex function. The following results hold.

(i) For each 1 ≤ k ≤ r, σk(·) is positively homogeneous and convex on V.

(ii) f ◦ λ is differentiable at x if and only if f is differentiable at λ(x) and

{z ∈ V : λ(z) = ∇f(λ(x)), 〈x, z〉 = λ(x)Tλ(z) } = {∇(f ◦ λ)(x)} .

(iii) For any x, h ∈ V, the eigenvalues of x + εh, ε ∈ R can be arranged to be analytic at
ε = 0.

2.3 Semismoothness

Let X and Y be two finite dimensional vector spaces over the field R. Let O be an open
set in X and Φ : O ⊆ X → Y be a locally Lipschitz continuous function on the open set
O. By Rademacher’s theorem, Φ is almost everywhere (in the sense of Lebesgue measure)
differentiable (in the sense of Fréchet) in O. Let DΦ be the set of points in O where Φ is
differentiable. Let Φ′(x), which is a linear mapping from X to Y, denote the derivative of
Φ at x ∈ O if Φ is differentiable at x. Then, the B(ouligand)-subdifferential of Φ at x ∈ O,
denoted by ∂BΦ(x), is the set of V such that V = {limk→∞ Φ′(xk)}, where {xk} ∈ DΦ

is a sequence converging to x. Clarke’s generalized Jacobian of Φ at x is the convex hull
of ∂BΦ(x) (see [9]), i.e., ∂Φ(x) = conv{∂BΦ(x)}. It follows from the work of Warga on
derivative containers [56, Theorem 4] that the set ∂Φ(x) is actually “blind” to sets of
Lebesgue measure zero (see [9, Theorem 2.5.1] for the case that Y = R), i.e., if S is any set
of Lebesgue measure zero in X, then

∂Φ(x) = conv{ lim
k→∞

Φ′(xk) : xk → x , xk ∈ DΦ , xk /∈ S} . (18)

Semismoothness was originally introduced by Mifflin [35] for functionals, and was used
to analyze the convergence of bundle type methods [30, 36, 47] for nondifferentiable op-
timization problems. In particular, it plays a key role in establishing the convergence of
the BT-trust region method for solving optimization problems with equilibrium constraints.
For studying the superlinear convergence of Newton’s method for solving nondifferentiable
equations, Qi and Sun [41] extended the definition of semismoothness to vector valued
functions. There are several equivalent ways for defining the semismoothness. We find the
following definition of semismoothness convenient.

Definition 5 Let Φ : O ⊆ X → Y be a locally Lipschitz continuous function on the open
set O. We say that Φ is semismooth at a point x ∈ O if

(i) Φ is directionally differentiable at x; and

(ii) for any y → x and V ∈ ∂Φ(y),

Φ(y) − Φ(x) − V (y − x) = o(||y − x||) . (19)
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In Definition 5, part (i) and part (ii) do not imply each other. Condition (19) in part (ii),
together with a nonsingularity assumption on ∂Φ at a solution point, was used by Kummer
[25] before [41] to prove the superlinear convergence of Newton’s method for locally Lipschitz
equations. Φ is said to be G-semismooth at x if condition (19) holds. A stronger notion
than semismoothness is γ-order semismoothness with γ > 0. For any γ > 0, Φ is said to
be γ-order G-semismooth (respectively, γ-order semismooth) at x, if Φ is G-semismooth
(respectively, semismooth) at x and for any y → x and V ∈ ∂Φ(y),

Φ(y) − Φ(x) − V (y − x) = O(||y − x||1+γ) . (20)

In particular, Φ is said to be strongly G-semismooth (respectively, strongly semismooth) at
x if Φ is 1-order G-semismooth (respectively, 1-order semismooth) at x, We say that Φ is
G-semismooth (respectively, semismooth, p-order G-semismooth, p-order semismooth) on a
set Z ⊆ O if Φ is G-semismooth (respectively, semismooth, γ-order G-semismooth, γ-order
semismooth) at every point of Z. G-semismoothness was used in [18] and [39] to obtain
inverse and implicit function theorems and stability analysis for nonsmooth equations.

Lemma 6 Let Φ : O ⊆ X → Y be locally Lipschitz near x ∈ O. Let γ > 0 be a constant. If
S is a set of Lebesgue measure zero in X, then Φ is G-semismooth (γ-order G-semismooth)
at x if and only if for any y → x, y ∈ DΦ, and y /∈ S,

Φ(y) − Φ(x) − Φ′(y)(y − x) = o(||y − x||) (= O(||y − x||1+γ)) . (21)

Proof. By examining the proof of [50, Theorem 3.7] and making use of (18), one can prove
the conclusion without difficulty. We omit the details. �

Lemma 6 is useful in proving the semismoothness of Lipschitz functions. It first appeared
in [50] for the case S = ∅ and has been used in [5, 7, 40]. Next, we shall use this lemma
to show that a continuous selection of fintely many G-semismooth (respectively, γ-order
G-semismooth) functions is still G-semismooth (respectively, γ-order G-semismooth). The
latter will be used to prove the strong semismoothness of eigenvalue functions over the
Euclidean Jordan algebras.

Let Φ1,Φ2, · · · ,Φm : O ⊆ X → Y be m continuous functions on the open set O. A
function Φ : O ⊆ X → Y is called a continuous selection of {Φ1,Φ2, . . . ,Φm} if Φ is a
continuous function on O and for each y ∈ O,

Φ(y) ∈ {Φ1(y),Φ2(y), . . . ,Φm(y)} .

For x ∈ O, define the active set of Φ at x by

IΦ(x) := {j : Φj(x) = Φ(x) , j = 1, 2, . . . ,m}

and the essentially active set of Φ at x by

Ie
Φ(x) := {j : x ∈ cl(int{y ∈ O |Φj(y) = Φ(y)}) , j = 1, 2, . . . ,m} ,
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where “cl” and “int” denote the closure and interior operations, respectively. The functions
Φj, j ∈ IΦ(x) are called active selection functions at x. An active selection function Φj is
called essentially active at x if j ∈ Ie

Φ(x). In the proof of [46, Proposition 4.1.1], Scholtes
actually showed that for every x ∈ O, there exists an open neighborhood N (x)(⊆ O) of x
such that

Φ(y) ∈ {Φj(y) : j ∈ Ie
Φ(x)} , y ∈ N (x) . (22)

Proposition 7 Let Φ1,Φ2, . . . ,Φm : O ⊆ X → Y be m continuous functions on an open
set O and Φ : O ⊆ X → Y be a continuous selection of {Φ1,Φ2, . . . ,Φm}. Let x ∈ O and
γ > 0 be a constant. If all the essentially active selective functions Φj, j ∈ Ie

Φ(x), at x
are G-semismooth (respectively,semismooth, γ-order G-semismooth, γ-order semismooth)
at x, then Φ is G-semismooth (respectively,semismooth, γ-order G-semismooth, γ-order
semismooth) at x.

Proof. Let N (x)(⊆ O) be an open set of x such that (22) holds. Suppose that all Φj,
j ∈ Ie

Φ(x) are G-semismooth at x. By the definition of G-semismoothness, these functions
Φj, j ∈ Ie

Φ(x) are locally Lipschitz continuous functions on N (x). Then, by Hager [20] or
[46, Proposition 4.12], Φ is locally Lipschitz continuous on the open set N (x).

Let Sj := N (x)\DΦj , j ∈ Ie
Φ(x) and

S :=
⋃

j∈Ie
Φ(x)

Sj .

Since all {Sj : j ∈ Ie
Φ(x)} are sets of Lebesgue measure zero, S is also a set of Lebesgue

measure zero. By Lemma 6, in order to prove that Φ is also G-semismooth at x, we only
need to show that for any y → x, y ∈ DΦ, and y /∈ S,

Φ(y) − Φ(x) − Φ′(y)(y − x) = o(||y − x||) . (23)

For the sake of contradiction, assume that (23) does not hold. Then there exist a constant
δ > 0 and a sequence {yk} converging to x with yk ∈ DΦ ∩N (x) and yk /∈ S such that

‖Φ(yk) − Φ(x) − Φ′(yk)(yk − x)‖ ≥ δ||yk − x||

for all k sufficiently large. Since yk ∈ DΦ ∩N (x) and yk /∈ S, we have for all k that

Φ′(yk)(yk − x) ∈ {(Φj)′(yk)(yk − x) : j ∈ Ie
Φ(x) } . (24)

On the other hand, by the assumption that Φj, j ∈ Ie
Φ(x) are G-semismooth at x, we have

Φj(yk) − Φj(x) − (Φj)′(yk)(yk − x) = o(||yk − x||) as k → ∞ , j ∈ Ie
Φ(x) ,

which, together with (24) and the fact that Φ(x) = Φj(x), j ∈ Ie
Φ(x) implies

Φ(yk) − Φ(x) − Φ′(yk)(yk − x) ∈ {Φj(yk) − Φj(x) − (Φj)′(yk)(yk − x) : j ∈ Ie
Φ(x)}

= o(||yk − x||) as k → ∞ .
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So a contradiction is derived. This contradiction shows that (23) holds. Thus Φ is G-
semismooth at x.

To prove that Φ is semismooth at x when all Φj, j ∈ Ie
Φ(x) are semismooth at x, we only

need to show that Φ is directionally differentiable at x if all Φj, j ∈ Ie
Φ(x) are directionally

differentiable at x. The latter can be derived from the proof of [26, Proposition 2.5].
In fact, Kuntz and Scholtes only proved that Φ is directionally differentiable at x under
the assumption that all Φj, j ∈ Ie

Φ(x) are continuously differentiable functions. A closer
examination reveals that their proof is still valid if one replaces the derivatives of Φj,
j ∈ Ie

Φ(x) at x by their directional derivatives. Also see [38, Lemma 1] for this result.
Similarly, one can prove that Φ is γ-order G-semismooth (respectively, γ-order semi-

smooth) x if all Φj, j ∈ Ie
Φ(x), are γ-order G-semismooth (respectively, γ-order semismooth)

at x. �

3 Eigenvalues, Jordan Frames and Löwner’s Operator

Let A = (V, ·) be a Jordan algebra (not necessarily Euclidean). An important part in the
theory of Jordan algebras is the Peirce decomposition. Let c ∈ V be a nonzero idempotent.
Then, by [14, Porposition III.1.3], we know that c satisfies 2L3(c) − 3L2(c) + L(c) = 0 and
the distinct eigenvalues of the symmetric operator L(c) are 0, 1

2 and 1. Let V(c, 1),V(c, 1
2),

and V(c, 0) be the three corresponding eigenspaces, i.e.,

V(c, i) := {x ∈ V : L(c)x = ix } , i = 1,
1
2
, 0 .

Then V is the orthogonal direct sum of V(c, 1),V(c, 1
2), and V(c, 0). The decomposition

V = V(c, 1) ⊕ V(c,
1
2
) ⊕ V(c, 0)

is called the Peirce decomposition of V with respect to the nonzero idempotent c.
In the sequel we assume that A = (V, ·) is a simple Euclidean Jordan algebra of rank

r and dim(V) = n. Then, from the spectral decomposition theorem we know that an
idempotent c is primitive if and only if dim(V (c, 1)) = 1 [14, p.65].

Let {c1, c2, . . . , cr} be a Jordan frame of A. From [14, Lemma IV.1.3], we know that
the operators L(cj), j = 1, 2, . . . , r commute and admit a simultaneous diagonalization. For
i, j ∈ {1, 2, . . . , r}, define the following spaces

Vii := V(ci, 1) = Rci

and when i 6= j,

Vij := V(ci,
1
2
) ∩ V(cj ,

1
2
) .

Then, from [14, Theorem IV.2.1], we have the following proposition.

Proposition 8 The space V is the orthogonal direct sum of subspaces Vij (1 ≤ i ≤ j ≤ r),
i.e., V =

⊕
i≤j Vij . Furthermore,
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Vij · Vij ⊂ Vii + Vjj,

Vij · Vjk ⊂ Vik, if i 6= k,

Vij · Vkl = {0}, if {i, j} ∩ {k, l} = ∅.

For any i 6= j ∈ {1, 2, . . . , r} and s 6= t ∈ {1, 2, . . . , r}, by [14, Corollary IV.2.6], we have

dim(Vij) = dim(Vst) .

Let d denote this dimension. Then

n = r +
d

2
r(r − 1) . (25)

For x ∈ V we define
Q(x) := 2L2(x) −L(x2) .

The operator Q is called the quadratic representation of V. Let x ∈ V have the spectral
decomposition x =

∑r
j=1 λj(x)cj , where λ1(x) ≥ λ2(x) ≥ · · · ≥ λr(x) are the eigenvalues

of x and {c1, c2, . . . , cr} (depending on x) the corresponding Jordan frame. Let C(x) be
the set consisting of all such Jordan frames at x. For i, j ∈ {1, 2, . . . , r}, let Cij(x) be the
orthogonal projection operator onto Vij. Then, by [14, Theorem IV.2.1],

Cjj(x) = Q(cj) and Cij(x) = 4L(ci)L(cj) = 4L(cj)L(ci) = Cji(x) , i, j = 1, 2, . . . , r . (26)

By Proposition 8 and (4), the orthogonal projection operators {Cij(x) : i, j = 1, 2, . . . , r}
satisfy

Cij(x) = C∗
ij(x) , C2

ij(x) = Cij(x) , Cij(x)Ckl(x) = 0 if {i, j} 6= {k, l}, i, j, k, l = 1, 2, . . . , r

and ∑

1≤i≤j≤r

Cij(x) = I .

From (26), one can obtain easily that

Cjj(x)e = cj and Cij(x)e = 4ci · cj = 0 if i 6= j, i, j = 1, 2, . . . , r . (27)

From
∑r

l=1 cj = e and (26), we get for each j ∈ {1, 2, . . . , r} that

L(cj) = L(cj)I = L(cj)L(e) =
r∑

l=1

L(cj)L(cl) = L2(cj) +
1
4

r∑

l=1
l6=j

Cjl(x) ,

which, together with the facts that Q(cj) = 2L2(cj) −L(cj) and Cjj(x) = Q(cj), implies

L(cj) = Cjj(x) +
1
2

r∑

l=1
l6=j

Cjl(x) .

Therefore, we have the following spectral decomposition theorem for L(x), L(x2), and Q(x)
(cf. [23, Chapter V, §5 and Chapter VI, §4].)
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Theorem 9 Let x ∈ V have the spectral decomposition x =
∑r

j=1 λj(x)cj. Then the sym-
metric operator L(x) has the spectral decomposition

L(x) =
r∑

j=1

λj(x)Cjj(x) +
∑

1≤j<l≤r

1
2
(λj(x) + λl(x))Cjl(x)

with the spectrum σ(L(x)) consisting of all distinct numbers in {1
2 (λj(x) + λl(x)) : j, l =

1, 2, . . . , r}, L(x2) has the spectral decomposition

L(x2) =
r∑

j=1

λ2
j (x)Cjj(x) +

∑

1≤j<l≤r

1
2
(λ2

j (x) + λ2
l (x))Cjl(x)

with the spectrum σ(L(x2)) consisting of all distinct numbers in {1
2(λ2

j (x) + λ2
l (x)) : j, l =

1, 2, . . . , r}, and Q(x) has the spectral decomposition

Q(x) =
r∑

j=1

λ2
j(x)Cjj(x) +

∑

1≤j<l≤r

λj(x)λl(x)Cjl(x)

with the spectrum σ(Q(x)) consisting of all distinct numbers in {λj(x)λl(x) : j, l = 1, 2, . . . , r}.

Let {u1, u2, . . . , un} be an orthonormal basis of V. For any y ∈ V, let L(y), Q(y),
Cjl(y), ... be the corresponding (matrix) representations of L(y), Q(y), Cjl(y), ... with
respect to the basis {u1, u2, . . . , un}. Let ẽ denote the coefficients of e with respect to the
basis {u1, u2, . . . , un}, i.e.,

e =
n∑

j=1

〈e, uj〉uj = Uẽ ,

where U = [u1 u2 · · · un].
Let µ1 > µ2 > · · · > µr̄ be all the r̄ distinct values in σ(x). Then there exist 0 = r0 <

r1 < r2 < · · · < rr̄ = r such that

λri−1+1(x) = λri−1+2(x) = · · · = λri(x) = µi , i = 1, 2, . . . , r̄ . (28)

Let ξ1 > ξ2 > · · · > ξn̄ be all the n̄ distinct values in σ(L(x)) and

Jk(L(x)) = {(j, l) :
1
2
(λj(x) + λl(x)) = ξk , 1 ≤ j ≤ l ≤ r } , k = 1, 2, . . . , n̄ .

Then, by Theorem 9, there exist indices n1, n2, . . . , nr̄ ∈ {1, 2, . . . , n̄} such that

µi = ξni , i = 1, 2, . . . , r̄ .

For each i ∈ {1, 2, . . . , r̄}, denote Ji(x) := {j : λj(x) = µi}. Let y ∈ V have the spectral
decomposition y =

∑r
j=1 λj(y)cj(y) with λ1(y) ≥ λ2(y) ≥ · · · ≥ λr(y) being its eigenvalues

and {c1(y), c2(y), . . . , cr(y)} ∈ C(y) the corresponding Jordan frame. Define

bi(y) :=
∑

j∈Ji(x)

cj(y) , i = 1, 2, . . . , r̄ .
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Proposition 10 Let x ∈ V have the spectral decomposition x =
∑r

j=1 λj(x)cj . Then,

(i) C(x) is compact and C(·) is upper semi-continuous at x. Furthermore, for each i ∈
{1, 2, . . . , r̄}, bi(·) is analytic at x.

(ii) For each m ∈ {1, 2, . . . , r}, σm(·) is positively homogeneous and convex on V.

(iii) For each i ∈ {1, 2, . . . , r̄} and ri−1 ≤ m < ri,

∂Bσm(x) =
i−1∑

j=1

bj(x) +





m∑

l=ri−1+1

c̄l : {c̄1, c̄2, . . . , c̄r} ∈ C(x)



 (29)

and the directional derivative of σm(·) at x, for any 0 6= h ∈ V, is given by

(σm)′(x;h) =
i−1∑

j=1

〈bj(x), h〉 + max
{c̄1,c̄2,...,c̄r}∈C(x)

m∑

l=ri−1+1

〈c̄l, h〉 .

(iv) The function λ(·) is strongly semismooth on V.

Proof. (i) The compactness of C(x) is a direct result of the definition of Jordan frame and
the upper semi-continuity of C(·) follows from the continuity of λ(·) and Theorem 1.

Next, we consider the analyticity of bi(·) at x, i = 1, 2, . . . , r̄. By the definitions of Ji(x)
and Jni(L(x)), one can see that

j ∈ Ji(x) if and only if (j, j) ∈ Jni(L(x)) , i = 1, 2, . . . , r̄ .

Hence, by (27), for each i ∈ {1, 2, . . . , r̄},

bi(y) =
∑

j∈Ji(x)

cj(y) =
( ∑

j∈Ji(x)

Cjj(y)
)
e =

( ∑

(j,l)∈Jni(L(x))

Cjl(y)
)
e

= U
( ∑

(j,l)∈Jni(L(x))

Cjl(y)
)
ẽ , (30)

which, together with (15), implies that for all y sufficiently close to x and for each i ∈
{1, 2, . . . , r̄},

bi(y) = U
( ∑

(j,l)∈Jni(L(x))

Cjl(y)
)
ẽ = UP̃ni(L(y))ẽ .

Then from Proposition 3 and the linearity of L(·) we know that for each i ∈ {1, 2, . . . , r̄},
bi(·) is analytic at x.

(ii) This is a special case of part (i) of Proposition 4.
(iii) From part (ii) of Proposition 4, the definition of ∂Bσm(x), and part (i) of this

proposition, we obtain

∂Bσm(x) ⊆
i−1∑

j=1

bj(x) +





m∑

l=ri−1+1

c̄l : {c̄1, c̄2, . . . , c̄r} ∈ C(x)



 .
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For any {c̄1, c̄2, . . . , c̄r} ∈ C(x), by considering

yk :=
r̄∑

j=1
j 6=i

µjbj(x) +
ri∑

l=ri−1+1

(µi − l/k)c̄j ,

we can see that yk → x and from (ii) of Proposition 4, for all k sufficiently large,

(σm)′(yk) =
i−1∑

j=1

bj(x) +
m∑

l=ri−1+1

c̄l .

Hence, (29) holds. The form of (σm)′(x;h) can be obtained by

(σm)′(x;h) = max
v∈∂σm(x)

〈v, h〉 .

(iv) Since convex functions are semismooth [35], from part (ii) we have already known
that λ(·) is semismooth on V. By Theorem 9, for each x ∈ V and j ∈ {1, 2, . . . , r},

λj(x) ∈ {λ1(L(x)), λ2(L(x)), . . . , λn(L(x))} ,

where λk(L(x)) is the k-th largest eigenvalue of the symmetric matrix L(x) (note that L(x)
is the matrix representation of L(x)), k = 1, 2, . . . , n. It is known [51, Theorem 4.7] that
for each k ∈ {1, 2, . . . , n}, λk(·) is strongly semismooth on Sn. Hence, by the linearity of
L(·) and the continuity of λj(·), from Proposition 7 we derive the conclusion that λj(·) is
strongly semismooth on V, j = 1, 2, . . . , r. Thus, λ(·) is also strongly semismooth on V.
�

Remark 11 From part (iii) of Proposition 4, we know that for any given x, h ∈ V, the
eigenvalues of x+ εh, ε ∈ R can be arranged to be analytic at ε = 0. If A is the Euclidean
Jordan algebra of symmetric matrices, the eigenvectors of x + εh can also be chosen to be
analytic at ε = 0 [42, Chapter 1]. It is not clear whether this is true for all Euclidean
Jordan algebras.

Part (i) of Proposition 10 says that for each i ∈ {1, 2, . . . , r̄}, bi(·) is analytic at x. In
the sequel, we establish an explicit formula of the derivative of b′i(x). Let φ : R → R be a
scalar valued function and φV(·) be Löwner’s operator defined by (1). Let τ ∈ Rr. Suppose
that φ is differentiable at τi, i = 1, 2, . . . , r. Define the first divided difference φ[1](τ) of φ
at τ as the r × r symmetric matrix with its ijth entry (φ[1](τ))ij given by [τi, τj ]φ, where

[τi, τj ]φ :=





φ(τi) − φ(τj)
τi − τj

if τi 6= τj

φ′(τi) if τi = τj

, i, j = 1, 2, . . . , r . (31)

By Proposition 8, the fact that dim(V (cj , 1)) = 1, 〈cj , cj〉 = 1, and the definition of the
quadratic operator Q, for any vector h ∈ V and each j ∈ {1, 2, . . . , r}, there exists αj(h) ∈ R
such that

αj(h)cj = Q(cj)h = 2L2(cj)h−L(c2j )h = 2cj · (cj · h) − cj · h ,
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which implies

αj(h) = 2〈cj , cj · (cj · h)〉 − 〈cj , cj · h〉 = 〈cj , cj · h〉 = 〈cj , h〉

and
2cj · (cj · h) = cj · h+ 〈cj , h〉 cj . (32)

Therefore, any vector h ∈ V can be written as

h =
r∑

j=1

Cjj(x)h +
∑

1≤j<l≤r

Cjl(x)h =
r∑

j=1

〈cj , h〉 cj +
∑

1≤j<l≤r

4cj · (cl · h) . (33)

Korányi [24, p.74] proved the following result, which generalized Löwner’s result [34] on sym-
metric matrices (see Donoghue [13, Chapter VIII] for a detailed proof on this) to Euclidean
Jordan algebras.

Lemma 12 Let x =
∑r

j=1 λj(x)cj. Let (a, b) be an open interval in R that contains λj(x),
j = 1, 2, . . . , r. If φ is continuously differentiable on (a, b), then φV is differentiable at x
and its derivative, for any h ∈ V, is given by

(φV)′(x)h =
r∑

j=1

(φ[1](λ(x)))jj〈cj , h〉 cj +
∑

1≤j<l≤r

4(φ[1](λ(x)))jlcj · (cl · h) . (34)

By (32), we can write (34) equivalently as

(φV)′(x)h = 2
r̄∑

i=1

r̄∑

l=1

[µi, µl]φbi(x) · (bl(x) · h) −
r̄∑

i=1

φ′(µi)bi(x) · h , (35)

where the fact cj · (cl · h) = L(cj)L(cl)h = L(cl)L(cj)h = cl · (cj · h), j 6= l = 1, 2, . . . , r is
used. Now, we can calculate b′i(x), i ∈ {1, 2, . . . , r̄} is used. Pick an ε > 0 such that

(µj − ε, µj + ε) ∩ (µl − ε, µl + ε) = ∅ , 1 ≤ j < l ≤ r̄ . (36)

For each i ∈ {1, 2, . . . , r̄}, let φi be a continuously differentiable function on (−∞,∞)
such that φi is identically one on the interval (µi − ε, µi + ε) and is identically zero on all
other intervals (µj − ε, µj + ε), i 6= j = 1, 2, . . . , r̄. Then for all y sufficiently close to x,
bi(y) = (φi)V(y). Hence, by Lemma 12 and (35), the derivative of bi(·) at x, for any h ∈ V,
is given by

b′i(x)h =
∑

1≤j<l≤r

4(φ[1]
i (λ(x)))jlcj · (cl · h) =

r̄∑

l=1
l6=i

4
µi − µl

bi(x) · (bl(x) · h) . (37)

Based on the proof in [24, p.74], we shall show in the next proposition that φV is
(continuously) differentiable at x if and only if φ(·) is (continuously) differentiable at λj(x),
j = 1, 2, . . . , r.
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Theorem 13 Let x =
∑r

j=1 λj(x)cj . The function φV is (continuously) differentiable at x
if and only if for each j ∈ {1, 2, . . . , r}, φ is (continuously) differentiable at λj(x). In this
case, the derivative of φV(·) at x, for any h ∈ V, is given by (34), or equivalently by (35).

Proof. “ ⇐= ” Suppose that for each j ∈ {1, 2, . . . , r}, φ is differentiable at λj(x). As in
[24, Lemma], we first consider the special case that φ(λj(x)) = φ′(λj(x)) = 0, j = 1, 2, . . . , r.
Then, by the Lipschitz continuity of λ(·) and Proposition 10, for any h ∈ V with h → 0
and x + h =

∑r
j=1 λj(x + h)cj(x + h) with λ1(x + h) ≥ λ2(x + h) ≥ · · · ≥ λr(x + h) and

{c1(x+ h), c2(x+ h), . . . , cr(x+ h)} ∈ C(x+ h) we have

φV(x+ h) =
r∑

j=1

φ(λj(x+ h))cj(x+ h)

=
r∑

j=1

(φ(λj(x+ h)) − φ(λj(x))) cj(x+ h)

=
r∑

j=1

(
φ′(λj(x))(λj(x+ h) − λj(x)) + o(|λj(x+ h) − λj(x)|)

)
cj(x+ h)

=
r∑

j=1

o(|λj(x+ h) − λj(x)|)cj(x+ h) = o(‖h‖) .

Hence, φV is differentiable at x and (φV)′(x)h = 0 for all h ∈ V, which satisfies (34).
Next, we consider the general case. Let p(·) be a polynomial function such that p(λj(x)) =

φ(λj(x)) and p′(λj(x)) = φ′(λj(x)), j = 1, 2, . . . , r. The existence of such a polynomial is
guaranteed by the theory on Hermite interpolation (cf. [28, §5.2]). Hence, by the above
proof it follows that the function (φ− p)V is differentiable at x. By noting from Lemma 12
that pV is differentiable at x, we know that φV is differentiable at x and the derivative of
φV(·) at x, for any h ∈ V, is given by (34), which is equivalent to (35).

Now, we show that φV is continuously differentiable at x if for each j ∈ {1, 2, . . . , r}, φ
is continuously differentiable at λj(x). It has already been proved that φV is differentiable
in an open neighborhood of x. By (34), for any y sufficiently close to x the derivative of φV
at y, for any h ∈ V, can be written by

(φV)′(y)h =
r∑

j=1

(φ[1](λ(y)))jj〈cj(y), h〉 cj(y) +
∑

1≤j<l≤r

4(φ[1](λ(y)))jlcj(y) · (cl(y) · h) ,

where y has the spectral decomposition y =
∑r

j=1 λj(y)cj(y) with λ1(y) ≥ λ2(y) ≥ · · · ≥
λr(y) and {c1(y), c2(y), . . . , cr(y)} ∈ C(y). From the continuity of λ(·) and the assumption
we know that for any 1 ≤ j ≤ l ≤ r and y → x, if λj(x) 6= λl(x), then

(φ[1](λ(y)))jl → (φ[1](λ(x)))jl;

and if λj(x) = λl(x), then from the mean value theorem,

(φ[1](λ(y)))jl = φ′(τjl(y)) → φ′(λj(x)) ,
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where τjl(y) ∈ [λl(y), λj(y)]. Therefore, any accumulation point of (φV)′(y)h for y → x can
be written as

r∑

j=1

(φ[1](λ(x)))jj〈c̄j , h〉 c̄j +
∑

1≤j<l≤r

4(φ[1](λ(x)))jl c̄j · (c̄l · h)

for some {c̄1, c̄2, . . . , c̄r} ∈ C(x). This, together with (34), implies that for any h ∈ V,

(φV)′(y)h→ (φV)′(x)h .

The continuity of (φV)′ at x is then proved.
“ =⇒ ” To prove that for each i ∈ {1, 2, . . . , r̄}, φ is (continuously) differentiable at µi,

we consider the composite function of φV and ui(t) := x+ tbi(x), t ∈ R. For any t ∈ R,

φV(ui(t)) =
r̄∑

j=1
j 6=i

φ(µj)bj(x) + φ(µi + t)bi(x) ,

which implies

φ(µi + t)〈bi(x), bi(x)〉 = 〈bi(x), φV(ui(t))〉 = 〈bi(x), φV(x+ tbi(x))〉 .

Since 〈bi(x), bi(x)〉 > 0 and φV is (continuously) differentiable at x, φ is (continuously)
differentiable at µi with

φ′(µi) = 〈bi(x), (φV)′(x)bi(x)〉/‖bi(x)‖2 .

The proof is completed. �

Remark 14 Theorem 13 extends the results on the differentiability of Löwner’s function
over the symmetric matrices in [5, 33, 49] and over SOCs [4] to all Euclidean Jordan
algebras. The approach adopted here follows the works of [34] and [24] and will be used to
study the twice differentiability of the spectral function over Euclidean Jordan algebras.

Next, we consider the (strong) semismoothness of φV at x ∈ V. We achieve this by
establishing the connection between φV(x) and φSn(L(x)). According to Theorem 9 and
the definition of φSn ,

φSn(L(x)) =
r∑

j=1

φ(λj(x))Cjj(x) +
∑

1≤j<l≤r

φ
(1

2
(λj(x) + λl(x))

)
Cjl(x) .

Thus, by (27), we obtain
φV(x) = UφSn(L(x))ẽ . (38)

In particular, by taking φ(t) = t+ = max(0, t), t ∈ R, we get

x+ = U(L(x))+ẽ . (39)

Hence, we have the following result.
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Proposition 15 The metric projection operator (·)+ is strongly semismooth on V.

Proof. It is proved in [50] that the metric projection operator (·)+ is strongly semismooth
on Sn. Since L(·) is a linear operator, from (39) we know that (·)+ is strongly semismooth
on V. �

Let us consider another special, yet important, case. For any ε ∈ R, define φε : R → R
by

φε(t) :=
√
t2 + ε2 , t ∈ < .

Then the corresponding Löwner’s operator φε
V takes the following form

φε
V(x) =

r∑

j=1

√
λ2

j(x) + ε2 cj =
√
x2 + ε2e ,

which can be treated as the smoothed approximation to the “absolute value” function
|x| :=

√
x2, x ∈ V. On the other hand,

L(x2) + ε2I =
r∑

j=1

(λ2
j (x) + ε2)Cjj(x) +

∑

1≤j<l≤r

1
2
(λ2

j (x) + λ2
l (x) + 2ε2)Cjl(x) ,

which implies

U
√
L(x2) + ε2I ẽ

= U
( r∑

j=1

√
λ2

j(x) + ε2 Cjj(x) +
∑

1≤j<l≤r

1√
2

√
λ2

j(x) + λ2
l (x) + 2ε2 Cjl(x)

)
ẽ

= U
r∑

j=1

√
λ2

j (x) + ε2 Cjj(x)ẽ =
r∑

j=1

√
λ2

j (x) + ε2 cj =
√
x2 + ε2e

= φε
V(x) . (40)

For ε ∈ R and x ∈ V, let
ψ(ε, x) := φε

V(x) =
√
x2 + ε2e .

Then, by [52] and (40), we obtain the following result directly.

Proposition 16 The function ψ(·, ·) is continuously differentiable at (ε, x) if ε 6= 0 and is
strongly semismooth at (0, x), x ∈ V.

Proposition 15 extends the strong semismoothness of (·)+ on symmetric matrices in [50]
to Euclidean Jordan algebras. To study the strong semismoothness of Löwner’s operator,
we need to introduce another scalar valued function φ̄ : R → R. Let ε > 0 be such that

(ξj − ε, ξj + ε) ∩ (ξl − ε, ξl + ε) = ∅ , 1 ≤ j < l ≤ n̄ .
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Then define φ̄ : R → R by

φ̄(t) =





φ(t) if t ∈
r̄⋃

j=1

(µj − ε, µj + ε)

0 otherwise .

Then, by using the fact that Cjl(y)e = 0 for j 6= l, for all y sufficiently close to x we have

φV(y) = UφSn(L(y))ẽ .

= U
( r∑

j=1

φ(λj(y))Cjj(y)
)
ẽ

= U
( r∑

j=1

φ̄(λj(y))Cjj(y)
)
ẽ

= U
[ r∑

j=1

φ̄(λj(y))Cjj(y) +
∑

1≤j<l≤r

φ̄
(1

2
(λj(y) + λl(y))

)
Cjl(y)

]
ẽ

= Uφ̄Sn(L(y))ẽ . (41)

Theorem 17 Let γ ∈ (0, 1] be a constant and x =
∑r

j=1 λj(x)cj . φV(·) is (γ-order) semi-
smooth at x if and only if for each j ∈ {1, 2, . . . , r}, φ(·) is (γ-order) semismooth at λj(x).

Proof. We only need to consider the semismoothness as the proof for the γ-order semi-
smoothness is similar.

“ ⇐= ” The definition of φ̄(·) and the assumption that for each j ∈ {1, 2, . . . , r}, φ(·) is
semismooth at λj(x) imply that φ̄(·) is semismooth at each 1

2(λj(x)+λl(x)), 1 ≤ j ≤ l ≤ r.
Then by [5, Proposition 4.7] we know that φ̄Sn(·) is semismooth at L(x). This, together
with (41), shows that φV(·) is semismooth at x.

“ =⇒ ” To prove that for each j ∈ {1, 2, . . . , r}, φ(·) is semismooth at λj(x) is equivalent
to prove that for i ∈ {1, 2, . . . , r̄}, φ(·) is semismooth at µi. For each i ∈ {1, 2, . . . , r̄}, let
ui(t) := x+ tbi(x), t ∈ R. For any t ∈ R,

φV(ui(t)) =
r̄∑

j=1
j 6=i

φ(µj)bj(x) + φ(µi + t)bi(x) ,

which implies

φ(µi + t)〈bi(x), bi(x)〉 = 〈bi(x), φV(ui(t))〉 = 〈bi(x), φV(x+ tbi(x))〉 .

Since φV is semismooth at x, 〈bi(x), φV(x+ tbi(x)〉 is semismooth at t = 0. Therefore, φ is
semismooth at µi. �

Remark 18 The proof of Theorem 17 uses the semismoothness result of Löwner’s function
over symmetric matrices in [5]. It also provides a new proof on Löwner’s function over
SOCs considered in [4].
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4 Differential Properties of Spectral Functions

Let A = (V, ·) be a simple Euclidean Jordan algebra of rank r and dim(V) = n. Let x ∈ V
have the spectral decomposition x =

∑r
j=1 λj(x)cj . Let µ1 > µ2 > · · · > µr̄ be all the r̄

distinct values in σ(x) and 0 = r0 < r1 < r2 < · · · < rr̄ = r be such that (28) holds.
For two vectors α and β in Rr, we say that β block-refines α if αj = αl whenever βj = βl

[31].

Lemma 19 If λ(x) block-refines α in Rr, then the function αTλ(·) is differentiable at x
with ∇(αTλ)(x) =

∑r
j=1 αjcj .

Proof. Since λ(x) block-refines α,

αri−1+1 = αri−1+2 = · · · = αri , i = 1, 2, . . . , r̄ .

Let y ∈ V have the spectral decomposition y =
∑r

j=1 λj(y)cj(y) with λ1(y) ≥ λ2(y) ≥ · · · ≥
λr(y). Let σ0 ≡ 0. Then,

αTλ(y) =
r∑

j=1

αjλj(y) =
r̄∑

i=1

αri

ri∑

j=ri−1+1

λj(y) =
r̄∑

i=1

αri(σri(y) − σri−1(y)) .

By (ii) of Proposition 4, σri(·) is differentiable at x and

∇σri(x) =
ri∑

j=1

cj , i = 1, 2, . . . , r̄ .

Hence, αTλ(·) is differentiable at x and

∇(αTλ)(x) =
r̄∑

i=1

αri

ri∑

j=ri−1+1

cj =
r∑

j=1

αjcj .

This completes the proof. �
Let f : Rr → (−∞,∞] be a symmetric function. The properties on the symmetric

function f in the following lemma are needed in our analysis. Parts (i) and (ii) can be
checked directly (cf. [33, Lemma 2.1]). Part (iii) is implied by the proof of Case III in [33,
Lemma 4.1]. By replacing the classical mean value theorem employed in the proof of Case
III in [33, Lemma 4.1] with Lebourg’s mean value theorem for locally Lipschitz functions
[9, Theorem 2.3.7], we can obtain part (iv) without difficulty.

Lemma 20 Let f : Rr → (−∞,∞] be a symmetric function and υ := λ(x). Let P be a
permutation matrix such that Pυ = υ.

(i) If f is differentiable at υ, then ∇f(υ) = P T∇f(υ).
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(ii) Let li := ri+1 − ri, i = 1, 2, . . . , r̄. If f is twice differentiable at υ, then ∇2f(υ) =
P T∇2f(υ)P . In particular,

∇2f(υ) =




η11E11 + βr1Il1×l1 η12E12 · · · η1r̄E1r̄

η21E21 η22E22 + βr2Il2×l2 · · · η2r̄E2r̄

...
...

. . .
...

ηr̄1Er̄1 ηr̄2Er̄2 · · · ηr̄r̄Er̄r̄ + βrr̄Ilr̄×lr̄



,

where for i, j = 1, 2, . . . , r̄, Eij is the li × lj matrix with all entries equal to one,
(ηij)r̄i,j=1 is a real symmetric matrix, β := (β1, β2, . . . , βr)T is a vector which is block
refined by υ, and for each i = 1, 2, . . . , r̄, Ili×li is the li × li identity matrix. If li = 1
for some i ∈ {1, 2, . . . , r̄}, then we take ηii = 0.

(iii) Suppose that f is twice continuously differentiable at υ and j 6= l ∈ {1, 2, . . . , r} satisfy
υj = υl. Then for any ς ∈ Rr with ς1 ≥ ς2 ≥ · · · ≥ ςr, ςj 6= ςl, and ς → υ,

(∇f(ς))j − (∇f(ς))l
ςj − ςl

→ (∇2f(υ))jj − (∇2f(υ))jl .

(iv) Suppose that ∇f is locally Lipschitz continuous near υ with the Lipschitz constant
κ > 0 and j 6= l ∈ {1, 2, . . . , r} satisfy υj = υl. Then for any ς ∈ Rr with ς1 ≥ ς2 ≥
· · · ≥ ςr, ςj 6= ςl, and ς sufficiently close to υ,

∣∣∣(∇f(ς))j − (∇f(ς))l
ςj − ςl

∣∣∣ ≤ 3κ .

Theorem 21 Let f : Rr → (−∞,∞] be a symmetric function. Then f ◦ λ is differentiable
at x =

∑r
j=1 λj(x)cj if and only if f is differentiable at λ(x), and in this case

∇(f ◦ λ)(x) =
r∑

j=1

(∇f(λ(x)))jcj .

Proof. “ ⇐= ” Let υ := λ(x). Since λ(·) is Lipschitz continuous, there exist constants
τ > 0 and δ0 > 0 such that

‖λ(y) − λ(x)‖ ≤ τ‖y − x‖

for all y ∈ V satisfying ‖y − x‖ ≤ δ0. For any given ε > 0, since f is differentiable at
υ = λ(x), there exists a positive number δ(≤ δ0τ) such that for all ς ∈ Rr satisfying
‖ν − υ‖ ≤ δ it holds that

|f(ς) − f(υ) − (∇f(υ))T (ς − υ)| ≤ ε‖ς − υ‖ .

Hence, for all y ∈ V satisfying ‖y − x‖ ≤ δ/τ ,

|f(λ(y)) − f(υ) − (∇f(υ))T (λ(y) − υ)| ≤ ε‖λ(y) − υ‖ ≤ τε‖y − x‖ .

24



On the other hand, by part (i) of Lemma 20, υ block-refines ∇f(υ). Then, by Lemma
19, we have

∣∣∣(∇f(υ))Tλ(y) − (∇f(υ))Tu−
〈 r∑

j=1

(∇f(υ))jcj , y − x
〉∣∣∣ ≤ ε‖y − x‖

for all y sufficiently close to x. By adding the two previous inequalities we obtain

∣∣∣f(λ(y)) − f(υ) −
〈 r∑

j=1

(∇f(υ))jcj , y − x
〉∣∣∣ ≤ (τ + 1)ε‖y − x‖

for all y sufficiently close to x. This shows that f ◦ λ is differentiable at x with

∇(f ◦ λ)(x) =
r∑

j=1

(∇f(λ(x)))jcj .

“ =⇒ ” Suppose that f ◦ λ is differentiable at x. Then it is easy to see that f must be
differentiable at λ(x) because one may write

f(ς) = (f ◦ λ)
( r∑

j=1

ςjcj

)

for all ς ∈ Rr. �

Remark 22 Theorem 21 is a direct extension of the first derivative result in [31] on the
spectral function over symmetric matrices.

Let the symmetric function f : Rr → (−∞,∞] be twice differentiable at υ := λ(x).
Then by Lemma 20, ∇2f(λ(x)) has the form as in part (ii) of Lemma 20. Let ε > 0 be such
that (36) holds. Define φ̃ : R → R by

φ̃(t) =

{
β̃j(x)t if t ∈ (υj − ε, υj + ε) , j = 1, 2, . . . , r

0 otherwise ,

where β̃(x) is the vector β defined in part (ii) of Lemma 20, i.e., for ri−1 + 1 ≤ j ≤ ri,

β̃j(x) =

{
(∇2f(υ))jj if ri − ri−1 = 1
(∇2f(υ))ll − (∇2f(υ))ls if ri−1 + 1 ≤ l 6= s ≤ ri ,

(42)

where i = 1, 2, . . . , r̄. Then, by Theorem 13, φ̃V(·) is continuously differentiable at x and
its derivative, for any h ∈ V, is given by

(φ̃V)′(x)h = 2
r̄∑

i=1

r̄∑

l=1
l6=i

β̃ri(x)µi − β̃rl
(x)µl

µi − µl
bi(x) · (bl(x) · h)

+
r̄∑

i=1

β̃ri(x)[2bi(x) · (bi(x) · h) − bi(x) · h] .

(43)
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Define the symmetric matrix Ã(x) as follows. Let ãjl(x) be the jlth entry of Ã(x). Then
for j, l = 1, 2, . . . , r,

ãjl(x) :=





0 if j = l

β̃j(x) if ri−1 + 1 ≤ j 6= l ≤ ri
(∇f(λ(x)))j − (∇f(λ(x)))l

λj(x) − λl(x)
otherwise ,

(44)

where i = 1, 2, . . . , r̄.

Theorem 23 Let f : R → (−∞,∞] be a symmetric function and x =
∑r

j=1 λj(x)cj . Then
f ◦ λ is twice differentiable at x if and only if f is twice differentiable at λ(x). In that case,
the second derivative of φV(·) at x, for any h ∈ V, is given by

∇2(f ◦ λ)(x)h =
r∑

j=1

r∑

l=1

[2ãjl(x)cj · (cl · h) + (∇2f(λ(x)))jl〈cl, h〉 cj ] . (45)

Proof. “ ⇐= ” By Theorem 21, for any 0 6= h ∈ V and h sufficiently small we have

∇(f ◦ λ)(x+ h) =
r∑

j=1

(∇f(λ(x+ h)))jcj(x+ h) ,

where x+h =
∑r

j=1 λj(x+h)cj(x+h) and {c1(x+h), c2(x+h), . . . , cr(x+h)} ∈ C(x+h).
Hence, by [48] and the directional differentiability and the Lipschitz continuity of λ(·),

∇(f ◦ λ)(x+ h) −∇(f ◦ λ)(x)

=
r∑

j=1

(∇f(λ(x) + λ′(x;h) + o(‖h‖)))jcj(x+ h) −
r∑

j=1

(∇f(λ(x)))jcj

=
r∑

j=1

(∇f(λ(x) + λ′(x;h)))jcj(x+ h) −
r∑

j=1

(∇f(λ(x)))jcj + o(‖h‖)

=
r∑

j=1

(∇f(λ(x)))j(cj(x+ h) − cj) +
r∑

j=1

(∇2f(λ(x))λ′(x;h))jcj(x+ h) + o(‖h‖)

=
r̄∑

i=1

(∇f(λ(x)))ri(bi(x+ h) − bi(x)) +
r∑

j=1

(∇2f(λ(x))λ′(x;h))jcj(x+ h) + o(‖h‖) ,
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which, together with the analyticity of bi(·), part (ii) of Lemma 20, and Proposition 10 gives

∇(f ◦ λ)(x+ h) −∇(f ◦ λ)(x) −
r̄∑

i=1

(∇f(λ(x)))rib
′
i(x)h− (φ̃V)′(x)h

=
r∑

j=1

(∇2f(λ(x))λ′(x;h))jcj(x+ h) − [φ̃V(x+ h) − φ̃V(x)] + o(‖h‖)

=
r̄∑

i=1

r̄∑

l=1

ηil〈bl(x), h〉 bi(x+ h) +
r̄∑

i=1

β̃ri(x)
ri∑

l=ri−1+1

λ′l(x;h)cl(x+ h)

−[φ̃V(x+ h) − φ̃V(x)] + o(‖h‖)

=
r̄∑

i=1

r̄∑

l=1

ηil〈bl(x), h〉 bi(x) +
r̄∑

i=1

β̃ri(x)
ri∑

l=ri−1+1

[λl(x+ h) − λl(x)]cl(x+ h)

−[φ̃V(x+ h) − φ̃V(x)] + o(‖h‖)

=
r̄∑

i=1

r̄∑

l=1

ηil〈bl(x), h〉 bi(x) −
r̄∑

i=1

β̃ri(x)
ki∑

l=ri−1+1

λl(x)cl(x+ h) + φ̃V(x) + o(‖h‖)

=
r̄∑

i=1

r̄∑

l=1

ηil〈bl(x), h〉 bi(x) −
r̄∑

i=1

β̃ri(x)µibi(x+ h) +
r̄∑

i=1

β̃ri(x)µibi(x) + o(‖h‖)

=
r̄∑

i=1

r̄∑

l=1

ηil〈bl(x), h〉 bi(x) −
r̄∑

i=1

β̃riµib
′
i(x)h + o(‖h‖) ,

where (ηil)r̄i,l=1 is the symmetric matrix defined in part (ii) of Lemma 20. Therefore, f ◦ λ
is twice differentiable at x and for any h ∈ V,

∇2(f ◦ λ)(x)h =
r̄∑

i=1

(∇f(λ(x)))rib
′
i(x)h+ (φ̃V)′(x)h

+
r̄∑

i=1

r̄∑

l=1

ηil〈bl(x), h〉 bi(x) −
r̄∑

i=1

β̃ri(x)µib
′
i(x)h .

By using (37) and (43) we obtain for any h ∈ V,

∇2(f ◦ λ)(x)h

= 2
r̄∑

i=1

r̄∑

l=1
l6=i

(∇f(λ(x)))ri − (∇f(λ(x)))rl

µi − µl
bi(x) · (bl(x) · h) + (φ̃V)′(x)(h)

+
r̄∑

i=1

r̄∑

l=1

ηil〈bl(x), h〉 bi(x) − 2
r̄∑

i=1

r̄∑

l=1
l6=i

β̃ri(x)µi − β̃rl
(x)µl

µi − µl
bi(x) · (bl(x) · h)

= 2
r̄∑

i=1

r̄∑

l=1
l6=i

(∇f(λ(x)))ri − (∇f(λ(x)))rl

µi − µl
bi(x) · (bl(x) · h) + 2

r̄∑

i=1

β̃ri(x)bi(x) · (bi(x) · h)

+
r̄∑

i=1

r̄∑

l=1

ηil〈bl(x), h〉 bi(x) −
r̄∑

i=1

β̃ri(x)bi(x) · h .
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This, together with (32), (44), and part (ii) of Lemma 20, implies

∇2(f ◦ λ)(x)h

= 2
r∑

j=1

r∑

l=1

ãjl(x)cj · (cl · h) + 2
r̄∑

i=1

β̃ri(x)
ri∑

j=ri−1+1

cj · (cj · h)

+
r∑

j=1

r∑

l=1

(∇2f(λ(x)))jl〈cl, h〉 cj −
r̄∑

i=1

β̃ri(x)
ri∑

j=ri−1+1

〈cj , h〉 cj −
r̄∑

i=1

β̃ri(x)bi(x) · h

=
r∑

j=1

r∑

l=1

[2ãjl(x)cj · (cl · h) + (∇2f(λ(x)))jl〈cl, h〉 cj ]

+
r̄∑

i=1

β̃ri(x)
ri∑

j=ri−1+1

cj · h−
r̄∑

i=1

β̃ri(x)bi(x) · h .

Thus (45) holds.
“ =⇒ ” For any ς ∈ Rr, define

y = x+
r∑

j=1

ςjcj =
r∑

j=1

(λj(x) + ςj)cj .

Then, by Theorem 21, for all ς ∈ Rr sufficiently small, f is differentiable at y and

∇(f ◦ λ)(y) =
r∑

j=1

(∇f(λ(x) + ς))jcj ,

which implies that

(∇f(λ(x) + ς))j = 〈∇(f ◦ λ)(y), cj〉 , j = 1, 2, . . . , r .

Thus f is twice differentiable at λ(x). �
The next theorem is about the continuity of ∇2(f ◦ λ)(x). It is a direct consequence of

Theorem 23 and parts (ii) and (iii) of Lemma 20.

Theorem 24 Let f : R → (−∞,∞] be a symmetric function and x =
∑r

j=1 λj(x)cj.
Then f ◦ λ is twice continuously differentiable at x if and only if f is twice continuously
differentiable at λ(x).

Remark 25 Theorems 23 and 24 extend the twice differentiability results in [33] on the
spectral function over symmetric matrices to Euclidean Jordan algebras. This extension
builds on known results of the symmetric function and the differentiability of Löwner’s
operator discussed in Section 3.

Let y ∈ V have the spectral decomposition y =
∑r

j=1 λj(y)cj(y) with λ1(y) ≥ λ2(y) ≥
· · · ≥ λr(y) and {c1(y), c2(y), . . . , cr(y)} ∈ C(y). For any 1 ≤ j < l ≤ r, there exist d
mutually orthonormal vectors {v(i)

jl (y)}d
i=1 in V such that

Cjl(y) =
d∑

i=1

〈v(i)
jl (y), ·〉 v(i)

jl (y) ,
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where d satisfies (25). Then
{
c1(y), c2(y), . . . , cr(y), v

(1)
jl (y), v(2)

jl (y), . . . , v(d)
jl (y), 1 ≤ j < l ≤ r

}

is an orthonormal basis of V. Let U(y) be the matrix formed by this basis, i.e., the first r
columns of U(y) are c1(y), c2(y), . . . , cr(y) and the rest are v(i)

jl (y), 1 ≤ j < l ≤ r, 1 ≤ i ≤ d.
Let h̃ be the coefficients of h := y − x with respect to the basis

{
c1(y), c2(y), . . . , cr(y), v

(1)
jl (y), v(2)

jl (y), . . . , v(d)
jl (y), 1 ≤ j < l ≤ r

}
.

Then there exist numbers h̃j , h̃
(i)
jl ∈ R, 1 ≤ j < l ≤ r, 1 ≤ i ≤ d such that

h = U(y)h̃ =
r∑

j=1

h̃jcj(y) +
∑

1≤j<l≤r

d∑

i=1

h̃
(i)
jl v

(i)
jl (y) . (46)

Let Dλ be the set of points in V where λ(·) is differentiable.

Lemma 26 Let x =
∑r

j=1 λj(x)cj. Then for any 1 ≤ j < l ≤ r such that λj(x) = λl(x)
and y → x with y ∈ Dλ,

h̃
(i)
jl = O(‖h‖2) , i = 1, 2, . . . , d .

Proof. By Proposition 10 and Lemma 6, for any y → x with y ∈ Dλ we have

0 = y − x− h =
r∑

j=1

λj(y)cj(y) −
r∑

j=1

λj(x)cj − h

=
r∑

j=1

(λj(x) + λ′j(y)h)cj(y) −
r∑

j=1

λj(x)cj − h+O(‖h‖2)

=
r̄∑

i=1

λri(x)(bi(y) − bi(x)) +
r∑

j=1

〈cj(y), h〉 cj(y) − h+O(‖h‖2) ,

which, together with the analyticity of bi, (37), and (33), implies

0 =
r̄∑

i=1

λri(x)b
′
i(y)h−

∑

1≤j<l≤r

Cjl(y)h+O(‖h‖2)

= 4
r̄∑

i=1

λri(x)
r̄∑

s=1
s 6=i

bi(y) · (bs(y) · h)
λri(x) − λrs(x)

−
∑

1≤j<l≤r

Cjl(y)h+O(‖h‖2)

= 2
r̄∑

i=1

r̄∑

s=1
s 6=i

bi(y) · (bs(y) · h) −
∑

1≤j<l≤r

Cjl(y)h+O(‖h‖2)

= 2
r∑

j=1

r∑

l=1

ωjlcj(y) · (cl(y) · h) −
∑

1≤j<l≤r

Cjl(y)h+O(‖h‖2) ,
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where for j, l = 1, 2, . . . , r,

ωjl =

{
0 if rt−1 + 1 ≤ j, l ≤ rt
1 otherwise ,

t = 1, 2, . . . , r̄. Therefore, for y → x with y ∈ Dλ,

0 =
∑

1≤j<l≤r

ωjlCjl(y)h −
∑

1≤j<l≤r

Cjl(y)h+O(‖h‖2)

=
∑

1≤j<l≤r

d∑

i=1

(ωjl − 1)h̃(i)
jl v

(i)
jl (y) +O(‖h‖2) ,

which implies that for 1 ≤ j < l ≤ r and 1 ≤ i ≤ d,

0 = (ωjl − 1)h̃(i)
jl 〈v

(i)
jl (y), v(i)

jl (y)〉 +O(‖h‖2) = (ωjl − 1)h̃(i)
jl +O(‖h‖2) .

By observing that for any 1 ≤ j < l ≤ r, ωjl = 0 if λj(x) = λl(x), we then complete the
proof. �

Theorem 27 Let f : R → (−∞,∞] be a symmetric function. Let x =
∑r

j=1 λj(x)cj and
γ ∈ (0, 1). Then ∇(f ◦ λ) is (γ-order) G-semismooth at x if and only if ∇f is (γ-order)
G-semismooth at λ(x).

Proof. “ ⇐= ” We only prove the case for the γ-order G-semismoothness. The case for the
G-semismoothness can be obtained similarly. Suppose that ∇f is γ-order G-semismooth
at υ := λ(x). By considering the convolution regularization of f (cf. [44, Chapter 9.K]),
we can adapt the proof of [40, Proposition 4.3] for the case of symmetric matrices and use
Lemma 20 and Theorems 23 and 24 to show that there exists an open set O(x) containing
x such that ∇(f ◦ λ) is Lipschitz continuous on O. For brevity, we omit the details here.

By Theorem 23, y ∈ D∇(f◦λ), the set of differentiable points of ∇(f ◦λ) in O, if and only
if ∇f is differentiable at λ(y). Since λ(·) is Lipschitz continuous on O, the set S :=

⋃r
j=1 Sj

is a set of Lebesgue measure zero, where Sj := O\Dλj
, j = 1, 2, . . . , r. Then for any

y ∈ D∇(f◦λ) and y /∈ S, ∇2(f ◦ λ)(y) exists and for any h ∈ V,

∇2(f ◦ λ)(y)h =
r∑

j=1

r∑

l=1

[2ãjl(y)cj(y) · (cl(y) · h) + (∇2f(λ(y)))jl〈cl(y), h〉 cj(y)] ,

where for j, l = 1, 2, . . . , r,

ãjl(y) =





0 if j = l
(∇f(λ(y)))j − (∇f(λ(y)))l

λj(y) − λl(y)
otherwise .

(47)
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Let h := y − x. By Theorem 21 and Lemma 6, for any y → x with y ∈ D∇(f◦λ) and y /∈ S,

∇(f ◦ λ)(y) −∇(f ◦ λ)(x)

=
r∑

j=1

(∇f(λ(y)))jcj(y) −
r∑

j=1

(∇f(λ(x)))jcj

=
r∑

j=1

(∇f(λ(x)) + ∇2f(λ(y))(λ(y) − λ(x)))jcj(y) −
r∑

j=1

(∇f(λ(x)))jcj +O(‖h‖1+γ)

=
r̄∑

i=1

(∇f(λ(x)))ri(bi(x+ h) − bi(x)) +
r∑

j=1

(∇2f(λ(y))λ′(y)h)jcj(y) +O(‖h‖1+γ) ,

which, together with (37) and part (iii) of Proposition 10, implies

∇(f ◦ λ)(y) −∇(f ◦ λ)(x)

=
r̄∑

i=1

(∇f(λ(x)))rib
′
i(y)h+

r∑

j=1

r∑

l=1

(∇2f(λ(y)))jl〈cl(y), h〉 cj(y) +O(‖h‖1+γ) .

Therefore, for any y → x with y ∈ D∇(f◦λ) and y /∈ S,

∇(f ◦ λ)(y) −∇(f ◦ λ)(x) −∇2(f ◦ λ)(y)h

= 2
r̄∑

i=1

r̄∑

s=1
s 6=i

(∇f(λ(x)))ri − (∇f(λ(x)))rs

µi − µs
bi(y) · (bs(y) · h)

−2
r∑

j=1

r∑

l=1

ãjl(y)cj(y) · (cl(y) · h) +O(‖h‖1+γ)

= 2
r∑

j=1

r∑

l=1

[ω̃jl(x) − ãjl(y)]cj(y) · (cl(y) · h) +O(‖h‖1+γ) ,

where for 1 ≤ j, l ≤ r,

ω̃jl(x) :=





0 if ri−1 + 1 ≤ j, l ≤ ri
(∇f(λ(x)))j − (∇f(λ(x)))l

λj(x) − λl(x)
otherwise ,

(48)

i = 1, 2, . . . , r̄. Let δ(h) := 2
r∑

j=1

r∑

l=1

[ω̃jl(x)− ãjl(y)]cj(y) · (cl(y) ·h). Then, by the definition

of Cjl(y) and (46), for y ∈ D∇(f◦λ) with y /∈ S,

δ(h) =
∑

1≤j<l≤r

[ω̃jl(x) − ãjl(y)]Cjl(y)h

=
∑

1≤j<l≤r

[ω̃jl(x) − ãjl(y)]
d∑

i=1

h̃
(i)
jl v

(i)
jl (y) .
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We consider the following cases about δ̃(i)jl (h) := [ω̃jl(x) − ãjl(y)]h̃
(i)
jl , 1 ≤ j < l ≤ r,

1 ≤ i ≤ d:
Case 1): λj(x) = λl(x). In this case, by (48), Lemma 26, and part (iv) of Lemma 20,

δ̃
(i)
jl (h) = [ω̃jl(x) − ãjl(y)]h̃

(i)
jl = −ãjl(y)h̃

(i)
jl = O(‖h‖2) .

Case 2): λj(x) 6= λl(x). In this case, by the Lipschitz continuity of ∇f(·) and λ(·),

δ̃
(i)
jl (h) =

[
(∇f(λ(x)))j − (∇f(λ(x)))l

λj(x) − λl(x)
− (∇f(λ(y)))j − (∇f(λ(y)))l

λj(y) − λl(y)

]
h̃

(i)
jl

=
O(‖h‖)

(λj(x) − λl(x))(λj(y) − λl(y))
h̃

(i)
jl

= O(‖h‖‖h̃‖) .

Therefore, for any y → x with y ∈ D∇(f◦λ) and y /∈ S,

∇(f ◦ λ)(y) −∇(f ◦ λ)(x) −∇2(f ◦ λ)(y)h = O(‖h‖1+γ) .

This, by Lemma 6, shows that ∇(f ◦ λ) is γ-order G-semismooth at x.
“ =⇒ ” This direction can be done easily by following the proof in the second part of

Theorem 23. �

Remark 28 Theorem 27 is about the G-semismoothness of ∇(f ◦ λ) rather than the semi-
smoothness of ∇(f ◦ λ) as the directional derivative of ∇(f ◦ λ) is not involved. For the
spectral function over symmetric matrices, the latter has been done in [40]. It is not clear
to us whether the result in [40] holds in general for Euclidean Jordan algebras.

5 Conclusions

We have studied differential properties of Löwner’s operator and spectral functions in
Euclidean Jordan algebras. The approach consists of adaptations of known arguments for
symmetric matrices and developments of new technical results. Compared to our knowledge
of symmetric matrices, more research is needed for functions in Euclidean Jordan algebras.
We conclude the discussion of this paper by listing below a few interesting questions, which
we would like to know the answers in the near future.

Question 1. The eigenvalue function λ(·) defined over Euclidean Jordan algebras is
directionally differentiable. Can we derive formulas on the directional derivative of λ(·) as
was done in [27, Theorem 7] for the symmetric matrix case?

Question 2. Is that true as for the symmetric matrix case that for any given x, h ∈ V,
the eigenvectors of x+ εh can be chosen to be analytic at ε = 0 (cf. Remark 11)?

Question 3. For the symmetric matrix case, it is proved that C(·) is upper Lipschitz
continuous at x [6, 50, 51]. Can we extend this to Euclidean Jordan algebras? Lemma 26
presents a partial solution.
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Question 4. Can we use the results in [10, 11, 12] for the symmetric matrix case to
get explicit formulas for the higher-order derivatives of Löwner’s operator over Euclidean
Jordan algebras under sufficient differentiability of φ?

Question 5. The first- and second-order derivatives of the spectral function are estab-
lished. What can we say about the higher-order derivatives?

Question 6. Under what conditions about ∇f , ∇(f ◦ λ) is directionally differentiable?
This question is related to Question 2.

Question 7. The metric projection operator over symmetric cones are proved to be
strongly semismooth. What kind of differential properties can we say about the metric
projection operator over the closed hyperbolic cone (cf. Section 2.2)? Or less ambitiously,
over the closed homogeneous cone (cf. [8])?
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