
STRENGTHENED SEMIDEFINITE BOUNDS FOR CODES

MONIQUE LAURENT

Abstract. We give a hierarchy of semidefinite upper bounds for the maximum size
A(n, d) of a binary code of word length n and minimum distance at least d. At any
fixed stage in the hierarchy, the bound can be computed (to an arbitrary precision)
in time polynomial in n; this is based on a result of Schrijver [12] about the regular ∗-
representation for matrix ∗-algebras. The Delsarte bound for A(n, d) is the first bound in
the hierarchy, and the new bound of Schrijver [11] is located between the first and second
bounds in the hierarchy. While computing the second bound involves a semidefinite
program with O(n7) variables and thus seems out of reach for interesting values of n,
Schrijver’s bound can be computed via a semidefinite program of size O(n3), a result
which uses the explicit block-diagonalization of the Terwiliger algebra. We propose two
strengthenings of Schrijver’s bound with the same computational complexity.

1. Introduction

We consider the problem of computing the parameter A(n, d), defined as the maximum
size of a binary code of word length n and minimum distance at least d. With P denoting
the collection of all subsets of {1, . . . , n}, we can identify code words in {0, 1}n with their
supports; so a code C is a subset of P and the Hamming distance of I, J ∈ P is equal to
|I∆J |. The minimum distance of a code C is the minimum Hamming distance of distinct
elements of C. If we define the graph G(n, d) with node set P, two nodes I, J ∈ P being
adjacent if |I∆J | ∈ {1, . . . , d− 1}, then a code with minimum distance d corresponds to a
stable set in the graph G(n, d). Therefore, the parameter A(n, d) is equal to the stability
number of the graph G(n, d), i.e., the maximum cardinality of a stable set in G(n, d).

Schrijver [11] introduced recently an upper bound for A(n, d) which refines the classical
bound of Delsarte [1]. While Delsarte bound is based on diagonalizing the (commutative)
Bose-Mesner algebra of the Hamming scheme and can be computed via linear program-
ming, Schrijver’s bound is based on block-diagonalizing the (non-commutative) Terwiliger
algebra of the Hamming scheme and can be computed via semidefinite programming. In
both cases the bounds can be formulated as the optimum of a (linear or semidefinite) pro-
gram of size polynomial in n (size O(n) for Delsarte bound and size O(n3) for Schrijver’s
bound).

Finding tight upper bounds for the stability number α(G) of a graph G = (V,E) has
been the subject of extensive research. Lovász [7] introduced the theta number ϑ(G),
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which can be computed via the semidefinite program:

(1)
ϑ(G) := max

∑

i∈V Xii s.t. X = (Xij)i,j∈V ∪{0} � 0, X00 = 1,
X0i = Xii (i ∈ V ), Xij = 0 (ij ∈ E).

The theta number can be computed (with arbitrary precision) in time polynomial in the
number of nodes of the graph. Moreover, ϑ(G) = α(G) when G is a perfect graph (see
[3]). Schrijver [10] introduced the strenghtening ϑ′(G) of ϑ(G) obtained by adding the
nonnegativity constraint X ≥ 0 to the program (1) and proved that ϑ′(G(n, d)) coincides
with Delsarte bound.

Various methods have been proposed in the litterature for constructing tighter semi-
definite upper bounds for the stability number of a graph, in particular, by Lovász and
Schrijver [8] and more recently by Lasserre [4, 5]. In both cases a hierarchy of upper
bounds for α(G) is obtained with the property that the bound reached at the α(G)-th
iteration coincides in fact with α(G). It turns out that Lasserre’s hierarchy refines the
hierarchy of Lovász and Schrijver (see [6]).

For k ≥ 1, denote by `(k)(G) the bound in Lasserre’s hierarchy at the k-th iteration; see
Section 3.1 for the precise definition. It is known that, for fixed k, one can compute (with
arbitrary precision) the parameter `(k)(G) in time polynomial in the number of nodes of
the graph G. However, for the coding problem, the graph G(n, d) has 2n nodes and such
complexity is prohibitive for large n. A first contribution of this paper (see Section 3.2)

is to show that, for fixed k, the bound `(k)(G(n, d)) can be computed (with arbitrary
precision) in time polynomial in n. This result is based on a result of Schrijver [12],
recalled in Section 2.1, about reducing the size of invariant semidefinite programs using
the regular ∗-representation for the algebra of invariant matrices under action of a group.

The first bound `(1)(G) in the hierarchy is equal to the theta number ϑ(G); its strength-
ening obtained by adding nonnegativity is equal to ϑ′(G) which, for the graph G = G(n, d),
coincides with the bound of Delsarte for the parameter A(n, d). It turns out that the bound

of Schrijver [11] for A(n, d) lies between `
(1)
+ (G) and `

(2)
+ (G), the strengthenings of `(1)(G)

and `(2)(G) obtained by adding certain bounds on the variables. While Schrijver’s bound
can be computed via a semidefinite program of size O(n3) and thus computed in practice

for reasonable values of n, a practical computation of `
(2)
+ (G(n, d)) seems out of reach for

interesting values of n since one would have to solve a semidefinite program with O(n7)
variables.

In Section 3.3, we introduce two bounds `+(G(n, d)) and ˜̀(G(n, d)) satisfying

`
(2)
+ (G(n, d)) ≤ ˜̀(G(n, d)) ≤ `+(G(n, d)) ≤ `

(1)
+ (G(n, d));

they are at least as good as Schrijver’s bound, and their computation still relies on solving
a semidefinite program of size O(n3). This complexity result follows from the fact that
the new bounds, analogously to Schrijver’s bound, require the positive semidefiniteness of
certain matrices lying in the Terwiliger algebra (or a variation of it) whose dimension is
O(n3) and for which the explicit block-diagonalization has been given by Schrijver [11].
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2. Algebraic preliminaries

2.1. Preliminaries on invariant matrices. Let G be a finite group acting on a finite
set X ; that is, we have a homomorphism h : G → Sym(X ), where Sym(X ) is the group
of permutations of X . For σ ∈ G, h(σ) is a permutation of X and Mσ is the associated
X × X permutation matrix with

(Mσ)x,y =

{

1 if h(σ)(x) = y,
0 otherwise.

The set:

A := {
∑

σ∈G

λσMσ | λσ ∈ R (σ ∈ G)}

is a matrix ∗-algebra; that is, A is closed under addition, scalar and matrix multiplication,
and conjugation. Its commutant:

AG := {N ∈ C
X×X | NM = MN ∀M ∈ A}

is again a matrix ∗-algebra. The commutant algebra AG consists precisely of the X × X
matrices N that are invariant under the action of G, i.e., satisfy σ(N) = N for all σ ∈ G,
where

σ(N) := (Nσ(x),σ(y))x,y∈X .

Let O1, . . . ,ON denote the orbits of the set X ×X under the action of the group G and,
for i = 1, . . . , N , let D̃i be the X × X matrix:

(2) (D̃i)x,y =

{

1 if (x, y) ∈ Oi

0 otherwise.

Then, D̃1, . . . , D̃N form a basis of the commutant AG (as vector space) and D̃1+. . .+D̃N =

J (the all-ones matrix). We normalize the D̃i to

(3) Di :=
D̃i

√

〈D̃i, D̃i〉

for i = 1, . . . , N . (For two N × N matrices A,B, 〈A,B〉 := Tr(ATB) =
∑N

i,j=1AijBij .)

Then, 〈Di,Dj〉 = 1 if i = j and 0 otherwise. The multiplication parameters γkij are defined
by

(4) DiDj =
N
∑

k=1

γkijDk

for all i, j = 1, . . . , N . Define the N ×N matrices L1, . . . , LN by

(5) (Lk)i,j := γji,k for k, i, j = 1, . . . , N.

Schrijver [12] shows:
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Theorem 1. The mapping Dk 7→ Lk is a ∗-isomorphism, known as the regular ∗-representation
of AG. In particular, given real scalars x1, . . . , xN ,

(6)
N
∑

i=1

xiDi � 0 ⇐⇒
N
∑

i=1

xiLi � 0.

This result has important algorithmic applications, as it permits to give more compact
formulations for invariant semidefinite programs. Consider a semidefinite program:

(7) min 〈C, Y 〉 s.t. 〈A`, Y 〉 ≤ b` (` = 1, . . . ,m), Y � 0

in the X × X matrix variable Y . Assume that the program (7) is invariant under action
of the group G; that is, C is invariant under action of G and, for every matrix Y feasible
for (7) and σ ∈ G, the matrix σ(Y ) is again feasible for Y . (This holds, e.g., if the class of
constraints is invariant under action of G, i.e., if for each ` ∈ {1, . . . ,m} and σ ∈ G, there
exists `′ ∈ {1, . . . ,m} such that σ(A`) = A`′ and b` = b`′ .) Then, if Y is feasible for (7)
then the matrix Y0 := 1

|G|

∑

σ∈G σ(Y ) too is feasible for (7), with the same objective value

as Y . Therefore, in (7), one can assume without loss of generality that Y is invariant,

i.e., of the form Y =
∑N

i=1 xiDi with x1, . . . , xN ∈ R. Then the objective function reads

〈C, Y 〉 =
∑N

i=1 cixi, after setting C =
∑N

i=1 ciDi and the constraints in (7) become linear
constraints in x. As a direct application of Theorem 1, we find:

Corollary 2. Consider the program (7) in the X × X matrix variable Y . If (7) is
invariant under the action of the group G, then it can be equivalently reformulated as

(8) min

N
∑

i=1

cixi s.t. aT` x ≤ b` (` = 1, . . . ,m),

N
∑

i=1

xiLi � 0

which involves N ×N matrices and N variables. Here, N is the dimension of the algebra
AG (the set of X ×X invariant matrices under the action of the group G), typically much
smaller than |X |.

To use computationally this result, one needs the matrices L1, . . . , LN , which involves
computing the cardinality of the orbits of X × X and the multiplication parameters γki,j
in (4). Schrijver [12] applies this technique for computing tighter bounds for the crossing
number of a complete bipartite graph. We apply it in Section 3.2 for reducing the size of
the semidefinite programs permitting to compute the hierarchy of semidefinite bounds for
the parameter A(n, d).

Example 3. Let X := P, the collection of all subsets of the set V = {1, . . . , n}, and
G := Sym(V ), the group of permutations of V . Each π ∈ G induces a permutation of X ,
again denoted by π, by letting π(I) := {π(i) | i ∈ I} for I ∈ P. Two pairs (I, J), (I ′, J ′)
(I, J, I ′, J ′ ∈ P) lie in the same orbit [i.e., I ′ = π(I), J ′ = π(J) for some π ∈ G] if and
only if |I| = |I ′|, |J | = |J ′| and |I ∩ J | = |I ′ ∩ J ′|. Therefore, the commutant algebra AG

is generated by the matrices M t
i,j (i, j, t ∈ Z+), where

(9) (M t
i,j)I,J :=

{

1 if |I| = i, |J | = j, |I ∩ J | = t,
0 otherwise
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for I, J ∈ P; AG =: An is known as the Terwiliger algebra of the Hamming scheme
(Terwiliger [13]).

Example 4. Let X := P and G := Aut(P), the automorphism group of P, consisting
of the permutations σ ∈ Sym(P) preserving the symmetric difference, i.e., such that
|σ(I)∆σ(J)| = |I∆J | for all I, J ∈ P. Thus, G = {πsA | A ⊆ V, π ∈ Sym(V )}, |G| = 2nn!;
for a set A ⊆ V , sA is the permutation of P mapping any I ∈ P to sA(I) := A∆I. Two
pairs (I, J), (I ′, J ′) (I, J, I ′, J ′ ∈ P) lie in the same orbit [i.e., I ′ = σ(I), J ′ = σ(J) for
some σ ∈ G] if and only if |I∆J | = |I ′∆J ′|. Therefore, the algebra AG is generated by
the matrices Mk (k = 0, 1, . . . , n) where

(10) (Mk)I,J :=

{

1 if |I∆J | = k,
0 otherwise

for I, J ∈ P; AG =: Bn is known as the Bose Mesner algebra of the Hamming scheme. The

Bose-Mesner algebra is a subalgebra of the Terwiliger algebra, as Mk =
∑n

i,j=0M
(i+j−k)/2
i,j

for k = 0, 1, . . . , n.

In fact, it is known from invariant theory and C∗-algebra theory that the algebra AG

can be block-diagonalized. Therefore, there exists a semidefinite program equivalent to the
invariant program (7), where the matrix Y is replaced by a block-diagonal matrix with pos-
sibly repeated blocks; see, e.g., Gaterman and Parrilo [2]. Such program is typically more
compact than the program (8). However, finding explicitely the block-diagonalization is a
nontrivial task in general. An advantage of the above mentioned reduction method, based
on the regular ∗-representation, is that it involves the matrices Li which are explicitely
defined in terms of the matrices Di generating the algebra. Nevertheless, Schrijver [11]
was able to determine explicitely the block-diagonalization for the Terwiliger algebra; we
recall this result in the next section as we will need it for the computation of our stronger
bounds for the coding problem.

2.2. Block-diagonalization of the Terwiliger algebra. While the Bose-Mesner alge-
bra Bn is a commutative algebra and thus can be diagonalized (see [1]), the Terwiliger

algebra An is a non-commutative algebra. Its dimension is dimAn =
(

n+3
3

)

, which is the

number of triples (i, j, t) for which M t
i,j 6= 0. As An is a matrix ∗-algebra containing the

identity, there exists a unitary P × P complex matrix U (i.e., U ∗U = I) and positive
integers m and p0, q0, . . . , pm, qm such that the set U∗AnU := {U∗MU |M ∈ An} is equal
to the collection of block-diagonal matrices











C0 0 . . . 0
0 C1 . . . 0
...

...
. . . 0

0 0 . . . Cm
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where each Ck (k = 0, 1, . . . ,m) is a block-diagonal matrix with qk identical blocks Bk of
order pk:

Ck =











Bk 0 . . . 0
0 Bk . . . 0
...

...
. . . 0

0 0 . . . Bk











;

thus 2n =
∑m

k=0 pkqk and
∑m

k=0 p
2
k = dimAn. By deleting copies of identical blocks, it

follows that An is isomorphic to the algebra

(11)

m
⊕

k=0

C
pk×pk = {











B0 0 . . . 0
0 B1 . . . 0
...

...
. . . 0

0 0 . . . Bm











| Bk ∈ C
pk×pk for k = 0, 1, . . . ,m}.

An important fact for our purpose is that this isomorphism preserves positive semidef-
initeness. The existence of a unitary matrix U with the above properties is standard
C∗-algebra theory. Schrijver [11] has constructed explicitely this matrix U and the image
of a matrix M ∈ An in the algebra (11). We recall some details from [11] needed for our
treatment.

It turns out that U is real valued, m = bn2 c and, for k = 0, 1, . . . , bn2 c, the block Bk has

order pk = n − 2k + 1 and multiplicity qk =
(n
k

)

−
( n
k−1

)

. In particular, the block B0 has

order n+ 1 and multilplicity 1. For k = 1, . . . , bn2 c, define

Lk := {b ∈ R
P |Mk−1

k−1,kb = 0 and bI = 0 if |I| 6= k}.

Let Bk be a basis of Lk. Then |Bk| =
(n
k

)

−
( n
k−1

)

and
∑

I∈P bI = 0 for b ∈ Lk. Set

B0 := {b0} where b0 := (1, 0, . . . , 0)T ∈ R
P (the nonzero entry being indexed by ∅ ∈ P)

and define

Q := {(k, b, i) | k ∈ {0, . . . , b
n

2
c}, b ∈ Bk, i ∈ {k, k + 1, . . . , n− k}}.

Then |Q| = 2n = |P|. For (k, i, b) ∈ Q, define the vector

uk,i,b :=

(

n− 2k

i− k

)− 1

2

Mk
i,kb ∈ R

P .

Finally let U be the P ×Q matrix whose columns are the vectors uk,i,b for (k, i, b) ∈ Q. It

can be shown that U is orthogonal, i.e., UTU = I. Moreover, for M =
∑n

i,j,t=0 x
t
i,jM

t
i,j ∈

An, the matrix UTMU is a block-diagonal matrix determined by the partition of Q into
the classes Qk,b := {(k, i, b) | k ≤ i ≤ n − k} (for k = 0, . . . , bn2 c, b ∈ Bk). For a given
integer k = 0, . . . , bn2 c, the blocks corresponding to the classes Qk,b (for b ∈ Bk) are all
identical to the following matrix:

(12) Bk(x) :=

(

∑

t

(

n− 2k

i− k

)− 1

2
(

n− 2k

j − k

)− 1

2

βti,j,kx
t
i,j

)n−k

i,j=k

,



STRENGTHENED SEMIDEFINITE BOUNDS FOR CODES 7

after setting

(13) βti,j,k :=
n
∑

u=0

(−1)t−u
(

u

t

)(

n− 2k

n− k − u

)(

n− k − u

i− u

)(

n− k − u

j − u

)

for i, j, k, t ∈ {0, . . . , n}. As An is isomorphic to the algebra (11),

(14)
n
∑

i,j,t=0

xti,jM
t
i,j � 0 ⇐⇒ Bk(x) � 0 for k = 0, 1, . . . , b

n

2
c.

This is a key tool used in [11] and the present paper, which allows reducing semidefinite
programs involving matrices in the Terwiliger algebra to semidefinite programs of size
O(n3). We will deal in this note with matrices of the form

(15) M̃ =

(

d cT

c M

)

, where M =
n
∑

i,j,t=0

xti,jM
t
i,j , d ∈ R, c =

n
∑

i=0

ciχ
(Pi ),

and χ(Pi ) ∈ {0, 1}P whose I-th entry is 1 if and only if |I| = i (for I ∈ P).

Lemma 5. The matrix M̃ from (15) is positive semidefinite if and only if Bk(x) � 0 for
k = 1, . . . , bn2 c, and

B̃0(x) :=

(

d c̃T

c̃ B0(x)

)

� 0, where c̃ := (ci

(

n

i

) 1

2

)ni=0.

Proof. We have:

ŨT M̃Ũ :=

(

1 0
0 UT

)

M̃

(

1 0
0 U

)

=

(

d cTU
UT c UTMU

)

.

It suffices now to verify that (cTU)k,i,b = cTuk,i,b = 0 for (k, i, b) ∈ Q with k ≥ 1, and that

(cTU)0,i,b0 = ci
(n
i

) 1

2 for i = 0, . . . , n. This is direct verification using the above definitions.

Therefore, ŨT M̃Ũ is block-diagonal, with blocks B̃0(x) (with multiplicity 1) and Bk(x)
(with multiplicity qk) for k = 1, . . . , bn2 c. The lemma now follows.

3. Semidefinite bounds for the stability number of a graph

3.1. Lasserre’s construction. Let G = (V,E) be a graph. A stable set in G is a set
S ⊆ V containing no edge and the stability number α(G) of G is the maximum cardinality
of a stable set in G. Set Vk := {I ⊆ V | |I| ≤ k} for an integer k. Given a stable set S in
G, define x = (xI)I∈Vk ∈ {0, 1}Vk and y = (yI)I∈V2k

∈ {0, 1}V2k with xI = 1 (resp., yI = 1)
if and only if I ⊆ S, for I ∈ Vk (resp., for I ∈ V2k). Then y and the matrix Y := xxT

satisfy:

(16) Y � 0

(17) YI,J = yI∪J (for I, J ∈ Vk)

(18) YI,J = yI∪J = 0 if I ∪ J contains an edge (for I, J ∈ Vk)
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(19) Y∅,∅ = y∅ = 1

(20) 0 ≤ yI ≤ yJ if J ⊆ I (for I, J ∈ V2k).

We refer to (18) as the edge condition and to (17) as the moment condition. A matrix Y
satisfying (17) is known as a moment matrix and is denoted as Y = Mk(y) (see [4, 5, 6]).
Under the assumption (16), the edge condition (18) is, in fact, equivalent to yij = 0 (for
ij ∈ E). (Here and below, we set yij := y{i},{j}, yi := y{i}, etc.) Under (16), (20) holds for

I ∈ Vk; indeed, the principal submatrix of Mk(y) indexed by {I, J} has the form
(

yI yI

yI yJ

)

,

whose positive semidefiniteness implies 0 ≤ yJ ≤ yI . On the other hand, M1(y) � 0
implies yij ≤ max(yi, yj); M2(y) � 0 implies that yijk is at most the largest two values
among yij , yik, yjk, etc.

Consider the semidefinite program:

(21) `(k)(G) := max
∑

i∈V

yi s.t. Mk(y) � 0, y∅ = 1, yij = 0 (ij ∈ E).

Then, α(G) ≤ `(k)(G), with equality if k ≥ α(G) ([5, 6]). Define `
(k)
+ (G) as the parameter

obtained by adding to (21) the constraints (20); thus, α(G) ≤ `
(k)
+ (G) ≤ `(k)(G).

For k = 1, `(1)(G) = ϑ(G), the Lovász’ theta number, and the stronger bound obtained
by adding nonnegativity to (21) is ϑ′(G), the strengthening of ϑ(G) introduced by McEliece,

Rodemich and Rumsey [9] and Schrijver [10]. The bound `(2)(G) is at least as good as the
parameter obtained by optimizing over N+(TH(G)), the convex relaxation of the stable set
polytope of G obtained by applying the Lovász-Schrijver N+-operator to the theta body
TH(G) ([6]; see (25)). For k = 2, the program (21) has size O(|V |4). We now formulate a
bound `(G), which is weaker than `(2)(G), but still at least as good as the bound obtained
from N+(TH(G)), although its computation is more economical since it can be expressed
via a semidefinite program of size O(|V |3).

Namely, for each ` ∈ V , consider the principal submatrix Y`(y) of M2(y) indexed by
the set V2(`) := V1 ∪ {{`, i} | i ∈ V }; thus the matrices Y`(y) involves only variables yI for
I ∈ V3. Define

(22) `(G) := max
∑

i∈V

yi s.t. y∅ = 1, yij = 0 (ij ∈ E), Y`(y) � 0 (` ∈ V )

and `+(G) as the parameter obtained by adding to (22) the constraints: 0 ≤ yijk ≤ yij for

distinct i, j, k ∈ V (coming from (20)). Obviously, `(2)(G) ≤ `(G) ≤ `(1)(G); analogously for
the `+ parameters. We will see in Section 3.3 that, for the graph G = G(n, d), the matrices
involved in (22) lie in (a variation of) the Terwiliger algebra, which allows reformulating
the parameters `(G(n, d)), `+(G(n, d)) via semidefinite programs of size O(n3).

From the moment condition (17), the matrix Y`(y) has the block structure:

(23) Y`(y) =





1 aT bT`
a A B`
b` B` B`



 ,
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where A := (yij)i,j∈V , B` := (y{i,j,`})i,j∈V are symmetric V ×V matrices, and a := (yi)∈V ,
b` := (yi`)i∈V . As b` coincides with the `-th column of A and of B`, by applying some
column/row manipulation to Y`(y), one deduces that

(24) Y`(y) � 0 ⇐⇒ B` � 0 and C̃` :=

(

1 − y` aT − bT`
a− b` A−B`

)

� 0,

which permits to reduce the size of the matrices involved in program (22). Setting

TH(G) = {x ∈ R
V1 | ∃y ∈ R

V2 s.t. M1(y) � 0, yij = 0 (ij ∈ E), xI = yI (I ∈ V1)},

N+(TH(G)) = {x ∈ R
V | ∃y ∈ R

V2 s.t. M1(y) � 0, y∅ = 1, xi = yi (i ∈ V ),
(yI∪{`})I∈V1

, (yI − yI∪{`})I∈V1
∈ TH(G)}

one can verify that

(25) `(G) ≤ max
x∈N+(TH(G))

∑

i∈V

xi.

To see it, let y be feasible for (22); then x := (yi)i∈V ∈ N+(TH(G)). Indeed, the vector
(yI∪{`})I∈V1

is equal to the first column of the principal submatrix of Y`(y) indexed by

{`} ∪ {{`, i} | i ∈ V }, and (yI − yI∪{`})I∈V1
is the first column of the matrix C̃` in (24).

3.2. The semidefinite bounds `(k)(G) for the coding problem. Let G be a group
of automorphisms of the graph G = (V,E), i.e., G ⊆ Sym(V ) and each σ ∈ G preserves
edges (ij ∈ E =⇒ σ(i)σ(j) ∈ E). Then G acts on the set Vk indexing matrices in the
program (21).

Lemma 6. Let G be a group of automorphisms of G. Then the program (21) is invariant
under the action of G.

Proof. Set Y = Mk(y). The objective function is of the form
∑

i∈V yi =
∑

i∈V Yi,i =
〈C, Y 〉, where C is invariant under action of G, since the set {({i}, {i}) | i ∈ V } is a union
of orbits of Vk×Vk (a single orbit if G is vertex-transitive). The constraint y∅ = Y∅,∅ = 1 is
of the form 〈A, Y 〉 = 1 where A is invariant, since the set {(∅, ∅)} is an orbit. The class of
edge constraints (18) is invariant under action of G: If I∪J contains an edge ij and σ ∈ G,
then σ(I)∪σ(J) contains the edge σ(i)σ(j) and thus the equation: yσ(I)σ(J) = Yσ(I),σ(J) = 0
is again an edge constraint. Similarly, the class of moment constraints (17) is also invariant
under action of G.

By Corollary 2, the parameter `(k)(G) can therefore be formulated as the optimum of a
semidefinite program in N variables involving N ×N matrices, where N is the number of
orbits of the set Vk×Vk under the action of the groupG. We now apply this technique to the
graph G = G(n, d) and the group G = Aut(P), the group of automorphisms of P. Recall
that G(n, d) has node set P, the collection of subsets of {1, . . . , n}, with an edge (I, J) if
|I∆J | ∈ {1, . . . , d − 1} for I, J ∈ P. Thus G acts on the set Xk := {A ⊆ P | |A| ≤ k}
indexing the matrix variable in program (21). We show:
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Theorem 7. For any fixed k, one can compute (to an arbitrary precision) the parameter

`(k)(G(n, d)) from (21) in time polynomial in n. The same holds for the parameter `
(k)
+ (G)

obtained by adding the constraints (20) to (21).

Proof. Let k be fixed and let Nk denote the number of orbits of the set Xk×Xk under the
action of the group G. As mentioned above, the parameter `(k)(G(n, d)) can be expressed
via a semidefinite program of the form (8), involving Nk ×Nk matrices and Nk variables.
Hence, to show Theorem 7, it suffices to verify that Nk is bounded by a polynomial in n
and that the new program equivalent to (21) can be constructed in time polynomial in n.
To begin with, it is useful to have a way to identify the orbits of the set Xk × Xk.

Consider (A,B) ∈ Xk × Xk with r := |A| and s := |B|. If r = s = 0 then A = B = ∅,
the empty subset of P, and the orbit of (∅, ∅) just consists of the pair (∅, ∅). We can now

assume that r+s ≥ 1. Let ~A = (A1, . . . , Ar) be an ordering of the elements of A; similarly,
~B = (B1, . . . , Bs) is an ordering of the elements of B. Then one can define the (r+ s)× n

incidence tableau of ( ~A, ~B), whose rows are the incidence vectors χA1 , . . . , χAr , χB1 , . . . , χBs

(in that order) of the sets A1, . . . , Ar, B1, . . . , Bs. Define the function ϕ ~A, ~B : 2r×2s −→ Z+

where, for (u, v) ∈ 2r × 2s, ϕ ~A, ~B(u, v) is the multiplicity of (u, v) as a column of the

incidence tableau of ( ~A, ~B). Here and below, we set 2r := {0, 1}r, 2s := {0, 1}s. Thus
ϕ ~A, ~B belongs to the set Φr,s consisting of the functions φ : 2r × 2s −→ {0, 1, . . . , n}

satisfying:
∑

u∈2r,v∈2s φ(u, v) = n and, for all i 6= j ∈ {1, . . . , r} (resp., i 6= j ∈ {1, . . . , s}),

there exists (u, v) ∈ 2r × 2s for which φ(u, v) ≥ 1 and ui 6= uj (resp., vi 6= vj).

Let ~A′ (resp., ~B′) be another ordered sequence of r (resp., of s) distinct elements of P

and φ = φ ~A, ~B, φ′ = ϕ ~A′, ~B′ . Then, ~A′ = (σ(A1), . . . , σ(Ar)) and ~B′ = (σ(B1), . . . , σ(Bs))

for some σ ∈ G if and only if φ(u, v) + φ(1 − u,1 − v) = φ′(u, v) + φ′(1 − u,1 − v) for

all (u, v) ∈ 2r × 2s. Moreover, ~A′ = (Aα(1), . . . , Aα(r)) and ~B′ = (Bβ(1), . . . , Bβ(s)) for
some permutations α ∈ Sym(r), β ∈ Sym(s) if and only if φ′(u, v) = φ(α(u), β(v)) for
all (u, v) ∈ 2r × 2s, setting α(u) := (uα(1), . . . , uα(r)), β(v) := (vβ(1), . . . , vβ(s)). For two
elements φ, φ′ ∈ Φr,s, write φ ∼ φ′ if

φ′(u, v) + φ′(1− u,1− v) = φ(α(u), β(v)) + φ(1− α(u),1− β(v))) ∀(u, v) ∈ 2r × 2s

for some α ∈ Sym(r), β ∈ Sym(s). This defines an equivalence relation on Φr,s.
Then two pairs (A,B), (A′,B′) belong to the same orbit of Xk × Xk under action of

G if and only if |A| = |A′| =: r, |B| = |B′| =: s and ϕ ~A, ~B ∼ ϕ ~A′, ~B′ for some respective

orderings ~A, ~B, ~A′, ~B′ of A, B, A′, B′. Thus each orbit of Xk × Xk correspond to an
equivalence class of ∪r,s≤kΦr,s. Hence the number Nk of orbits of Xk × Xk is at most

1 +
∑

0≤r,s≤k

r+s≥1

(n+ 1)2
r+s−1−1, giving:

(26) Nk ≤ O(n22k−1−1).

We now verify that the matrices Li (i = 1, . . . , Nk) (as defined in (5)) can be constructed
in time polynomial in n.

For this one first needs to be able to compute the cardinality of the orbits of Xk × Xk
in polynomial time. Given φ0 ∈ Φr,s (0 ≤ r, s ≤ k, r + s ≥ 1), one has to count the
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number Lφ0
of pairs (A,B) ∈

(P
r

)

×
(P
s

)

for which ϕ ~A, ~B ∼ φ0 for some orderings ~A, ~B of

A, B. Given φ ∼ φ0, there are `φ := n!/
∏

u∈2r

v∈2s
φ(u, v)! pairs ( ~A, ~B) for which ϕ ~A, ~B = φ0.

Therefore, Lφ0
= 1

r!s!

∑

φ∼φ0
`φ, which can be computed in time polynomial in n since one

can enumerate the equivalence class of φ0 in time polynomial in n.
Next we verify that one can compute in time polynomial in n the multiplication parame-

ters γki,j from (4), used for defining the matrices Li in (5). For this, given (A,B) ∈
(P
r

)

×
(P
s

)

with respective orderings ~A, ~B, an integer 0 ≤ t ≤ k, and φ0 ∈ Φr,t, ψ0 ∈ Φs,t, one has

to count the number Lφ0,ψ0
of elements C ∈

(P
t

)

for which ϕ ~A,~C ∼ φ0 and ϕ ~B,~C ∼ ψ0 for

some ordering ~C of C. Set ξ := ϕ ~A, ~B. Given φ ∼ φ0 and ψ ∼ ψ0, we first count the

number `φ,ψ of ordered sequences ~C of t elements of P for which ϕ ~A,~C = φ and ϕ ~B,~C = ψ.

For this let x(u, v, w) denote the multiplicity of (u, v, w) ∈ 2r × 2s × 2t as column of the

incidence tableau of ( ~A, ~B, ~C). The first r+ s rows of the tableau are given and one needs
to determine its last t rows. Then, x(u, v, w) ∈ {0, 1, . . . , n} satisfy the system

(27)

∑

v∈2s x(u, v, w) = φ(u,w) ∀u ∈ 2r, w ∈ 2t
∑

u∈2r x(u, v, w) = ψ(v, w) ∀v ∈ 2s, w ∈ 2t
∑

w∈2t x(u, v, w) = ξ(u, v) ∀u ∈ 2r, v ∈ 2s.

As the system (27) has polynomially many variables and equations, its set S of so-

lutions can be found by complete enumeration and |S| ≤ (n + 1)2r+s+t . Therefore,

`φ,ψ =
∑

x∈S

∑

u∈2r,v∈2s
ξ(u,v)!

∏

w∈2t x(u,v,w)! , the number of possible ways to assign the vec-

tors w ∈ 2t as columns of the lower t×n part of the tableau. Now, Lφ0,ψ0
= 1

t!

∑

φ∼φ0
ψ∼ψ0

`φ,ψ

can be computed in time polynomial in n since one can enumerate the equivalence classes
of φ0 and ψ0.

Remains only to construct the linear constraints corresponding to the moment con-
straints (17) and the edge constraints (18). Label the orbits of Xk × Xk as O1, . . . ,ONk
and determine a pair (Ai,Bi) belonging to each orbit Oi. Then the moment constraints
read: xi = xj if Ai ∪ Bi = σ(Aj ∪ Bj) for some σ ∈ G (which can be tested in time
polynomial in n), and the edge constraints read: xi = 0 if Ai ∪ Bi contains a pair (I, J)
with |I∆J | ∈ {1, . . . , d− 1}.

The bounds (20) become: xi ≥ 0 (i = 1, . . . , Nk) and xi ≤ xj if Ai ∪ Bi ⊇ σ(Aj ∪ Bj)
for some σ ∈ G (which can be tested in time polynomial in n).

Therefore, the parameter `(k)(G(n, d)) (or `
(k)
+ (G(n, d))) can be computed as the opti-

mum value of a semidefinite program of the form (8) involving Nk × Nk matrices, with

Nk variables and O(N2
k ) linear constriants. As Nk = O(n22k−1−1), it can be computed in

time polynomial in n (to any precision), which concludes the proof of Theorem 7.

The result from Theorem 7 is mainly of theoretical value for k ≥ 2. Indeed, for k = 2,
Nk = O(n7) and thus the semidefinite program defining `(2)(G(n, d)) is already too large
to be solved in practice for interesting values of n by the currently available semidefinite
software.
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3.3. Refining Schrijver’s bound. We begin with observing that, when a graph G has
a vertex-transitive group of automorphims then, in the program (22), it suffices to require
the condition Y`(y) � 0 for one choice of ` ∈ V .

Lemma 8. Let G be a group of automorphisms of the graph G = (V,E). The program (22)
is invariant under action of G. If G is vertex-transitive then, in (22), it suffices to require
the constraint Y`(y) � 0 for one choice of ` ∈ V (instead of for all ` ∈ V ).

Proof. The first part of the proof is analogous to the proof of Lemma 6. Here, we use the
fact that, for ` ∈ V , σ ∈ G, Y`(σ(y)) = σ(Yσ(`)(y)). Hence, if y is invariant under action
of G, then Y`(y) � 0 for some ` ∈ V implies that Y`(y) � 0 for all ` ∈ V .

3.3.1. A compact semidefinite formulation for the bound `(G(n, d)). Let G = G(n, d) and
G = Aut(P) (which is indeed vertex-transitive). Applying Lemma 8, one can reformulate
the parameter `(G(n, d)) as

`(G(n, d)) = max
∑

I∈P y{I}
s.t. Y (y) � 0, y∅ = 1,

y{I,J} = 0 if |I∆J | ∈ {1, . . . , d− 1}
yA = yσ(A) for σ ∈ G,A ∈ X2, or A ∈ X3 with ∅ ∈ A,

where Y (y) is the matrix indexed by X := {∅} ∪ {{I} | I ∈ P} ∪ {{∅, I} | I ∈ P} with
Y (y)A,B = yA∪B for A,B ∈ X . By (23),

(28) Y (y) =





1 aT bT

a A B
b B B





with A = (y{I,J})I,J∈P , B = (y{∅,I,J})I,J∈P , a = (y{I})I∈P , and b = (y{∅,I})I∈P . As y is
invariant under action of G, it follows that AI,J = AI′,J ′ if I ′ = σ(I), J ′ = σ(J) for some
σ ∈ G, i.e., if |I∆J | = |I ′∆J ′|. That is, the matrix A belongs to the Bose-Mesner algebra
Bn; say,

(29) A =
n
∑

k=0

xkMk for some real scalars x0, . . . , xn

where the matrices Mk are as in (10). Moreover, BI,J = BI′,J ′ if I ′ = σ(I), J ′ = σ(J),
∅ = σ(∅) for some σ ∈ G, i.e., if |I ′| = |I|, |J ′| = |J | and |I ∩ J | = |I ′ ∩ J ′|. That is, the
matrix B belongs to the Terwiliger algebra An; say,

(30) B =
∑

i,j,t≥0

xti,jM
t
i,j for some real scalars xti,j

where the matrices M t
i,j are as in (9) and xti,j = xtj,i for all i, j, t. The variables xk and xti,j

are related by

(31) xk = x0
0,k for k = 0, 1, . . . , n.
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(since xk = A∅,I = B∅,I = xk0,k for |I| = k). Moreover,

(32) xti,j = xt
′

i′,j′ if (i′, j′, i′ + j′ − 2t′) is a permutation of (i, j, i+ j − 2t).

Equivalently, xti,j = xi−ti+j−2t,i = xj−ti+j−2t,j . (Indeed, let I, J ∈ P with i = |I|, j = |J |,

t = |I ∩ J |. As σ := sJ maps A := {∅, I, J} to {∅, J, I∆J} and yσ(A) = yA, then

xti,j = y{∅,I,J} = y{∅,J,I∆J} = xj−tj,i+j−2t.) The edge inequalities become:

(33) xti,j = 0 if {i, j, i+ j − 2t} ∩ {1, . . . , d− 1} 6= ∅,

and the bounds (20) read:

(34) 0 ≤ xti,j ≤ x0
i,0 for i, j, t = 0, . . . , n.

From (24), we know that Y (y) � 0 if and only if

B =

n
∑

i,j,t=0

xti,jM
t
i,j � 0 and C̃ :=

(

1 − x0
0,0 cT

c C

)

� 0,

where

C := A−B =
n
∑

i,j,t=0

(x0
0,i+j−2t − xti,j)M

t
i,j and c := a− b =

n
∑

i=0

(x0
0,0 − x0

0,i)χ
(Pi ).

Thus C̃ is of the form (15). For k = 0, 1, . . . , bn2 c, define the matrices:

(35) Ak(x) :=

(

∑

t

(

n− 2t

i− k

)− 1

2
(

n− 2t

j − k

)− 1

2

βti,j,kx
0
0,i+j−2t

)n−k

i,j=k

and Bk(x) as in (12), where βti,j,k are as in (13). It follows from Lemma 5 that the positive

semidefiniteness of Y (y) is equivalent to

(36)

(i) Bk(x) � 0 for k = 0, 1, . . . , bn2 c
(ii) Ak(x) −Bk(x) � 0 for k = 0, 1, . . . , bn2 c

(iii)

(

1 − x0
0,0 c̃T

c̃ A0(x) −B0(x)

)

� 0, setting c̃ := (
(

n
i

) 1

2 (x0
0,0 − x0

0,i))
n
i=0.

(Of course, (36)(iii) implies (ii) for k = 0.) Summarizing, we have shown:

(37)
`(G(n, d)) = max 2nx0

0,0 s.t. xti,j (i, j, t = 0, . . . , n) satisfy

(32), (33), (36)(i)− (iii).

Similarly,

(38)
`+(G(n, d)) = max 2nx0

0,0 s.t. xti,j (i, j, t = 0, . . . , n) satisfy

(32), (33), (34), (36)(i)− (iii).

Hence both parameters can be computed via a semidefinite program of size O(n3).
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3.3.2. Comparison with Schrijver’s bound. Schrijver [11] introduced the following upper
bound for the stability number A(n, d) of the graph G(n, d):

(39)
max

n
∑

i=0

(

n

i

)

x0
0,i

s.t. xti,j (i, j, t = 0, . . . , n) satisfy (32), (33), (34), (36)(i)− (ii), and x0
0,0 = 1.

As noted in [11], Schrijver’s bound is at least as good as the Delsarte bound, which

coincides with ϑ′(G(n, d)) = `
(1)
+ (G(n, d)). We now show:

Lemma 9. The bound `+(G(n, d)) is at least as good as Schrijver’s bound from (39).

Proof. Let (xti,j)
n
i,j,t=0 be feasible for the program (38). Define yti,j := xti,j/x

0
0,0 for all

i, j, t = 0, . . . , n. Then the variables yti,j satisfy (32), (33), (34), (36) (i)-(ii), and y0
0,0 = 1.

Remains to verify that 2nx0
0,0 ≤

∑n
i=0

(

n
i

)

y0
0,i, i.e., 2n(x0

0,0)
2 ≤

∑n
i=0

(

n
i

)

x0
0,i. For this,

recall that the conditions (36) (i)-(iii) are equivalent to the positive semidefiniteness of the
matrix in (28). In particular, they imply

(

1 aT

a A

)

� 0, i.e., A− aaT � 0,

where A is as in (29), aT = (x0
0,0, . . . , x

0
0,0), xk = x0

0,k for k = 0, . . . , n. As A−(x0
0,0)

2J � 0,

〈J,A〉 ≥ (x0
0,0)

2〈J, J〉 = (x0
0,02

n)2. But 〈J,A〉 =
∑n

k=0 xk〈J,Mk〉 =
∑n

k=0 xk2
n
(

n
k

)

, which

gives
∑n

k=0 x
0
0,k

(n
k

)

≥ 2n(x0
0,0)

2.

3.3.3. Refining the bound `+(G(n, d)). It is possible to define a new bound ˜̀(G(n, d)),
stronger than the bound `+(G(n, d)), whose computation still involves a semidefinite pro-
gram of size O(n3). Namely, let us now consider as matrix variable the principal submatrix
Y (y) of M2(y) indexed by the set

X̃ := {∅} ∪ {{I} | I ∈ P} ∪ {{∅, I} | I ∈ P} ∪ {{I, V } | I ∈ P}.

Then, Y (y) has the block structure:

(40) Y (y) =









1 aT bT cT

a A B C
b B B D
c C D C









where A = (y{I,J})I,J∈P , B = (y{∅,I,J})I,J∈P , C = (y{I,J,V })I,J∈P , D = (y{∅,I,J,V })I,J∈P ,
a = (y{I})I∈P , b = (y{∅,I})I∈P , and c = (y{I,V })I∈P . The matrices A,B are given by (29),
(30). The matrix C is a permutation of B; namely,

C =

n
∑

i,j,t=0

xn+t−i−j
n−i,n−jM

t
i,j .
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The matrix D too belongs to the Terwiliger algebra:

D =
n
∑

i,j,t=0

zti,jM
t
i,j for some real scalars zti,j

satisfying zti,j = ztj,i; indeed, DI,J = DI′,J ′ if there exists σ ∈ G such that σ(∅) = ∅,

σ(I) = I ′, σ(J) = J ′ (then σ(V ) = V ), i.e., if |I| = |I ′|, |J | = |J ′|, |I ∩ J | = |I ′ ∩ J ′|. We
have the following relations for the variables xti,j , z

t
i,j :

(41) zti,j = zn+t−i−j
n−i,n−j for all i, j, t = 0, . . . , n

since DI,J = y{∅,V,I,J} = y{∅,V,V∆I,V∆J} = DV∆I,V∆J , and

(42) zii,i = z0
0,i = zin,i = xii,n for i = 0, . . . , n

since y{∅,V,I} = DI,I = D∅,I = DV,I = BV,I . The edge condition for the z-variables reads:

(43) zti,j = 0 if {i, j, n− i, n− j, i+ j − 2t} ∩ {1, . . . , d− 1} 6= 0 for i, j, t = 0, . . . , n.

The bounds (20) imply:

(44) 0 ≤ zti,j ≤ xti,j , z
t
i,j ≤ zii,i for i, j, t = 0, . . . , n.

As each non-border block of the matrix Y (y) in (40) belongs to the Terwiliger algebra,
one can block-diagonalize Y (y). Indeed, each non-border block in the matrix









1 0 0 0
0 UT 0 0
0 0 UT 0
0 0 0 UT









Y (y)









1 0 0 0
0 U 0 0
0 0 U 0
0 0 0 U









=









1 aTU bTU cTU
Ua UTAU UTBU UTCU
Ub UTBU UTBU UTDU
Uc UTCU UTDU UTCU









is block-diagonal with respect to the same partition, with bn2 c + 1 distinct blocks la-

beled by k = 0, 1, . . . , bn2 c. It follows from Lemma 5 that aTU = (ãT , 0, . . . , 0), bTU =

(b̃T , 0, . . . , 0), cTU = (c̃T , 0, . . . , 0), where ã = x0
0,0

∑n
i=0

(n
i

) 1

2χ(Pi ), b̃ =
∑n

i=0 x
0
0,i

(n
i

) 1

2χ(Pi )

and c̃ =
∑n

i=0 x
0
0,n−i

(n
i

) 1

2χ(Pi ) are indexed by the positions corresponding to the 0-th block.

Therefore, Y (y) � 0 if and only if

(45)









1 ãT b̃T c̃T

ã A0 B0 C0

b̃ B0 B0 D0

c̃ C0 D0 C0









� 0,





Ak Bk Ck
Bk Bk Dk

Ck Dk Ck



 � 0 for k = 1, . . . , b
n

2
c

where Ak = Ak(x) is as in (35), Bk = Bk(x) is as in (12) and

Ck =

(

∑

t

(

n− 2t

i− k

)− 1

2
(

n− 2t

j − k

)− 1

2

βti,j,kx
n+t−i−j
n−i,n−j

)n−k

i,j=k

,

Dk =

(

∑

t

(

n− 2t

i− k

)− 1

2
(

n− 2t

j − k

)− 1

2

βti,j,kz
t
i,j

)n−k

i,j=k

.
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One can now define the bound

(46)
˜̀(G(n, d)) := max 2nx0

0,0 s.t. xti,j , z
t
i,j (i, j, t = 0, . . . , n) satisfy

(32), (33), (34), (41), (42), (43), (44), (45).

Obviously, A(n, d) ≤ ˜̀(G(n, d)) ≤ `+(G(n, d)), and the bound ˜̀(G(n, d)) is again expressed
via a semidefinite program of size O(n3).

3.3.4. Some computational results. The following trick from [11] can be used for further
reduction of the number of variables. As is well known, if d is odd then A(n, d) = A(n+
1, d + 1) and if d is even then A(n, d) is attained by a code with all code words having
even Hamming weights. Therefore, it suffices to compute A(n, d) for d even. Then one
can set certain variables to zero. Namely, for the variables xti,j present in the programs

(37), (38), or (46), xti,j = 0 if one of i or j is odd. Similarly, for the variables zti,j used in

(46), zti,j = 0 if one of n, i or j is odd. (Thus, in the case when n is odd, all variables zti,j
are set to 0.)

We have tested the various bounds on several instances (n, d), in particular, on those
where Schrijver’s bound gave a improvement on the previously best known upper bound
for A(n, d). There are two instances: (20, 8) and (25, 6), for which we could find an upper
bound for A(n, d) (slightly) better than Schrijver’s bound; namely, b`+(G(25, 6))c and

b˜̀(G(20, 8))c improve the upper bound given by Schrijver by one. See the Table below
(the values given there are the bounds rounded down to the nearest integer). For other

instances (n, d), the bounds `+ and ˜̀ give an improvement over Schrijver’s bound limited
to some decimals, thus yielding no improved upper boud on A(n, d).

(n, d) Delsarte Schrijver `+(G(n, d)) ˜̀(G(n, d))
bound bound (39) bound (38) bound (46)

(20,8) 290 274 274 273
(25,6) 48148 47998 47997 -
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