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Abstract
In this paper a special step discrete control problem is considered. The formulation of the
problem uses a parameter to control the switching point. By using Taylor’s increment methods first
and second order optimality conditions (in the sense of Pontryagin‘s maximum principle) will be

derived.

1.Introduction.

Among the various optimal control problems the discrete control problem is characteristical.
This problem arises e.g. by using numerical methods for solving continous control problems. But
discrete control problems have an independent means, too.

First consider an example of such a problem.

Example: (problem of a cosmic ship)

Let us project a cosmic ship consisting of N steps. The ship has a starting weight G and the
weight H of the rocket part. All steps have a gazeline. If one step of the rocket is pushed away the
rocket takes an additional speed Av, which depends on the weight of this step and the weight of
the remaining part of the ship. We have to distribute the weight among the steps such that the speed
of the rocket at the end of the flight is maximal. To model this problem, let u(t) denote the weight of
the t-th step, t=1,...,N, where t=1 is the number of the last step. Let x(t) be the weight of the head of
the rocet together with the first t steps. Then we can write

x(ty=x(t-1)+u(t), t=1,...,N. (1)
The boundary values x(0)=G and x(N)=H denote the starting weight and weight of the rocket. The

additional speed gained if a step t is pushed away is
Av(t) =f(x(t=1),u(t)), =1,..N.

This additional speed depends on the weight u(t) of the t-th step and the weight x(t-1) of the re-



maining part of the rocket. After pushing away all steps, the common speed will be

S(u) =§f<x<t—1),u<t)> @

The aim of the problem is now to find controls {u(l);u(Z),...,u(N)} for the rocket such that (2)

will be maximal subject to the conditions (1) and the boundary values.

The theory of discrete optimal problems has been investigated by Gabasov R, Kirillova F,
Mordukhovich B, Mansimov K, Propoy A, Kroxotka V, Minyuk S, Ashepkov T, and others.

In the paper [2] Moyseev has investigated necessary optimality conditions for the continous
control problem. The discrete anolog of Moyseev’s problem has been investigated by Mansimov K.

[7]. To formulate the results of [7], consider the problem

t-1 t;-1

S(w) =Y > F(t,s,x(t),x(s)) —min 3)
subject to
x(t+1) = AM)x(t) + f(t,ut); teT=1{t,,t, +1,..,t, —1}x(t,)=Xx,. @)

Theorem (Mansimov K [7]): For optimality of an admissible control u(t) of the problem (3),(4) it is

necessary that the following inequalities hold:

t,-1

> A HMZO0 forall v(t)eU,teT.

t=t,

Here H(t) =Y (O)f(t,u(t)) is Pontryagin’s function and Av(t)H(t) is the increment of the func-

tion H(t).

In the case of an nonsmooth objective function

S, (u) = @(x(t, ) > min )
S (u)=® (x(t,))<0, i=L..p ©)
x(t+1)=f(t,x(t)u(t));te T ={t,,t, +1...t, = 1}x(t,) =X, )
u(t)eUcR", teT ®)



the following theorem holds.

Theorem (Mansimov K, [7]): If the admissible velocities are convex along admissible processes,

then for optimality in problem (5) - (8) it is necessary that the following inequalities hold:
0d,(x(t,))

NN .
S1(t.) i€J(u)} forall veU

max |

Here (¢, V)ZZ:, F'(t,7)A, f(t) and F(t,‘t) isan 1N XN dimensional matrix-func-

tion, being the solution of the following problem [11]:

F(t,t—1)=F(t,7)f [1] , F(t,t—1)=E

Second order optimality conditions for control problems can be found e.g. in Gabasov

R;Tarasnko N. F [5].

In all these papers one-stage optimal control problems have been investigated. But some ap-
plied problems from economy, military work, chemistry are inherently multistage problems. This
means that there are several stages each being characterized by its own equations, controls, phase
coordinates, constraints, etc. Usually these stages are connected by each other by additional con-
ditions. Here problems will are considered where these connections are given by switching points
which are controlled by a given parameter. These multistage processes will be called step control

systems (or discrete systems with varying structure).

For example, consider a rocket with two typs of engines that work consecutively. The work
of the second engine depends on the first one. Morerover, the rocket moves from one controlling

area to a second one that changes all the structure (controls, functions, conditions, etc.).

This paper investigates step discrete control systems and aims to find necessary and sufficent

optimality condition of first and second order.



2. Necessary optimality condition

Consider a controlling process, which is described by the following discrete system with varying

structure:
Minimize S(u,v)=>0(x(t,)) ©)
=

subject to
X (t+1)=1(t,x,(t)u,(t)), teT ={t_,t_ +1..,t -1}, i=123, (10)

X, (t)=g,(v,) | } an
x(t )=g(x_(t )v), 1=23
u(t)eU cR', teT, i=1,23. (12)
Here, V,,i=1,2,3 are q-dimensional controlling parameters and ¥, < R*, i=1,2,3 i. e.
v.eV,1=123. (13)

In this problem, g :R* — R" are given at least twice continuously differentiable vector-valued
functions, g, :R" xR —> R" are given at least twice continuously differentiable vector-valued
functions, i=2,3, f, : R xR" xR" — R" are given continuous vector-valued functions, which are

at least twice continuously partially differentiable with respect to x, @, : R" — R are given at least

twice continuously differentiable functions, i=1,2,3, u,(t): R U, cR" are controls and
v. € V. cR" are controlling parameters. The sets U,,V,, are assumed to be nonempty and
bounded.

In this problem we consider a discrete control problem with three steps. Equations (10) de-

scribe the systems behavior within each of the steps. Here, u(t) describes the control, X(t) the tra-

jectory of the system, and t the time. Equations (11) are used to fix the move of the system from one

to the next step. To do this switching parameters V. are introduced and conditions (11) guarantee

that the trajectory X, , is ,,continued* by X,. In problems without these switching points, as e.g. in

one-step problems, we can apply any part of the conditions obtained by using Pontryagin’s prin
ciple to derive optimality conditions. Hence, as it will be seen below, such conditions appear as part

of the necessary optimality conditions for problem (9)—(13), too. But new conditions for the swit-

ching points need to be added.



A tuple (u](t),uz(t),u3(t),vl,VZ,V3)E(u(t),V) with the properties (12) and (13) is

called admissible control and the corresponding solution (Xl(t),x 2(‘[),X3(t))5 X(t) of the sys-

tem (9)-(13) is called admissible trajectory. For the fixed admissible control (u ’ (t),V 0) we in-

troduce the following notation:

Hi(t,xi,u,‘I’.O):‘{’.O/ (t)-f.(t,x,,u,)s
A H) = H (6 (0, (0,90 0)- H 6x! (a9 ()
OH,[t] _oH, (tX(t)auo() '(t) Aglv]=g ) -g )

1

S
%

A, (x! () v!) =g (xl Jv) =g (e (e ) v i = 2.3
L,(v 1,‘1’#’(t —1)) vt - ) (v )

L, (x, (v, (1, - 1) = & (x,(t,)v,)
L3(X2(tz) Vs, 3( D)= ( )gg( (6 )v,):

where the unknown functions ¥°, are defined below in (16).

Theorem 1[12]: If the sets

fi(tixio(t) U. ) { Ta, —f( °(t),u )ui eU}, i=123

g (V)=la,:a,=g,(v))v, eV}

gi(x?_l (t.)V. ) {(x Lo, = ( ) Vv, € V} =23

are convex then for optimality of an admissible control (u°(t),v" ) in problem (9)(13) it is neces-
sary that the following conditions are true:

a) Discrete maximum principle for the control u’(t),i =1,2,3:

-1
2 Ay Hill]<0, forait u,(t)e U, i=123,teT

1=t

b) Discrete maximum principle for the controlling parameter v;,i=1,2,3.

mae 1w (i = )= 1w e 1)

maxLl(”( D s =)= L (e (6 v 0y —1))i=2.3

v;el;



It is known that, for continuous-time systems, an optimal control satisfies Pontryagin’s
maximum principle without the restrictive convexity assumption. But in the discrete maximum
principle this does not hold in general unless a certain convexity is imposed a priory on the
control system. A clear explanation of this phenomenon is given in Pshenichnyi’s book [15],
where it is shown why discrete systems require a convexity assumption for the validity of
the maximum principle, while continuous-time systems enjoy it automatically due to the so-
called “hidden convexity*.

In the control problem one of the methods to get necessary optimality conditions is the
increment formula. For this we have to calculate the increment formula, to find a conjugate
system for the corresponding problems and to use an anolog of needle variations in the continuous

case. Then the rest of the increment formula can be estimated using the step method.

Proof: Using Taylor’s formula we can write the increment of the functional at an arbitrary
admissible pair (11 (t), v ) as

S(u(t),v)—-S(u’(t),v")= AS(u’,v")

! !

-5 D) - £ S -5 w022

—A; L( 1’\Pl (to_l))_szLz(Xl( )Vzﬂqu (t —1))—AV3L3<X2(1;2),V?,‘Pf(tz—1))—
5wt A, H[]

3% ,(t)+1ijf(t,)az"%(X?(ti))Ax,(t,)_ljl a0 By (o)-

2
i=l t=t,, 1 25 Y aXi Y 2=

oL (xf(tl),vz,wz(tl ~Dpg (1) AL Vv )
aXl 1 1 aX]

. lAX'(t \a LZ(XI (tl )>V2 >V, (t1 - 1))AX1 (tl)_ 6L3 (Xz(tz)’ Vi Ws (t2 — 1))AX2(t2 ) —

27 ox ox,
A_ L' (x° R -1 2 0 0 30 _
_6 v 3(X2(t2)3V39\V3(t2 ))sz(tz)—lAX;(tz)a L3(X2<t2),V;a\|13(t2 1))AX2(t2)+
0X, 2 0x;
+n1(u°,v°;Au,AV), (14)

where by definition

n(uv' s av)= 3o, (1) )= S, (4, (0)°)-o. (4,07 )T (ax, ()7 )-

t=t, t=t; t=t,



Ax (t)-o. QAXl(tl)2)—08QAX2(t2)2)—;AX;(t2)x

ZA, L 0 0 0 _1 ZA,L 0 0 0 _1
a v 2(X1(t1)9V2’W2(t1 ))AX (t )—lAX'(t \a V3 3(X2(t2)7V39\|!3(t2 ))AX (t )
2\"2 ) 3\"3) 8X32 3\"3

(15)

Here O, (), 1=1,..,8 are defined by the expansions

o5 1)) P e ) L) )

o, (A%, (t,) ) =123,

B0 (011, (b 0)- B () (o) - 21X w0

Ax,(t)

N ;sz(t)‘aZHi(taX?(gz?i (t)a\V?(t))AXi(t)Jr qu

I

),i: 1,2,3.,

L3, (002, = D)= L bty — )= L=
2)’

L3(i2(tz):v3>\|’2(tz B 1))—L3(X2(t2),v3 »‘Vs(tz _1)): GL; (Xg(tz),é\)’:,\lfg(tz _1))sz(tz)+

2

) PASOI D ) )

L) PO g ) o i )

1

Now taking V.’ (t), 1=1,2,3, as solutions of the following linear difference equations

oL, (x}(t, L vewi(t, ~1))
0X, ox,
w(t, _1):_8(P2(X2(t2))+ L, (x%(t, b v2,yi(t, —1))

(16)

Y, —1):_5(P3(;<X§(ts))

the increment formula (14) reduces to a simpler one:



)82L2(X?(t1)é;/§9\|/2 (tl B 1))Axl(tl)

aAVSLa(Xz(tza);;G ’\V3(t2 _1))AX2 (tz)—;AX; (tz)a L3 (X2<t2 )é:;9W3(t2 _1))AX2(t2)+

+1’]1(110,V0;AU.,AV). (17)
Let (u °(t),v °Jbe an optimal pair, and assume that the sets of admissible velocities are convex
along the process (u(t),v,x(t)) , i. e., the sets

f. (t,xio(t),Ui)z {ai o, =1 (t,xio(t),ui),u eU, }, 1=1,23,

g/(V)={o, ra, =g, (v ) v, e Vi},

o (61,1, V)= o, = (0 (v by e v 2

are convex. Let € € [0,1] be an arbitrary number. Denote the increment of the optimal pair by

Au (t;e)=u,(t;e)—u’(t), teT, i=1,23, (18)
Av,(e)=v,(e)-v',1=123.

Then, by convexity, for each u.(t)eU, v.eV, teT, i=123, there are
u(t,e)e U, v,(e)e V., i=12,3 such that

A, Eltl=eA, £t i=12,3,

A, & (v)=¢rg),

A, el (v )=en, g (7 (1, v ) =23,

The increment (18) introduces an increment of the solution X i(t) which is denoted by

{Ax,(t;e)i=123]} .

Using the step methods we can prove HAXi(t;S)‘ <Z.k,teT Ut, 1=123. Using these esti-

mates in (17) it can easily be seen that the necessary optimality condition AS(uO,VO)Z 0 implies

8



the conditions of the theorem. g.e.d.

It should be noted that the system of linear difference equations (16) is the conjugate system
for the problem (9)-(13).

3. Special cases
Under additional assumptions the formulas in Theorem 1 reduce to easier accessible forms. As ex-

ample consider the situation where some of the controls are fixed, i. e. consider the case
Aul(t) #0, Aui(t)z 0,1=23, Av, =0, 1=1,2,3. Other cases can be treated in an analogous

way.

Then the increment formula in the proof of Theorem 1 takes the form:

as, (u",v")=5((, . ul,ul L v*) - S(u’,v*)=

O’H,[t]

-1 1 3 , 8 :) |
~2AH()+ T Ax(L) ‘Pfgxz( t), Ax (t)- ;tZA x/(t)¢ hlt] e Ax,(¢)
_lAX;(t)a Lz(X ( ) Vz,\P ( )) ( ) AX;(tz)é L3(X2(t2),V3,‘P3 (t2 _1))AX2(t2)
2 Ox; 2 ox’
w1 0A, H[t]
_ZéxAxl(t)Jr”l(“OaVO»Aul)a (19)

where by definition,
n, (uo, VO,Aul): n, (uO,VO,(AuI ,0,0),O).

Considering (10), (11) Ax, (t), 1=1,2,3, is a solutions following linearizing equations:

Ax, (t+1):a;‘([t]Axl(t)+Aulfl[t]+oc1(t;Au1)

Axl(to):O (20)
a4 )= (04 o (a0)

0X,
Ax,(t,)= agQ(ng‘)’VQ )AX1 (t,)+o,(Au,), @1)



Ax3(t + 1): a;;[t]Ax3 (t) + 0c4(t;Aul ),

3

Ax,(t,)= 2 (Xé}(:Z)’V3)AXZ(t2)+ocS(Aul) o)

2

where by definition

OA- f'lt
Q, (t,Aul):iu‘ 1[ ]

), ocz(t;Au1 ): OIOQ‘AXZ(t)( ),

) a4(t;Aul)=o,2Q\AX (t) ), o (Au,)zoI (HAXz(tz)H)'

Ax, (1) + o, (|Ax, (t)

o, (Au,)=0, (HAX (t, )

Here 0O, () 9,..,13 are determined, respectively, from the expansions:
_ of \t,x,(t)u,
£, (0 0) - cx(0hon )« DX OOy 4 0, ),

1

0 0)- £ o ()= TSR s o (av, 0),

!

e (5, (0) -, (0 (6 )t )= BT V) 6y o ax (1)

)
I R P T L GO PR Y (PO )

)

(b (0)- B0y = B OV oo (a0

Interpreting systems (20)-(22) as linear nonuniform difference equations in X, (t) (cf. the discrete

analog of Cauchy problem), respectively, we obtain the following result, using the representation

formulas for the solutions to linear nonuniform difference equations [1 1]

Ax, ()= LE(L 08, £ [+ R utlos (80, ) = SR oA, £+ (bau,), @3

=ty =ty =ty

Ax, (t)=F.(t,t, —1)8g2(xé)((t‘lV2)Axl(tl)+ E(t,t, —1)o,(Au, )+

1

+ S F(4 7o, (nAu,), (24)

T=t;

Ax3(t):F3'(t,t2—1)ag3( ) o () Bt - o(Au )+

2

10



+ SE(t o, (1,Au).

T=t,

Here F (t, T ), 1=1,2,3, are (nxn) -matrix functions being solutions of the following problem

E(t,t —1)=Fi'(t,r)5£;([r]

F(t,t—1)=E,i= 1,2,31

where E denotes the unit matrix. Inserting (23) into (24), we derive

Ax ()= S (et -1)°% ("gfl)’vz)n (4,08, £ )+ o (A0,

1

where by definition

t—1 0 0
o (tau )= SE(c _1)5&("(;}31)”2)151 (t O (wAu )+ F (6.t — oo, (Au, )

‘E:to 1

+ in'(t,r)ocz(r;Aul),

1=t

Now, inserting (26) into (25) the following formula is obtained:
Ax, (t)=
0

EF;(tbtz - 1) ag3 (Xé(:z ))VS )Fz (tz ot - 1) agZ(Xé)(:l )’VZ )Fl (tlat)Aal fl [T]+ as(t; Aul)’

=t,

2 1

where by definition

o, (t:Au, )= F (1., —1)08 (Xé)((tZ)’V3)oc7(tz;Aul)+ Ft.t, 1o (bu, )+

2

+ S E(t ), (tAu,).

T=t,

Using the abbreviations

Rl(t,’C)Z le(t,tl _ 1)8g2(X1 (tl )’ v, )Fl(tnr)’

R,(t.7)=F/(t, —1)ag3(xz(tzlv3)1:

the formulas (23), (26) ,(27) reduce to

11

(25)

(26)

27)



Ax (t)= tZ_l“lﬂ'(‘[,7:)Aﬁlf[1:] +a,(t;Au,)

T=tg

Ax, ()= SR (LA, 1]+ o, (t:Au,)

=t

Ax, ()= SR, (LOA, £ [c]+ o, (t:Au,)

T=to

4. Necessary optimality conditions using the linearizing principle

If the functions f.,g. have also partial derivatives with respect to U, V. , respectively, and

the sets U, and V. are convex, then another necessary optimality condition can be obtained using

the linearizing maximum principle of Pontryagin. The proof of the next theorem is to a large extend

similar to the proof of Theorem 1 and is omitted. For it the interested reader is referred to the thesis

[12].

Theorem 2 [12](Linearizing maximum princple). If the sets U, V, are convex,then ,for the opti-

mality of the pair (u ’ (t), A ), it is necessary that following inequalities hold:

1 tilaglu;[t](ui(t)— u’(t))<0

1

forall u,(t)e U, , teT,i=1,23.

8L:(V?9\|j?(t0 _1))(V _ V0)< 0
ov 1 a

1

2)

forall v, € V,.

aLi’(X?—l(ti—l )’ Vio’lPiO (ti—l -~ 1))
°) ov,

1

(v, —v")<0, forallv, e V,,i=23.

If the sets U., V. ,1=1,2,3 are open, also using Euler’s equation can be used to derive necessary

optimality conditions:

Theorem 3 [12](An analogue of Euler equation): If the sets U, V. are open, then for optimality of

1

12



the pair (u ’ (t), \% ) , it 1s necessary that following equations hold

agluii[t]:(), tETi, i:15253'
oL, (vi,y!(t, -1))
ov,

aI'Ji (X?—l (ti—l )’ V10 > lIIio
ov,

1

=0

2)

b

(ti—l — 1)) =0, forall 1=273.

3)

The proof is again omitted. The interested reader can find it in the thesis [12].

5. Analysis of singular control
5.1. Necessary optimality conditions using Pontryagin’s maximum principle

If the first order necessary optimality condition degenerates in the sense that we have an
equation for all admissible controls, the admissible controls are singular in the sense of Pontrya-
gin’s maximum principle. Then, the first-order necessary optimality conditions should be replaced

by second-order ones. To derive these conditions suitable changes in the increment formula are hek

pful.

Definition. An admissible control (u0 (t),VO) is called singular in the sense of Pontryagin‘s maxi-

mum principle if the following relations hold:

“ZlAui(t)Hi [t]=0, foranl u (t)e U, teT, i=12,3

AVILI(V?,"PIO('[ - 1)): 0 forall v, €V,

AviLi(X?—l (ti—l )av?aqjio (ti—l - 1)): 0 for all v,eV,i=23

It is clear that the necessary optimality conditions for problem (9)-(13) are degenerate in the
singular case. Therefore, they cannot detect nonoptimality of an admissible pair (u(t),v(t)). Thus,
there is some need for new necessary optimality conditions. Singular cases for various control sys-
tems were studied by many authors (see e.g. [5,7]). However, to the best of our knowledge, they

have not been studied for step systems (both with continous and discrete time).

13



The proof of the following theorem uses the ideas of the proof of Theorem 1. It starts with

the increment formula for the objective function, too.

To explain the increment formula consider the special case of Section 3 i.e. let the controls

u,,u,,v,,1=123 be fixed and u,(t) € U, V t €T,. Then, the increment formula reads as

Aﬁ, S(uo Vv’ ): _tlzlAu.Hl [t]

t=t,

XZA f[r]K rsAf ]Z{HO ]F(tTAf H+anAu)

rtosto t=ty

Here we used (N,Nn)-dimensional matrix functions K (‘E,S) and F| (t,‘c) defined via
J

w o O°H [t t
K= $ Eo) 2” F(to)+ SR R o)
t:max(t,s)«tl a t=t, aXZ
o 2 OHt] v e (x!(t)) L, (x!(t). v wi(t, — 1)

R'(t, IR t, _1:;1 t, I\ \"J/) 2\ %\ 20 W2\t F1 tl’ _
s ) o) PO ¢ (3
—R{(tz,r){a (Pz(xj(tz»—a L3(X2(t2)’vj’\"3 . _1))}R1(t2,s)—R;(t3,r)a * (Xi( bl R, (t,,s)

0x, 0X, 0X,

and

F(t,t—1)=F/(t,1) 8;;([1] F(t,t—1)=E,

9

1

0

R (9= Flug, ) B0 O o)

1

If the controls u,,u,,V,,1=1,2,3 are not fixed but restricted to the respective sets, the in-

crement formula needs to be adapted by adding terms for these functions. These terms can be ex-

pressed using similar matrix functions Ki(’t,s) and E(t,‘t) for 1=2,...6. These formulas can be

found in the Appendix. The increment formula above in the general case is obtained by adding five

times the first three terms on the right hand of the formula (using the correct indices).

Theorem 4 [12]. In the case of singular control and if the convexity assumptions of Theorem 1 are

satisfied then the following conditions are necessary for optimality of an admissible singular control

for the problem (9)-(13):

1) z tiA [t ‘CS)A f ]+2§[t1 aA&x [t] F(t,7)A, f[r]}<0

T=tj_| S=t;_; t=ti| T=ti

14



forallu(t) =1,23.
2) A g(V )KA g( )S(),forallVIEV1

3)Avig;(x?( ) )KMA g( 11(11) )<0 forall v. e V,,1=23.

5.2. Necessary optimality condition using linearizing maximum principle

If the linearizing maximum principle degenerates for the problem (9)-(13) in the sense that
we have an equation for all admissible controls in the conditions of Theorem 2 then the admissible
controls are called quasisingular. In that case the first order necessary conditions in Theorem 2

should be replaced by second order ones. For this we need twice continuously partial differentiabil+

ty of f. with respect to controls. We drop the proof since it uses mainly the ideas of the proofs of
Theorems 2 and 4.

Theorem 5[12]: If the sets ¥V, and U, are convex, then for optimality of the quasisingular

control (uo (t), VO) , 1t is necessary that the following inequalities hold:

S (ol 0@ 0w a
D5 S 0-uw) O ) T 0w+ A, K, £+

i-1 i i

28] 8 000 5 k00 T 0)-w0)|

1

2 (v, = )r og, Vf)K4 8%\(/\/?)( Y (v, —vj’)l o'L, (v, wi(t, - 1))(Vl _v1)<0

forall v, e V,.
3) forall v,e V. 1=23:

8g1( ( l_ 1) VO)K agi(xi—1(ti—1)rvi)

(V —-V; ) B, i+3 Bv, (vi_vi)
oL (x" (¢t ), v, V. (¢, —1
+(Vi_v?), l(xl—l( 1—1) Vzl 1( i—1 >)(V —V?>S0
Vi
Conclusion.

In this paper have given some results for necessary optimality conditions for discrete control
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systems with varying structure. These problems have important applications, one of them is the con-
trol of a rocket described at the beginning of the paper. The conditions formulated in the case of re-
gular control include conditions being based on Pontryagin’s maximum principle, the linearizing
maximum principle and one using Euler’s equations. After that we investigated singular and qua-
sisingular controls in the sense of Pontryagin‘s maximum principle.

The step control problem discussed in this paper is one possible (and from the point of view
of applications interesting) generalization of control problems. Other generalizations are not in-
vestigated as e.g. problems with an unknown switching time. In the continuous-time case necessary
optimality conditions can be found in [18] but in the discrete-time case they seem not to be
discussed, yet.

Summing up (discrete-time) step control problems rise challenging questions and need

further investigation in the future.
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_82L3(X(2)(t2)’v(3)’wg(tz —1)) ® (t )—CD'(t )az(Ps X,
8X; 1 2 3 32
K :tiF’(t,t —1)82H2[t]F(t,t —1)+f®’(t)azH3[t]
5 - 2 1 6’X§ 2 1 - 3 axz
—Fzr(t,t] _1)|:a (Pza(zzz(tQ))_a L}(Xz (tz)a’:(/ja‘y}(tz _1))j|F (t t _1)_q)!(t3)a(m(xg(tg))¢3(t3),

K6 = fF;(tatz o l)a;z[t]Fs (t9t2 - 1)_F3,(t3at2 _1)WMF3(tzatz _1)’

t=t,

Here by definition
R,(t7)=F,(tt, el )
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0

CD3(t):F3(t,t2—l)ag3(xg)(:2)’v3)F2(t (1)

2571
2

FE (t, ’C),i =1,2,3 are (n,n) -matrix functions and solutions of the problem

P (t,r—l):Fi(t,r)a;([r],

1

F(t,t—1)=E,i=1,
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