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                                     Abstract
In this paper a special step discrete control problem is considered. The formulation of the

problem uses a parameter to control the switching point. By using Taylor’s increment methods first

and second order optimality conditions (in the sense of Pontryagin‘s maximum principle) will be

derived.

 

1.Introduction.
Among the various optimal control problems the discrete control problem is characteristical.

This problem arises e.g. by using numerical methods for solving continous control problems. But

discrete control problems have an independent means, too.

First consider an example of such a problem.

Example: (problem of a cosmic ship)

Let us project a cosmic ship consisting of N steps. The ship has a starting weight G and  the

weight H of  the rocket part. All steps have a gazeline. If one step of the rocket is pushed away the

rocket takes an additional speed v , which depends on the weight of  this step and the weight of

the remaining part of the ship. We have to distribute the  weight among the steps such that the speed

of the rocket at the end of the flight is maximal. To model this problem, let u(t) denote the weight of

the t-th step, t=1,...,N, where t=1 is the number of the last step. Let x(t) be the weight of the head of

the rocet together with the first t steps. Then we can write 

x(t)=x(t-1)+u(t), t=1,...,N.    (1)

The boundary values x(0)=G and x(N)=H denote the starting weight and weight of the rocket. The

additional speed gained if a step t is pushed away is 

))t(u),1t(x(f)t(v  ,  t=1,...,N.

 This additional speed depends on the weight u(t) of  the  t-th step and the weight x(t-1) of the re-
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maining part of the rocket. After pushing away all steps, the common speed will be 





N

1t

)t(u),1t(x(f)u(S )                    (2)

The aim of the problem is now to find controls  )N(u),...,2(u);1(u  for the rocket such that (2)

will be maximal subject to the conditions (1) and the boundary values. 

The theory of discrete optimal problems has been investigated by  Gabasov R, Kirillova F,

Mordukhovich B, Mansimov K, Propoy A, Kroxotka V, Minyuk S, Ashepkov T, and others.

In  the  paper [2] Moyseev has investigated necessary optimality conditions for the continous

control problem. The discrete anolog of Moyseev’s  problem has been investigated by Mansimov K.

[7]. To formulate the results of [7], consider the problem
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sx,tx,s,tF)u(S  min                                                        (3)

subject to 

  00100 x)t(x,1t,...,1t,tTt));t(u,t(f)t(x)t(A)1t(x  .      (4)  

  
Theorem (Mansimov K [7]): For optimality of an admissible control u(t) of the problem (3),(4) it is

necessary that the following inequalities hold:

  0)t(H
1t

tt
tv

1

0





 for all   Tt,Utv  .

Here ))t(u,t(f)t()t(H   is Pontryagin’s function and )t(H)t(v  is the increment of the func-

tion H(t).

In the case  of an nonsmooth objective function

   mintx)u(S 10        (5)

p,..,1i,0))t(x()u(S 1ii                                                                (6)

    00100 x)t(x,1t,...,1t,tTt));t(u,tx,t(f)1t(x                                     (7)

Tt,RU)t(u r                                                                                      (8)
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the following theorem holds.

Theorem (Mansimov K, 7 ): If the admissible velocities are convex along admissible processes,

then for optimality in problem (5) - (8) it is necessary that the following inequalities hold:

max {
∂i x t1
∂ l t1 , v 

:i∈J u}  for all Uv . 

Here l t , v =∑=t0

t−1
F ' t ,v f     and    ,tF   is an   nn   dimensional  matrix-func-

tion,  being the solution of the  following problem  [11]:

      xf,tF1,tF  ,   E1t,tF 

Second order  optimality conditions  for  control  problems can be found e.g.  in   Gabasov

R;Tarasnko  N. F [5].

In all these papers one-stage optimal control problems have been investigated. But some ap-

plied problems from economy, military work, chemistry are inherently multistage problems. This

means that there are several stages each being characterized by its own equations, controls, phase

coordinates, constraints, etc. Usually these stages are connected by each other by additional con-

ditions. Here problems will are considered where these connections are given by switching points

which are controlled by a given parameter. These multistage processes will be called step control

systems (or discrete systems with varying structure).

For example, consider a rocket with two typs of engines that work consecutively. The work

of the second engine depends on the first one. Morerover, the rocket moves from one controlling

area to a second one that changes all the structure (controls, functions, conditions, etc.).

This paper investigates step discrete control systems and aims to find necessary and sufficent

optimality condition of first and second order.
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2. Necessary optimality condition
Consider a controlling process, which is described by the following discrete system with varying

structure: 

          Minimize      



3

1i
iii txv,uS                                                                          (9)

subject to

         ,3,2,1i,1t,...,1t,tTt,tu,tx,tf1tx i1i1iiiiii                    (10)








 3,2i),v),t(x(g)t(x
)v(g)t(x

i1i1ii1ii

1101                                                                 (11)

   .3,2,1i,Tt,RUtu i
r

ii                                                (12)

Here, 3,2,1i,v i   are q-dimensional controlling parameters and q
i RV  , 3,2,1i  , i. е.

.3,2,1i,Vv ii                                (13)

In this problem,  nq
1 RR:g   are given at least twice continuously differentiable vector-valued

functions,  nqn
i RRR:g   are given at least twice continuously differentiable vector-valued

functions, i=2,3, nrn
i RRRR:f   are given continuous vector-valued functions, which are

at least twice continuously partially differentiable with respect to x, RR: n
i  are given at least

twice  continuously  differentiable  functions,  i=1,2,3,  iu (t):  R   r
i RU    are  controls  and

q
ii RVv   are  controlling parameters.  The  sets  ii V,U ,  are assumed to  be  nonempty and

bounded.       

In this problem we consider a discrete control problem with three steps. Equations (10) de-

scribe the systems behavior within each of the steps. Here,  tu  describes the control,  tx  the tra-

jectory of the system, and t the time. Equations (11) are used to fix the move of the system from one

to the next step. To do this switching parameters iv  are introduced and conditions (11) guarantee

that the trajectory 1ix   is „continued“ by ix . In problems without these switching points, as e.g.  in

one-step problems, we  can  apply  any  part  of  the conditions obtained by using Pontryagin’s prin-

ciple to derive optimality conditions. Hence, as it will be seen below, such conditions appear as part

of the necessary optimality conditions for problem (9)—(13), too. But new conditions for the swit-

ching points need to be added.

4



A  tuple           v,tuv,v,v,tu,tu,tu 321321   with  the  properties  (12)  and  (13)  is

called admissible control and the corresponding solution         txtx,tx,tx 321   of  the  sys-

tem  (9)-(13) is called  admissible  trajectory.  For the fixed admissible control   o0 v,tu  we in-

troduce the following notation:
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         32232
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where the unknown functions 0
i are defined below in (16).

Тhеоrem 1 12 : If the sets

       3,2,1i,Uu,u,txtf:U,txtf ii
0
iiiiii

0
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       3,2i,Vv,v,txg:V,txg ii1i
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are convex then for optimality of an admissible control   00 v,tu  in problem (9)-(13)  it is neces-

sary that the following conditions are true:

a) Discrete maximum principle for the control   3,2,1i,tu 0
i  :
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b) Discrete maximum principle for the controlling parameter 3,2,1i,v0
i  .
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It  is  known  that,  for  continuous-time  systems, an optimal  control  satisfies  Pontryagin´s

maximum  principle  without  the restrictive  convexity assumption. But in  the  discrete  maximum

principle  this does  not  hold  in general unless  a  certain  convexity  is  imposed  a priory  on  the

control  system. A clear  explanation  of  this  phenomenon  is  given  in  Pshenichnyi’s  book  [15],

where  it  is  shown  why  discrete  systems  require a  convexity assumption  for  the  validity  of

the  maximum  principle, while  continuous-time  systems  enjoy  it  automatically  due  to  the  so-

called  “hidden  convexity“.

In the  control problem one  of  the methods  to  get  necessary optimality  conditions is the

increment formula. For  this  we  have  to  calculate the increment  formula, to  find  a conjugate

system  for the corresponding problems and to use an anolog of needle variations in the  continuous

case. Then the  rest  of  the  increment  formula can be estimated using the step method.

      

Proof: Using Taylor’s formula we can write the increment of the functional at an arbitrary

     admissible pair   v,tu   as
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Here   8,..,1i,o i   are defined by the expansions
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Now taking   ,3,2,1i,t0
i   as solutions of the following linear difference equations
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the increment formula (14) reduces to a simpler one:
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Let    oo v,tu be an optimal pair, and assume that the sets of admissible velocities are convex

along the process     tx,v,tu  , i. e., the sets
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The  increment  (18)  introduces  an  increment  of  the  solution   tx i  which  is  denoted  by

  3,2,1i,;tx i  . 

Using the step methods we can prove    11i Z;tx , ii tTt  , 3,2,1i  . Using these esti-

mates in (17) it can easily be seen that the necessary optimality condition   0v,uS 00   implies
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the  conditions of the theorem.                                               q.e.d.

 

It should be noted that the system of linear difference equations (16) is the conjugate system

for the problem (9)-(13).

3. Special cases

Under additional assumptions the formulas in Theorem 1 reduce to easier accessible forms.  As ex-

ample  consider  the  situation  where  some  of  the  controls  are  fixed,  i.  e.  consider   the  case

  0tu1  ,   0tu i  , 3,2i  , 0v i  , .3,2,1i   Other cases can be treated in an analogous

way.

Then the increment formula in the proof of Theorem 1 takes the form:
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where by definition,
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Considering (10), (11)   ,3,2,1i,tx i   is a solutions following linearizing equations:
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Interpreting systems (20)-(22) as linear nonuniform difference equations in   tx i  (cf. the discrete

analog of Cauchy problem), respectively, we obtain the following result, using the representation

formulas for the solutions to linear nonuniform difference equations  11
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Here   ,3,2,1i,,tFi    are  nn -matrix functions being solutions of the following problem
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Now, inserting (26) into (25) the following formula is obtained:
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4. Necessary optimality conditions using the linearizing principle

If  the functions ii g,f  have also partial derivatives with respect to ii v,u  , respectively, and

the sets iU  and iV  are convex, then another necessary optimality condition can be obtained using

the linearizing maximum principle of Pontryagin. The proof of the next theorem is to a large extend

similar to the proof of Theorem 1 and is omitted. For it the interested reader is referred to the thesis
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If the sets  3,2,1i,V,U ii   are open, also using Euler’s equation can be used to derive necessary

optimality conditions:

Theorem 3 12 (An analogue of Euler equation): If the sets ii V,U  are open, then for  optimality of
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the pair   v,tu 0
 , it is necessary that following equations hold

1) 
  ,0

u
tH

i

i 



 iTt , 3,2,1i  .

2) 
   0

v
1t,vL

1

0
0
1

0
11 



 ,

3) 
     .3,2iallfor,0

v
1t,v,txL

i

1i
0
i

0
i1i

0
1ii 


   

The proof is again omitted. The interested reader can find it in the thesis [12].      

 

 5. Analysis of singular control

5.1. Necessary optimality conditions using Pontryagin’s maximum principle

If the first order necessary optimality condition degenerates in the sense that we have an

equation for all admissible controls,  the admissible controls are singular in the sense of Pontrya-

gin’s maximum principle. Then, the first-order necessary optimality conditions should be replaced

by second-order ones. To derive these conditions suitable changes in the increment formula are hel-

pful.

Definition.  An admissible control   00 v,tu  is called singular in the sense of Pontryagin‘s maxi-

mum principle if the following relations hold:

    0tH
1t

tt
itu

i

1i
i




 

, for all   3,2,1i,Tt,Utu iii 

   01t,vL 0
1

0
11v1

  for all 11 Vv 

     01t,v,txL 1i
0

i
0
i1i

0
1iivi

   for all 3,2i,Vv ii 

It is clear that the necessary optimality conditions for problem (9)-(13) are degenerate in the

singular case. Therefore, they cannot detect nonoptimality of an admissible pair (u(t),v(t)). Thus,

there is some need for new necessary optimality conditions. Singular cases for various control sys-

tems were studied by many authors (see e.g. [5,7]). However, to the best of our knowledge, they

have not been studied for step systems (both with continous and discrete time).
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The proof of the following theorem uses the ideas of the proof of Theorem 1. It starts with

the increment formula for the objective function, too. 

To explain the increment formula consider the special case of Section 3 i.e. let the controls

3,2,1i,v,u,u i32   be fixed and 111 TtU)t(u  . Then, the increment formula reads as 
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Here we used  )n,n( -dimensional matrix functions  s,K1   and  ,tF1  defined via
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21
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If the controls 3,2,1i,v,u,u i32   are not fixed but restricted to the respective sets, the in-

crement formula needs to be adapted by adding terms for these functions. These terms can be ex-

pressed using similar matrix functions   s,K i   and   ,tFi  for i=2,...6. These formulas can be

found in the Appendix. The increment formula  above in the general case is obtained by adding five

times the first three terms on the right hand of the formula (using the correct indices). 

Тhеоrem 4 12 . In the case of singular control and if the convexity assumptions of Theorem 1 are

satisfied then the following conditions are necessary for optimality of an admissible singular control

for the problem (9)-(13):

            ,0f,tF
x
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ts
iuiiu
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i
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for all   ii Utu  , 3,2,1i  .

2)      0vgKvg 0
1v4

0
11v 11

 , for all 11 Vv 

3)       0vtxgKvtxg 0
i1i

0
1iiv3i

0
i1i

0
1iiv ii

  , for all .3,2i,Vv ii 

5.2. Necessary optimality condition using linearizing maximum principle  

If the linearizing maximum principle degenerates for the problem (9)-(13) in the sense that

we have an equation for all admissible controls in the conditions of Theorem 2 then the admissible

controls are called quasisingular.  In that  case the first  order necessary conditions in Theorem 2

should be replaced by second order ones. For this we need twice continuously partial differentiabili-

ty of if  with respect to controls. We drop the proof since it uses mainly the ideas of the proofs of

Theorems 2 and 4.

Theorem 5 12 :  If the sets  V i and  U i are convex, then for optimality of the quasisingular

control   00 v,tu  , it is necessary that the following inequalities hold:

                     

               

            ,0tutu
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for all   ii Utu  , .3,2,1i 
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v
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v
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1
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1

0
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2
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11

1

0
11

4

1

0
110

ii 











 , 

for all 11 Vv  .  

3) for all ii Vv   3,2i   :

v i−v i
0 '

∂ g1 xi−1
0 t i−1 , vi

0
∂ vi

K i3
∂ g i  xi−1t i−1 , vi

∂ v i
vi−vi

0

v i−v i
0 '

∂2 Li xi−1
0 t i−1 , v i

0 ,i t i−1−1
∂ vi

2 vi−v i
0≤0

Conclusion.

In this paper have given some results for necessary optimality conditions for discrete control
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systems with varying structure. These problems have important applications, one of them is the con-

trol of a rocket described at the beginning of the paper. The conditions formulated in the case of re-

gular control include conditions being based on Pontryagin’s maximum principle, the linearizing

maximum principle and one using Euler’s equations. After that we investigated singular and qua-

sisingular controls in the sense of  Pontryagin‘s maximum principle.

The step control problem discussed in this paper is one possible (and from the point of view

of applications interesting) generalization  of control  problems. Other generalizations  are not  in-

vestigated as e.g. problems with an unknown switching time. In the continuous-time case necessary

optimality  conditions  can be found in [18]  but  in  the discrete-time case they seem not  to  be

discussed, yet.

Summing  up  (discrete-time)  step  control  problems  rise  challenging  questions  and  need

further investigation in the future.
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  3,2,1i,,tFi    are n , n -matrix functions and solutions of the problem

     
1

1
ii x

f,tF1,tF



 ,

  3,1i,E1t,tFi 

19


