Some Disadvantages of a Mehrotra-Type Primal-Dual
Corrector Interior Point Algorithm for Linear

Programming

Coralia Cartis*

January, 2005

Abstract

The Primal-Dual Corrector (PDC) algorithm that we propose computes on each
iteration a corrector direction in addition to the direction of the standard primal-dual
path-following interior point method [8, 22] for Linear Programming (LP), in an attempt
to improve performance. The new iterate is chosen by moving along the sum of these
directions, from the current iterate. This technique is similar to the construction of
Mehrotra’s highly popular predictor-corrector algorithm [14]. We present examples,
however, that show that the PDC algorithm may fail to converge to a solution of the LP
problem, in both exact and finite arithmetic, regardless of the choice of stepsize that
is employed. The cause of this bad behaviour is that the correctors exert too much

influence on the direction in which the iterates move.

*Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, United
Kingdom, (ccartis@comlab.ox.ac.uk). The author was supported through grant GR/S34472 from the
Engineering and Physical Sciences Research Council of the UK.

1

1 Introduction

In the past fifteen years, Interior Point Methods (1PMs) have become highly successful in
solving Linear Programming (LP) problems, especially large-scale ones, while enjoying good
theoretical convergence and complexity properties (see [3, 5, 18, 22, 20, 21] for comprehensive
reviews of the field of 1PMs for LP). Examples of 1PMs that are reliable both in theory and
in practice include the Primal-Dual (PD) path-following method of Kojima et al. [8] with
some long-step linesearch procedure [22], and an infeasible formulation of this algorithm [7,
22]. The majority of commercial and public IPM codes implement a variant of the latter,
Mehrotra’s Predictor-Corrector (MPC) algorithm [14], and some of them employ in addition,
Gondzio’s higher-order corrections [4]. For descriptions of the MPC algorithm, see also [10, 24]
and Chapter 10 of [22]. Since its first implementations [10, 14] and testing on the standard
set of LP test problems (the Netlib test set) [10, 14], the MPC algorithm proved to be,
especially on large-scale problems, much faster than the infeasible PD algorithm, in terms
of both the number of iterations and the computational time [10]. Its past and present
practical successes, however, have not been enhanced by equally praiseworthy theoretical
guarantees of good performance: no global convergence or polynomial complexity results are
known for this method. A local convergence property [19] has been derived from the view
that this method is a perturbed-composite Newton’s method, but assumptions are required
(non-degeneracy, strict complementarity, etc.) that are much stronger than those of the
corresponding analysis for standard 1pMms. It is, in fact, acknowledged among practitioners
that there are examples on which the MPC algorithm fails to converge (see [17], page 407).
To our knowledge, no such examples have been published or analysed in the literature.
Moreover, most implementations of the MPC algorithm do not include any safeguards to
monitor convergence of the algorithm or to help the algorithm move away from troublesome
situations since the generally very good performance of the MPC algorithm seems to render
them unnecessary (see [17], page 407). Presently, we construct a Mehrotra-type method, the

Primal-Dual Corrector (PDC), whose behaviour we can understand and explain.

The pPDC algorithm computes on each iteration, an additional direction, a corrector, to aug-
ment the direction of the PD algorithm. In this paper, we find, however, that employing these
correctors may have an adverse effect on the performance of the algorithm. In particular, we
show that the PDC algorithm may fail to converge to the solution of an LP example in both
exact and finite arithmetic. If certain starting points are chosen for the algorithm, and the
centring parameters are set to be equal to the same value in (0, 1) or if they are increasing,
then we prove that the failure of the algorithm on the example problem occurs in exact arith-

metic regardless of the stepsize procedure that is employed (see Section 4.1). We describe

two numerical calculations that exhibit this failure (see Section 4.2). In the first numerical
example, the centring parameters are all equal to the same value, and in the second one,
they are chosen automatically by the procedure employed in the MPC algorithm [14, 15, 22]
and their numerical values are increasing. Though the example that we present does not
apply to the MPC algorithm, it throws doubt nevertheless on its convergence properties in
general, due to the similarities between the MPC and PDC algorithms and the cause of failure

of the latter algorithm on the example (see Subsection 5.2).

The failure of the PDC algorithm to converge is due to the corrector exerting too much influ-
ence in the construction of the iterates, and determining the direction in which the iterates
move. We attempt to reduce the impact of the correctors by multiplying them by the square
of the stepsize in the expression of the new iterates (see Subsection 5.1). The resulting
algorithm, the Primal-Dual Second-Order Corrector (PDSOC) [2, 25], has very good conver-
gence, and even complexity, properties for practical choices of the centring parameters and
the stepsize [2, 25|, which imply that the PDSOC algorithm can overcome the failure that the
PDC experienced on the aforementioned example [2]. Further, a substantive interpretation

of its construction is given in [2].

The structure of the paper is as follows. Section 2 summarizes some LP duality and interior
point method theory that is needed for the remainder of this article. In Section 3, we de-
scribe the construction of the PDC algorithm and discuss suitable stepsize procedures for this
algorithm. In particular, we show that a standard long-step linesearch procedure, commonly
employed in the PD algorithm [22], may not be well-defined for the PDC method. Section 4
presents the above-mentioned example of failure of the PDC algorithm to converge. Subsec-
tion 4.1 gives the promised theoretical analysis, and Subsection 4.2, the numerical evidence.
Subsection 5.1 describes the PDSOC algorithm briefly, while Subsection 5.2 concludes on the

relevance of the failure example to the behaviour of the MPC algorithm.

2 Some LP theory and terminology

Let the LP problem we are solving be given in the standard form

m%an ¢’z subject to Az =10, x>0, (P)
TER?

where m < n, b € R™, ¢ € R”, and A is a real matrix of dimension m x n. The dual problem

corresponding to the primal problem (P) is

max b'y subjectto ATy+s=c¢, s>0. (D)
(y,8)ER™ XR™

Let Fpp denote the set of primal-dual feasible points, i.e.,
Fpep={w=(2,y,s) ER" xR" xR": Az =b, A'y+s=¢c, >0, s>0}, (2.1

and Spp, the primal-dual solution set, containing all triplets w* = (z*,y*, s*) € Fpp such
that z* is a solution of (P) and (y*, s*), a solution of (D).

A triplet (z*,y*, s*) € R* x R™ x R™ belongs to Spp if and only if it satisfies the optimality

conditions
Az* =b, x>0, (2.2a)
ATy + s =¢, s >0, (2.2b)
xis; =0, 1=1,2,...,n. (2.2¢)

Equivalently, a triplet (z,y,s) € Fpp belongs to Spp if and only if the duality gap ¢’z —

b"y = 2" s is zero. The points in the relative interior of Spp are called strictly complementary
solutions of (P) and (D). Such primal-dual solutions w' = (zf,yf, s') exist whenever the
set Spp is nonempty, and they are characterized by the property z' + st > 0 (see for

example, [17]).

We assume that there exists a point w® = (20,99, s%) that satisfies
Az =b, ATy’ +s"=¢, 2°>0 and s°>0, (2.3)

and that the matrix A has full row rank. We refer to these assumptions as the 1PM condi-
tions. They are equivalent to requiring the sets Fpp and Spp to be nonempty and bounded,
respectively (see for example, Corollary 2.8 in [2]). The first condition implies that Spp is

nonempty.

Any point w = (x,y, s) that satisfies (2.3) is called a primal-dual strictly feasible point. These

points form the relative interior of the set Fpp.

Subject to the 1PM conditions, the perturbed system of optimality conditions [22] associated
to (P) and (D)

Az —b
F(w):=]| ATy+s—c | =0, >0, s>0, (2.4)
XSe — e

has a unique solution w(u) = (z(u), y(u), s(p)), for each p > 0 [11, 22], where in (2.4), XS
is the diagonal matrix with diagonal elements xz;s;, i = 1,n, and e := (1,1,...,1) € R*. As
 tends to zero, the points w(u), p > 0, which form the primal-dual central path, converge to
the analytic centre of the primal-dual solution set, which is a strictly complementary solution
of problems (P) and (D) [23].

3 The Primal-Dual Corrector (PDC) algorithm

3.1 Description of the algorithm

Let problems (P) and (D) satisfy the 1PM conditions, and assume that a point w® =

20, 9%, s°) satisfying (2.3) is available as a starting point of the algorithm.
g

The PDC algorithm attempts to follow the primal-dual central path of (P) and (D) ap-
proximately to a solution of these problems, in a similar fashion to long-step primal-dual

path-following 1PMs.

At the current iterate w* = (2%, y*, s¥), k > 0, of the PDC algorithm, a parameter p > 0 is
picked
o= o*pt, (3.1)

where pf := (z¥)Ts*/n, and o* € (0,1) is a centring parameter that can be fixed at the
start of the algorithm or computed on each iteration by some automatic procedure. Then
we compute the Newton direction dw* = (dz¥, dy¥, ds*) from w* for the system F,(w) =0

in (2.4), i.e., dw” is the solution of the linear system
Fl(w*) dw* = —F,(w"), (3.2)

where F (w") is the Jacobian of F), at w”. The system (3.2) is equivalent to

A 0 0 dz* Axk —b
0 AT I dy* | =—| ATyF+sb—c |. (3.3)
Sk 0 XFk ds* XkSke — gk ke

Next, a corrector direction dw** = (dz**° dy*<, ds**) is computed by solving the linear

system
Fl:(wk)dwk’c = —F,(w* + duw"). (3.4)

The right-hand side of the system (3.4) represents the error that is introduced in the system
F,(w) = 0 of (2.4) by its linearization around w*, and it has the explicit expression

A(z® +dz*) — b 0
F,(w* 4+ dw") = AT (y*F + dy*) + (sF + ds*) — ¢ = 0 , (3.5)
(XF 4+ dX*)(S* + dS*)e — o* ke dX*dS*e

where the last equation depends on (3.3), and where dX* and dS* are the diagonal matrices

with diagonal elements dz¥, i = 1,n, and ds¥, i = 1, n, respectively. It follows from (3.4) that

the corrector direction attempts to correct this error, in order to position the new iterate

closer to the primal-dual central path.

The resulting search direction dw®"™ = (dz*", dy*", ds*") of the PDC algorithm is the sum
dw®" = dw* + dw**, (3.6)
and the new iterate has the form
a* =g 4 Ok M= yF 4 0hdytT, and SMY =0 4 00dsMT (3.7)

where 0]’5 € (0,1] and 6% € (0, 1] are possibly different primal and dual stepsizes that provide
the conditions
¥ >0 and s> 0. (3.8)

The strict inequalities (3.8), and those in (2.3), together with A having full row rank, imply

k,c

that the Jacobian Fj(w*) is nonsingular [22], and thus, the directions dw* and dw** are

well-defined, for every k& > 0.

In the context of variants of Newton’s method for solving nonlinear systems of equations,
the construction of the search direction (3.6) and of the new iterate (3.7) when 6% = 6% = 6*
coincides with the level-1 composite Newton direction and iterate, respectively, for the non-
linear system F,(w) = 0, starting at w*, where p := o*u*. For a description of this variant
of Newton’s method applied to general nonlinear systems of equations, see, for example, [19],

page 48, and the references therein.

If dw*< := 0, for each k¥ > 0, the PDC algorithm coincides with the PD algorithm (see
pages 8-9 of [22]).

The PDC algorithm applied to problems (P) and (D) can be summarized as follows.
The PDC algorithm:

A point w® = (2%, 4%, s%) is required that satisfies (2.3). Let € > 0 be a tolerance parameter.
At the current iterate w* = (z*, y*, s¥), where k > 0, do:
Step 1: If (zF)Ts* < €, sTOP.
Step 2: Let p* := w and choose o € (0, 1).
Compute the direction dw® = (dz*, dy¥, ds*) from the linear system (3.2).
Compute the corrector direction dw** = (dx*<, dy*<, ds¥) from the system (3.4).
Compute the search direction dw®" = (dz*", dy*", ds*") from (3.6).
Step 3: Choose the stepsizes 0% € (0,1] and 0% € (0,1] along dz*" and (dy*", ds*"),
respectively, such that the new iterate w*™! = (zF*1 yF1 s*¥t1) defined by
(3.7) satisfies (3.8).
Step 4: Let k:=k + 1. Go to Step 1. &

It is easy to check that all the iterates w*, k > 0, are primal-dual strictly feasible. Thus
the only optimality condition that remains to be satisfied (asymptotically) by the iterates
is the zero duality gap, i.e., (z%)"s¥ = ¢Ta* —b"y¥ — 0 as k — oo, which explains the
termination criterion in Step 1. We remark that an infeasible variant of the PDC algorithm
can be developed as for the PD algorithm [22], by abolishing the requirement that w° satisfies

the primal-dual equality constraints. This, however, is not necessary for our present purpose.

3.2 Stepsize procedures for the PDC algorithm

In this subsection, we specify how to perform Step 3 of the PDC algorithm. We first investi-
gate the possibility of employing a common and practical long-step linesearch procedure [22].

For this purpose, we define
1
wh(0) == w* + dw*™ and pF(H) = —(2%(0))"s¥(), for #>0 and k>0. (3.9
n

The stepsize technique in question is described for the PD algorithm on pages 84 and 96
of [22], and we refer to it as the 4 stepsize procedure. In the context of the PDC algorithm,
this translates into choosing the stepsize 85 = 65 = 6* to be the largest 6 € (0, 1] that is

allowed by the inequalities

¥ (0)sF(0) > vk), 0<60<0, i=1,...,n, (3.10)

where the positive constant «y is chosen at the start of the algorithm such that the constraints

(3.10) are satisfied at the starting point w?, i.e.,

1 . .
0<7§Em1n(x?s?: i=1,...,n). (3.11)

Since the iterates satisfy the primal-dual equality constraints, the first n + m equations of

the systems (3.3) and (3.4) provide the orthogonality properties
(dz*)"ds* =0, (dz*)Tds** =0, (ds*)"da** =0, (do*)"ds"* =0, k>0, (3.12)

which together with (3.6) imply (dz®")"ds*" = 0. This, (3.12), (3.6) and (3.9) give the
recurrence
pF@) =1 -0 —a®)uk, 6>0, k>0 (3.13)

It follows from the (m+n+1i)th equation of the systems (3.3), (3.4) and (3.5), that computing
0% according to the above stepsize procedure is equivalent to finding the largest § € (0, 1]
such that

$i(0) := da"dst 0 + [—ak sk + 4+ oF (1 —) pF — dabdsk] 0 + 2FsF — vk >0, (3.14)

7

holds, for all @ € [0,0] and all 5 € {1,...,n}.

Condition (3.11) or the inequalities (3.10) on the previous iteration imply ¢;(0) > 0, i = 1, n.
We expect ¢;(0) = 0 for some i € {1,...,n} because of the previous choice of stepsize. In
this case we require ¢;(0) > 0, so that the steplength of the current iteration can be positive.

Thus, for i € {1,...,n}, we want the inequality
o (1 — y)u* — dakdst > 0, (3.15)
whenever ¢ satisfies
xFsh = yuk. (3.16)

The next example shows, however, that there are primal-dual strictly feasible points w and
parameters o € (0,1) and v € (0,1) with v < min (z;s;/p : j = 1,n), where p := z"s/n,
such that (3.16) holds for some 4, but (3.15) is violated for the same 7. Thus if we make such
choices of parameters at the start of the pPDC algorithm when applied to the LP problem in
question, and let w® := w, then the stepsize procedure (3.10) fails to be well-defined for the

algorithm.

Example. Consider the LP problem

m]iRr% x1 subject to xo+x3 =2, = = (21,29,23) >0, (3.17)
zTE

and its dual

max 2y subjectto s1 =1, y+5 =0, y+s3=0, s=(s1,52,83) >0, (3.18)
(y,5)ERXR3

which trivially satisfy the 1PM conditions. Let the parameters satisfy

3
o€ (0,1) and 0<7§%0, (3.19)
and let w = (x,y, s) be
8 8
331:2’ $2:1|:—+2:|, T3 =2—1To9, 81 =1, Sy=83=—y>0. (3.20)
o 3|0

From (3.20), w satisfies the primal-dual equality constraints. Thus we have

1 1
W= g(xlsl —+ 2989 + SE383) = g(.’L’l + 282). (321)

Moreover, the choice of x5 in (3.20), o < 1, and the second inequality in (3.19) imply

10y 1
< — < - 3.22
72 30 — 2 ()

8

Thus z3 > 0 and any vector w satisfying (3.19) and (3.20) is a primal-dual strictly feasible
point of (3.17) and (3.18). From (3.21) and z; = 8sy/0, we have

op 8 20
=24 3.23
5 373 (3-23)
and it follows from o € (0, 1) that
8 10
- <M< —. 3.24
3 3 ()

The choice of x5 in (3.20) provides x9ss = yu. We are going to show that
T181 > ToSo = Y, and T3S3 > ToSe = YU, (3.25)
and that (3.15) does not hold for i = 2, i.e.,
o(1 —y)p — dxadsy < 0. (3.26)
Firstly, from x5 < 1 and the choices of x1, s; and o, we obtain
882
T1851 = — > 889 > 8x989 > X989. (327)
o

Moreover, from x5 < 1, 5 + 3 = 2 and s3 = S9, We have x353 = 359 > T2S9.

To show (3.26), we compute from (3.3) the explicit expression of dw and deduce from the
primal-dual equality constraints, that it has the components dzy = ou(1l — z5)/se and dsy =

op — so. Thus we obtain
o(1 —y)pu —dxedsy = op[l —vy — (1 —x9)(M — 1)]. (3.28)

Substituting z, = yM /o, it remains to show that 1 — v — (1 — Mvy/o)(M — 1) < 0, or
equivalently,
YM? — (y+0)M +0(2—7) <O0. (3.29)

It follows from o/ > 20/3 that the expression on the left-hand side of (3.29) is strictly
decreasing in M for M < 10/3. This and (3.24) imply that it is enough to show that (3.29)
holds at M :=8/3. Then, (3.29) is equivalent to the inequality (2/9) - (207 — 30) — o7y < 0,
which is satisfied due to (3.19). O

Decreasing the parameter v on each iteration when the inequalities (3.10) do not provide a
positive stepsize generates a linesearch strategy that overcomes the kind of difficulties that
have been mentioned. We refer to this technique as the variable ~ stepsize procedure.
In particular, at the start of the algorithm, we choose 7% € (0,1) such that the inequalities
(3.11) with 7 := 4° are strictly satisfied. On each iteration, we let v* := %=1 k > 1, unless
(3.16) holds with « := %=1, for some i € {1,...,n}, and (3.15) fails to hold for the same

9

value of i and 7. Then, we choose v¥ € (0,1) such that v* < %=L

Next, the stepsize
0% = 0% := 6% is computed as the largest 6 € (0,1] such that the inequalities (3.10) with
v = v*¥ € (0,1) are satisfied for all # € [0,6]. The sequence v*, k > 0, thus obtained is
monotonically decreasing. See pages 136-145 of [22] for a similar stepsize technique for a

different primal-dual algorithm.

The following standard stepsize procedure offers another way of avoiding the above-mentioned
troubles. In order to ensure condition (3.8) on each iteration, the stepsizes 05 and 0% need

to satisfy the inequalities
6k <0, and 05 <8, k>0, (3.30)

—k —k .
where 0, and 6, are the steps from z* and s* along dz*" and ds*" to the boundaries of the

primal and dual nonnegative bound constraints, respectively. In other words, we have
5’; :=1/max (0, —dz¥" /2 i =T,n), and g5 == 1/max (0, —ds™"/sk i =T,n). (3.31)

The Tpq stepsize procedure [17] chooses 7 € (0,1) at the start of the PDC algorithm.
Then, on every iteration k > 0 of the algorithm, at Step 3, a parameter 7% € [r,1) is chosen,

and the bounds (3.31) are computed. The stepsizes are given the values
6% := min (I,Tkgﬁ) and 6% := min (1,Tk§];). (3.32)

Positive steps can always be taken from z* and s*, since condition (2.3) initially or condition
(3.8) on the previous iteration implies 5’; > 0 and 52 > 0. The parameter 7% in (3.32) may
be fixed at the start of the algorithm, or chosen on every iteration, possibly to tend to 1 as
k — oo [22]. From a numerical point of view, a small value of 7% is usually inefficient, typical
practical values of 7% being 0.995, 0.9995, or even 0.99995. The stepsize procedure 7,4 is
common in the practical implementations of various versions of the PD method, including
those of the MPC algorithm [22].

The same stepsize in the primal and the dual space can be chosen by letting

0" := min (1,6%,05), k>0, (3.33)

' Ypo

where 6f and 6} are defined in (3.32) [22]. We refer to this choice of stepsize as the T
procedure.

10

4 An example of failure of the PDC algorithm

We find in this section that some interesting features of the PDC algorithm are exposed by

the LP problem

mIiRr% x1 4+ axy subject to zp+x3=2, x=(x1,29,23) >0, (4.1)
fAS

which depends on a positive parameter «. Its dual problem is

max 2y subjectto s1 =1, y+so=a, y+s3=0, s=(s1,8,83)>0. (4.2)
(y,8)ERxR3

For any o > 0, problems (4.1) and (4.2) have the unique solution w* = (z*,y*, s*), where
z*=(0,0,2), y*=0, and s*=(1,a,0), (4.3)
and the 1PM conditions are satisfied.

We apply the PDC algorithm to problems (4.1) and (4.2). Then every iterate w* = (z*,y*, s*)
satisfies the equations

bk =2 =1, yfrsh=a, yr+si=0, sE=st+q, (4.4)
and the inequalities
O<ab, 0<ab<2 0<a2b<2 sE>a sE>0 k>0 (4.5)

The direction dw* = (dz*, dy*, ds*) defined by (3.3) has the following explicit expression

2 k, k 1— kY _ k .k
2 2
kik(2sk — o) — 25k sk
dsy =0, ds§= 7H (Q;k — a)a:k 273 dsk =dsk, dyt = —dst. (4.6b)
2 2

The expression of the corrector direction dw®¢ = (da*<, dy*<, ds*<) follows from the systems
(3.4) and (3.5) and it is
—2dsk

k’ —_— k’ —_— k k’ —_— k,

de7 =0, dry°= 25 — ok dry, dry = —dzy", (4.7a)
ke _ ke _ adzs k ke _ .k, ke _ k,

dsy =0, dsy“= 2% — dss, dsy©=dsy‘, dy™° = —dsy”. (4.7b)

From (4.6) and (4.7), we deduce that the resulting search direction dw®"™ = dw* + dw** has

the components

2dsk
k), ka k’
o}’ = —ak + o*pF, dab” = —dal" = dak (1 - M)) (4.82)
d k
ds™™ =0, dsb" = dst" = dsh (1 o k) : (4.8b)
285 — aws

11

4.1 Theoretical analysis of the example

Let @ > 0 in problems (4.1) and (4.2). In this subsection, we investigate the behaviour in
exact arithmetic of the PDC algorithm when applied to these problems. Our only assumptions
on the choice of stepsizes 0]’; and 0% are given in Step 3 of the PDC algorithm, so they can be
chosen arbitrarily in (0, 1], provided that they also satisfy the inequalities (3.30). The primal
and dual stepsizes can be equal to each other, or distinct. We will show in what follows that,
if the centring parameter o* is set to the same value o € (0, 1) on each iteration, then there
exist starting points w® for the PDC algorithm such that the sequence of duality gaps of the
generated iterates does not converge to zero, which implies that the iterates do not converge

to the solution of problems (4.1) and (4.2) (see our remarks following equation (2.2)).

The first lemma is an intermediate result, in which we identify conditions on the current
iterate w* of the PDC algorithm such that the second and third components of dz* and ds*-
are greater in absolute value than their dz* and ds* counterparts, yielding a search direction

that prevents the progress of w¥, in particular of z*, towards the optimum.

Lemma 4.1 Consider problems (4.1) and (4.2), for some o > 0. Let w* = (zF, y*, s¥),
k > 0, be the sequence of iterates generated by the PDC algorithm when applied to these
problems. If

1 1
k> eh =2 50’“ and s <k = gaak, (4.9)
then
dzb® > —dzk >0 and —dsh>dst >0, (4.10)
which tmply
dzb" = —da¥" >0 and dsb" =dsb" <. (4.11)

Proof. Throughout the proof, we drop the iteration superscript k. Firstly, we remark that
€ € (1.5,2) and v > 0, since 0 € (0,1) and o > 0. Thus from (4.9), (4.4) and (4.5), we have

Tg=2—23€[£2) and s3=3s,— € (0,V]. (4.12)

Since z9 < 2 and sy > «, the denominator 2s; — axs of expressions (4.8a) and (4.8b) is

positive. Therefore it is sufficient to establish the relations

2d d
02 o1 and 22 o (4.13)
2589 — QT 289 — o

Indeed, they imply dss > 0 and dxs < 0. Further, (4.7a) and (4.7b) give |dz§| > |dz| and
|ds§| > |dsy| with the sign changes of expression (4.10). The inequalities in (4.11) follow
from (3.6) and (4.10), while the equalities are the expressions (4.8).

12

The mean value y of the complementarity products can be written
1

1
B= §($181 + x9Sy + x383) = g(arl + azy + 2s3), (4.14)

where (4.4) gives the second equality. We substitute (4.14) and the expression (4.6b) for ds,
into the first part of (4.13). Then, using the feasibility relation sy — s3 = «, we obtain the

following equivalent expression for the first inequality in (4.13), in terms of x5, s3 and z;
8(3 — 0)s3 +4a[9 — o — (3+ 0)xas3 + a?[3x5 — 2(6 + 0)zy + 12] — 20 (a + 253)71 < 0. (4.15)
It follows from z; > 0, s3 > 0, ¢ > 0 and « > 0, that it is sufficient to show
8(3—0)s5 +4al9 — 0 — (3 + 0)xa)s3 + &’[375 — 2(6 + 0)zo + 12] < 0, (4.16)

for 5 € [€,2) and s3 € (0,v]. The left-hand side of (4.16) is a convex function in s3, and
therefore its supremum occurs at one of the end points of the interval (0,7|. It remains to
verify that (4.16) holds for s3 = 0 and for s3 = v = ao/8. At s3 = 0, condition (4.16)
becomes

375 — 2(6 + 0)ze + 12 < 0. (4.17)

In order to check that (4.17) is achieved for any z, € [£,2), it is enough to verify that it
holds at zo = £, since the the left-hand side of (4.17) is a decreasing function of z5. In the
case 15 = £ = 2 — /2, the left-hand side of (4.17) has the value —40 + 1.7502, which is
negative as required due to o € (0,1). For s3 = ao/8, condition (4.16) becomes

2425 — 4(0® + To 4 24)z5 — 0° — 0% + 360 + 96 < 0, (4.18)

whose left-hand side is also decreasing in z,. At zo = &, the above condition becomes
03 + 1102 — 200 < 0, which holds for any o € (0,1). Thus the first inequality in (4.13) is

achieved.

Similarly, substituting (4.14) and the expression of dzs from (4.6a) into the second inequality
in (4.13), and employing the feasibility relations 3 = 2 — x5 and ss = « + s3, we deduce the

following form of this inequality
653 + 2a[6 + 0 — (3 4 0)za]s3 + *[(3 — 0)a5 — (9 — 0)x2 + 6] — o (zy — 1)y < 0. (4.19)
Since z1 >0, @« >0, 0 € (0,1), o > £ > 1, it is sufficient to establish
653 + 206 + 0 — (34 0)za]ss + 2[(3 —)22 — (9 — o)z + 6] < 0, (4.20)

for x5 € [€,2) and s3 € (0,v]. As before, the left-hand side of (4.20) is convex in s3. It is
thus enough to show that (4.20) holds at s;3 = 0 and s3 = v = ao/8. At s3 = 0, condition
(4.20) becomes

3(z3 — 3z 4+ 2) + ox2(1 — x2) <0, (4.21)

13

which holds for any z, € (1,2) and o € (0,1). For s3 = ao/8, condition (4.20) becomes
32(3 — o)z — 8(0® — 0 + 36)x, + 110% + 480 + 192 < 0. (4.22)

The left-hand side of (4.22) is convex in zy. Substituting 5 = 2 in expression (4.22) yields
—50? — 640 < 0. At o = £ = 2 — 0/2, the left-hand side of (4.22) is —40® + 7902 — 1120
which is negative for any o € (0,1). This proves that the second inequality in (4.13) also
holds. O

The next lemma gives some cases when the PDC algorithm fails to converge to the solution
of problems (4.1) and (4.2).

Lemma 4.2 Let the PDC algorithm be applied to problems (4.1) and (4.2), for some o > 0,
and let the sequence of centring parameters o* € (0,1), k > 0, be monotonically increasing.
Let the starting point w® = (2°,4°, s°) of the algorithm be any primal-dual strictly feasible
point of (4.1) and (4.2) with

23> and s <10 (4.23)

where £° := 2 — ¢%/2 and V° := a0®/8. Then the sequence of duality gaps of the iterates

generated by the algorithm is bounded away from zero, and the following bound holds

(z")Ts* > a, k>0, (4.24)

Proof. Let & := 2 — 0%/2 and v* := a.0*/8, k > 0, which also occur in (4.9). Since oF,
k > 0, is monotonically increasing, we have

>Rt and F <ALk >0. (4.25)

Due to condition (4.23), Lemma 4.1 applies with £ = 0. Thus relations (4.11) provide the
inequalities dzS" = —dz3" > 0 and ds)” = dsy” < 0. This, the positive stepsizes, (4.23) and
(4.25) imply

x> a9 >0 > ¢ and sy < sy <0 <l (4.26)

Thus Lemma 4.1 applies again, this time for £ = 1, and by the same argument as for
k = 0, we deduce the analogue of the relations (4.26), where each index is increased by one.
Inductively, relations (4.26) hold for £ > 0. They provide the bound x% > £° > 0, k > 0,
which implies, together with the feasibility condition s& > «, that the complementarity
products zXs% are bounded below by the positive constant £« for & > 0. The required

result now follows from (z%)7s* > zksk k > 0. O

The result we promised at the beginning of this subsection is given next. It is the highlight

of the subsection.

14

Corollary 4.3 Let the PDC algorithm be applied to problems (4.1) and (4.2), for some

a > 0, and let the centring parameters o satisfy
o¥:=0€(0,1), k>0. (4.27)

Let the starting point w® = (2°,9°, s°) of the algorithm be any primal-dual strictly feasible
point of (4.1) and (4.2) with

13> & and s <v, (4.28)
where £ := 2 — /2 and v := «c/8. Then the sequence of duality gaps of the iterates

generated by the algorithm is bounded away from zero, and the following bound holds

(*)Ts* > €, k>0. (4.29)

Proof. Let of:=0, ¥ :=¢ and v* :=v, k > 0, in Lemma 4.2. O

The next corollary is concerned with some additional properties of the stepsize and the
iterates generated by the PDC algorithm when the conditions of the above corollary are
satisfied.

Corollary 4.4 Under the conditions of Corollary 4.3, let 6 = 6 := 6%, for k > 0. Then
we have
0 -0, k— oo, (4.30)

and
wh — W # w*, k— oo, (4.31)
where W s a primal-dual feasible point of (4.1) and (4.2), and w* is defined in (4.3).

In particular, if the T stepsize procedure is employed in the PDC algorithm, then at least one

of the following two sets of limits holds

(z5,25) = (2,0), k — oo, (4.32a)

sF = (sF, sk s5) = (1,0,0) = 5%, k— 0. (4.32b)

Proof. From (3.13), we deduce

k+1
1

Lk

=1-60*1—-0), k>0, (4.33)

which further gives that the sequence p*, k > 0, is strictly decreasing. This, together with
(4.29), implies that u*™1/uF — 1, as k — oo. The limit (4.30) now follows from (4.33) and
o€ (0,1).

15

Lemma 4.1 implies

—drk" = dak" <0, and dsi" =dsi" <0, k>0, (4.34)

It follows from relations (3.7) and #* > 0 that the sequences z¥, s¥ and s¥, k > 0, are strictly

decreasing, while %, k > 0, is strictly increasing. Since, conforming to (4.5), they are also
bounded, they are convergent. It follows from p* := (2% + 25sk + 2%s%)/3, k > 0, being
convergent that z¥ converges as well. Thus w* converges, and its limit @ is primal-dual

feasible since every iterate is. Moreover, Corollary 4.3 implies W # w*.

Now let 6%, k > 0, be computed by the 7 procedure. From (4.4), o > 0 and (4.34), we have
—sk/dsk" > —sk/dsE" k> 0. Moreover, if dz¥" == —aF + ok pk < 0, then —az¥/da®™ > 1.
Thus the expressions (3.31) and (3.33) become

k k
-k T3 —k

6 and 0" = min (1, r’“?';, Tk@Z), k> 0. (4.35)

__73 __ %
P dzb"’ ¢ dstr’
Since the limit (4.30) holds, #* cannot be equal to 1 asymptotically. It follows from (4.35)
that there exists a subsequence k;, i > 0, such that 8% = 7"“5?, ¢ > 0, where j =porj=d.
If j = p, from (3.7), (4.35) and 7% > 7, we deduce

ahi Tt = gk o ghigaler — (1 — 7Rk < (1 — 1)k, i >0 (4.36)

Since z%, k > 0, is strictly decreasing, it follows from (4.36) and 7 € (0,1) that z&*! — 0, as
i — 00, which further gives 25 — 0, as k — oo, since the sequence z%, k > 0, is convergent.

Moreover, from (4.4), we have z& — 2, k — oo.

Similarly, if j = d, we deduce that s& — 0, as kK — oo, and the remaining limits in (4.32b)
follow from (4.4). O

Relations (4.29) and (4.32) imply that the iterates w* generated by the PDC algorithm with
the T stepsize procedure satisfy the limit z5s%/u¥ — 0, & — oo, regardless of how the
parameters 7% and 7 are chosen in the stepsize procedure. We remark that existing global
convergence results for most long-step primal-dual path-following 1PMs (which show that
(zF)TsF — 0, k — o00) require that the sequences z¥s¥/u*, k > 0, are bounded away from

zero, for i = 1, n.

Corollary 4.3 and the first part of Corollary 4.4 apply also to the case when the variable
v stepsize procedure is employed in the PDC algorithm. This linesearch technique provides
the condition that z¥s¥/u* k > 0, are bounded away from zero, i = 1,n, provided the
parameters 7%, k > 0, are chosen to be bounded away from zero. Our results show, however,
that for the PDC algorithm, this condition is not enough to ensure global convergence of the

algorithm, the role of the corrector directions being decisive.

16

We remark that subject to the conditions of Corollary 4.3, the PD algorithm with the ~
stepsize procedure converges to the solution of the problems (4.1) and (4.2), for any v € (0, 1)
that satisfies (3.11) (see [22] for a general result).

4.2 Numerical calculations

In this subsection, we illustrate the numerical performance of the PDC algorithm with the
Tpa Stepsize procedure when applied to problems (4.1) and (4.2), for certain values of the
parameters. We implemented this algorithm in MATLAB (version 6.0, R12).

Example 1. We set the parameters of the algorithm to the values
oF:=0.1 and 7":=00995, for k>0, and e:=107%, (4.37)
and we applied the algorithm to (4.1) and (4.2) with o := 8, starting from w® = (22,49, s°),
2 :=(8,1.95,0.05), ¢°:=-0.1, s°:=(1,8.1,0.1), (4.38)

which is a primal-dual strictly feasible point of these problems.

The conditions of Corollary 4.3 are satisfied in this case, and the lower bound on the duality
gap (zF)Ts* of the iterates in relation (4.29) has the value o = 1.95 -8 = 15.6. Since
(%) Ts% = 23.8 and € = 1078, the Corollary implies that the duality gap of the iterates cannot
be decreased to a value lower than e. Our implementation, indeed, does not terminate at
Step 1 of the algorithm. Loss of accuracy occurs as k increases, due to growing ill-conditioning
in the computation of the search directions (see (4.43) below), leading to the violation of
the accuracy tests in our code. Then, the algorithm halts, 6-8 iterations being the usual,
depending on the way in which the directions are calculated (normal equations approach [22],

explicit expressions, etc.).

Tables 1 and 2 report the dual and the primal results computed during the first four iterations
of the algorithm, respectively. For k > 4, the behaviour of the algorithm is similar. All the
entries in the tables are rounded to 4 digits times a power of 10, though we do not specify
the power when it is 1. The relations (4.4) are satisfied to machine precision. Analysing the

data in these tables provides us with significant insight into the behaviour of the algorithm.

Firstly, we inspect the data in Table 1. The values in the third and fourth columns show
that the lengths of both ds* and ds* increase very rapidly (see also (4.43)). Moreover, the
corrector components dsi® and dsb are much longer in absolute value than ds& and ds,
respectively, and the relations (4.10) and (4.11) are verified for £ € {0,...,4}.

17

(s, 55, s5)T | (dsh,dsh, dsh)T | (dst*,dsh*, ds)T by 2k (a*)Tsh

1.0000 0 0

8.1000 8.1422 —4.1387-10% | 2.4647-10"* | —2.0000-10"! | 2.3800-10
1.0000- 10! 8.1422 —4.1387 - 102

1.0000 0 0

8.0005 2.1305 - 103 —3.0363-10° | 1.6467-10"" | —1.0000-10~3 | 2.3995- 10
5.0000- 104 2.1305 - 10° —3.0363 - 10°

1.0000 0 0

8.0000 4.2660 - 10° —2.4265- 106 | 1.0303-1072% | —5.0000-10=% | 2.3996 - 10
2.5000- 106 4.2660 - 10° —2.4265 - 106

1.0000 0 0

8.0000 8.5321 - 107 —1.9412-10%% | 6.4392-1073% | —2.5000-10=% | 2.3996 - 10
1.2500- 108 8.5321 - 107 —1.9412 - 10%3

1.0000 0 0

8.0000 1.7064 - 10'° —1.5530-10%° | 4.0245-10~*' | —1.2500-10~'° | 2.3996 - 10
6.2500 - 1011 1.7064 - 10'° —1.5530 - 10%°

Table 1: The first five dual iterates of the PDC algorithm when applied to problems (4.1) and (4.2).

From (3.31) and the data in Table 1, we deduce

k
Oy = ——2 k=04 (4.39)
dsy
It follows from (3.7), (3.32) and (4.37) that the relations
shtt = sk + T’@st’;”" =(1-7%)sk=5-10"%s%5 k=0,4, (4.40)

hold, which together with the dual equality constraints, explain the change to (y*, s*) in the
second and the sixth columns of Table 1.

Thus after four iterations, the dual iterates and the dual objective function are within ¢ =
1078 of their optimal values. The numbers in the last column of Table 1 show that the duality
gap of the iterates increases, implying that the primal iterate z* is far from the optimum.
We remark that the increase in the value of the duality gap is due to the fact that we allow
different stepsizes to be taken in the primal and dual space (else, conform (3.13), the duality

gap of the iterates is strictly decreasing).

Now we address the data in Table 2. As before, this data and the definition (3.31) imply

k
—k x
6 =——2_ k=04, 4.41
P dxg”" ()
which, together with (3.7), (3.32) and (4.37), provides the recurrence
ok = 2k + Tydak = (1 —m*)ah = 5-10%%, k=0,4. (4.42)

18

k| (af, k2T | (dob, dak, dab)T | (da¥C dabe, deb)T _ﬁ ¥ + 8k (xk)T sk

8.0000 —7.2067 0

0 1.9500 —3.8122 1.0347-10% | 5.0173-10~* | 2.3600- 10 | 2.3800- 10
5.0000 - 10~2 3.8122 —1.0347 - 102
7.9964 —7.1966 0

1 1.9997 —5.3443 - 10? 7.5908 - 108 | 3.2935-10~'% | 2.3994-10 | 2.3995- 10
2.5000- 104 5.3443 - 102 —7.5908 - 108
7.9964 —7.1965 0

2 2.0000 —1.0665 - 10° 6.0664 - 10'° | 2.0605-10—22 | 2.3996- 10 | 2.3996 - 10
1.25-10-6 1.0665 - 10° —6.0664 - 10'°
7.9964 —7.1965 0

3 2.0000 —2.1330- 107 4.8531-10%2 | 1.2878-1073 | 2.3996- 10 | 2.3996 - 10
6.2500- 1079 2.1330- 107 —4.8531-10%2
7.9964 —7.1965 0

4 2.0000 —4.2660 - 10° 3.8825-10%9 | 8.0490-10~*! | 2.3996- 10 | 2.3996 - 10
3.1250-10~11 4.2660 - 10° —3.8825 - 10%°

Table 2: The first five primal iterates of the PDC algorithm when applied to problems (4.1)
and (4.2).

It follows from z5 = 2 — z%, that the pair (2, 2%) approach the point (2,0) very fast, and
x* is within e distance to the nonoptimal boundaries determined by the constraints z, = 2
and 3 = 0. The values in the third and fourth column of Table 2 show that the lengths
of dz* and dz** increase very rapidly with k, due to the length of their second and third
components (see also (4.43)). Moreover, dz5° and dz° are much longer in absolute value
than, and have opposite signs to, dr% and dz%, confirming that relations (4.10) and (4.11)
hold. The direction dz* ‘points towards’ the optimum z* = (0,0, 2), while the second and
third components of the corrector ‘point away’ from it. Thus these primal components of

the resulting search direction dw*" point away from the optimum.

If 8 72 and sk \, a = 8, as k increases, then the denominator 2s% — ax¥ in the expressions
(4.6) and (4.7) of dw* and dw** tends to 0, or equivalently, the matrix of the systems (3.2)
and (3.4) converges to a singular matrix. In our case, the values of 2s% — az%, k = 0,4,

rounded to 4 digits times a power of 10 are

250 — azl = 6.0000- 10", 2s! — azl = 3.0000 - 107%, 252 — az? = 1.5000 - 107,
253 — axd = 7.5000- 1078, 253 — ax; = 3.7500 - 10710,
(4.43)

As we already remarked, the increasing ill-conditioning ultimately stops the algorithm. <

Corollary 4.3 gives sufficient conditions for the pPDC algorithm to fail to converge to the

solution of our example, but our numerical evidence and the way we established the quantities

19

& and v suggest that these conditions are not necessary. For example, the PDC algorithm
with the 7,4 stepsize procedure also fails to converge numerically if in the previous example
we let 20 := (8,1.75,0.25), where x5 = 1.75 < £ = 1.95. Nevertheless if the starting point
w® of the algorithm is “sufficiently close” to the primal-dual central path of these problems,
then we observed numerical convergence of the algorithm to the solution of the problems.
We proved a more general result: a short-step PDC algorithm converges when applied to

problems (P) and (D). For conciseness, this result is omitted.
Next we describe succintly a numerical calculation with a popular choice of o*.

Example 2. For k£ > 0, we compute the centring parameters ¢* > 0 in the PDC algorithm

by the procedure employed in the MPC algorithm [15, 22]. Thus we let

(4.44)

o (zF + gﬁd:vk’“)T(sk —+ §stk’“) '
: (2F) T s* ’

where dw*® = (dz®9, dy**, ds*?) is defined by (3.3) with o := 0. The stepsizes 5’; and

k@ and ds®®, to the primal and dual

5’; are the maximum steps from z* and s*, along dx
constraint boundaries, respectively. Thus they are defined by (3.31) with dw*" := dw"e.
The index i € {1,2,3,4} is a constant that we fix at the start of the PDC algorithm. See

Chapter 10 of [22] for more explanations about this choice of o*.

Let o := 8 in (4.1) and (4.2), and let the starting point w® = (2%, 4%, s°) of the PDC algorithm

with the 7,4 stepsize procedure be
¥ :=(8,1.99,0.01), ¢°:=-0.1, s°:=(1,8.1,0.1). (4.45)

Let € := 1078 and, for £ > 0, let 7% := 0.995 and o* be computed from (4.44) with ¢ = 3.
Then the algorithm does not terminate at Step 1, but fails after 5 iterations due to loss of
accuracy. The iterates generated by the algorithm are very similar to the ones in Tables 1
and 2. For example, the (z3,z3) components are within 107! distance to the point (2,0),
and the dual iterates (y*, s*) are within € distance to the optimum. The numerical values of
ok k = 10,6, are all of order 107! and are strictly increasing. The values of the difference

oktl — g% k=1,...,5, rounded to 4 digits times a power of 10 are

ot — 0% =3.1762 - 1073, 02— o' =1.6115-1075, 0% — 0?2 =8.0581 - 1078,

ot — 03 =4.0290 - 10719, o® —o* =2.0102- 10712, 0% — 05 =1.0880 - 10714,
(4.46)
The condition (4.23) is satisfied numerically. Thus Lemma 4.2 applies, and the value of the
lower bound in (4.24) is €2 o = 1.9476 - 8 ~ 15.58. It follows from (2°) s = 24.12 and (4.24)

20

that the duality gaps (z*)"s* cannot be decreased below €. Therefore the algorithm cannot

terminate at Step 1.
The behaviour of the algorithm is similar for any i € {1,2,4} in (4.44). O

Our numerical experience with the PDC algorithm is not restricted to the example problems

(4.1) and (4.2). The algorithm does terminate at Step 1 on most LP instances that we tested.

5 Conclusions

5.1 Overcoming the failure: the Primal-Dual Second-Order

Corrector (PDSOC) algorithm

The Primal-Dual Corrector (PDC) algorithm that we presented computes on each iteration
an additional direction, a corrector, to augment the direction of the standard primal-dual
path-following interior-point method for LP problems, in an attempt to improve performance.
We found, however, that the new algorithm, the PDC, may fail to converge to the solution
of problems (4.1) and (4.2) in both exact and finite arithmetic, regardless of the choice of
stepsize that is employed. The cause of the bad performance of the algorithm on these
problems is that the corrector direction had too much influence on the resulting search
direction. Therefore in the PDSOC algorithm the contribution from the corrector is the

quadratic function of the steplength 6% = 6F = 6%
wh = wP + 0Fdw + (6F)*dwe, (5.1)

where w* = (2%, y¥, s*) is the current iterate of the PDSOC algorithm applied to problems
(P) and (D), and the directions dw* and dw** are computed as before, for k > 0. The v
linesearch procedure can be shown to be well-defined for the PDsoc algorithm [2], and thus

it can be employed to compute the stepsize 6*.

The quadratic features of the linesearch (5.1) are supported by the interpretation that the
new iterate w**! is chosen along the second-order Taylor approximation around w* of a local
nonlinear path that starts at w* and ends at the point w(o*u*) of the primal-dual central
path of the problems (see Section 5.1 of [2]).

Some convergence properties of the PDSOC algorithm are given in [25] (see Algorithm 2).
It can be shown (see Appendix C of [2]) that these results ensure that, subject to the
conditions of Corollary 4.3, the PDSOC algorithm with the 7 stepsize procedure converges
in exact arithmetic to the solution of problems (4.1) and (4.2), for any v € (0,1) that
satisfies (3.11).

21

Additional convergence and complexity properties for the PDSOC algorithm with practical

choices of the centring parameters and the stepsize are given in Section 5.2 and 5.3 of [2].

Our preliminary numerical experiments with the PDSOC algorithm are very encouraging.

5.2 The relevance of the example to the MpC algorithm

Relating the construction of the PDC to that of the MpC algorithm, we find that, when
applied to problems (P) and (D), the search direction generated in the MPC algorithm is also
the sum of dw”* and a corrector direction. The MPC corrector, however, attempts to adjust
the error generated in the system of optimality conditions of problems (P) and (D) (i.e., the
system F),(w) = 0 in (2.4) with p := 0) by its Newton direction, dw®*, from w*. Thus the
MPC corrector direction is defined by the system (3.4) with ¢* := 0 and dw* := dw*?. We

remark that the centring parameters in the MpC algorithm are computed as in (4.44).

Concerning the use of the inequalities (3.10) to determine the stepsize for the MpPC algorithm,
a similar example to the one in Section 3 can be given to show that the v stepsize procedure
may be ill-defined for this algorithm (see Appendix B of [2]).

As we already mentioned in the introductory section, the example of failure of the PDC
algorithm to converge that we presented in Section 4 does not apply to the MPC algorithm.
We did not show theoretically that the MPC algorithm converges on this example, but found
no numerical evidence that would imply otherwise. Our MATLAB implementation of the
MPC algorithm with the 7,4 stepsize procedure was successful in solving problems (4.1) and
(4.2), for various starting points. For example, for the starting point defined in (4.38) or in
(4.45), the MmpPC algorithm similarly generates long correctors that move the primal iterate
away from the optimum on early iterations. It “recovers” quickly, however, and converges
fast to the solution. The example throws doubt nevertheless, on the convergence properties
of the MPC algorithm in general, due to the above-mentioned similarities between the two
algorithms and the cause of failure of the PDC on the example. It seems highly unlikely that
the occurrence of long corrector directions in the performance of the MpC algorithm would
always have a beneficial or harmless effect. A theoretical understanding of the numerical

behaviour of the MPC algorithm constitutes potential future work.

Besides its strong connection to the MPC algorithm, we find the PDC algorithm to be interest-
ing in itself, since the examples we presented emphasize the disadvantages of this particular

way of constructing corrector directions and new iterates.

22

References

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

T. J. Carpenter, 1. J. Lustig, J. M. Mulvey, and D. F. Shanno. Higher-order predictor-
corrector interior point methods with application to quadratic objectives. SIAM J.
Optim., 3(4):696-725, 1993.

C. Cartis. On interior point methods for linear programming, 2004. PhD thesis, De-
partment of Applied Mathematics and Theoretical Physics, University of Cambridge.

R. M. Freund and S. Mizuno. Interior point methods: current status and future direc-
tions. In High performance optimization, volume 33 of Appl. Optim., pages 441-466.
Kluwer Acad. Publ., Dordrecht, 2000.

J. Gondzio. Multiple centrality corrections in a primal-dual method for linear program-
ming. Comput. Optim. Appl., 6(2):137-156, 1996.

C. C. Gonzaga. Path-following methods for linear programming. SIAM Rev., 34(2),
1992.

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinator-
ica, 4(4):373-395, 1984.

M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algo-
rithm for linear programming. Math. Programming, 61(3, Ser. A):263-280, 1993.

M. Kojima, S. Mizuno, and A. Yoshise. A primal-dual interior point algorithm for
linear programming. In Progress in mathematical programming (Pacific Grove, CA,
1987), pages 29-47. Springer, New York, 1989.

I. J. Lustig, R. E. Marsten, and D. F. Shanno. Computational experience with a primal-
dual interior point method for linear programming. Linear Algebra Appl., 152:191-222,
1991.

I. J. Lustig, R. E. Marsten, and D. F. Shanno. On implementing Mehrotra’s predictor-
corrector interior-point method for linear programming. SIAM J. Optim., 2(3):435-449,
1992.

N. Megiddo. Pathways to the optimal set in linear programming. In Progress in math-
ematical programming (Pacific Grove, CA, 1987), pages 131-158. Springer, New York,
19809.

23

[12] S. Mehrotra. Higher order methods and their performance. Technical Report 90-16R1,
Dept. of IE/MS, Northwestern University, 1990.

[13] S. Mehrotra. Generalized predictor-corrector methods and their performance. Technical
Report 91-17, Dept. of IE/MS, Northwestern University, 1991.

[14] S. Mehrotra. On finding a vertex solution using interior point methods. Linear Algebra
Appl., 152:233-253, 1991.

[15] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J.
Optim., 2(4):575-601, 1992.

[16] S. Mehrotra. Asymptotic convergence in a generalized predictor-corrector method.
Math. Programming, 74(1, Ser. A):11-28, 1996.

[17] J. Nocedal and S. J. Wright. Numerical optimization. Springer-Verlag, New York, 1999.

[18] F. A. Potra and S. J. Wright. Interior-point methods. J. Comput. Appl. Math., 124(1-
2):281-302, 2000.

[19] R. Tapia, Y. Zhang, M. Saltzman, and A. Weiser. The Mehrotra predictor-corrector
interior-point method as a perturbed composite Newton method. SIAM J. Optim.,
6(1):47-56, 1996.

[20] M. H. Wright. Interior methods for constrained optimization. Acta Numer., pages
341-407, 1992.

[21] M. H. Wright. The interior-point revolution in constrained optimization. In High per-
formance algorithms and software in nonlinear optimization (Ischia, 1997), volume 24
of Appl. Optim., pages 359-381. Kluwer Acad. Publ., Dordrecht, 1998.

[22] S. J. Wright. Primal-dual Interior-Point Methods. Society for Industrial and Applied
Mathematics (STAM), Philadelphia, 1997.

[23] Y. Ye. Interior Point Algorithms:Theory and Analysis. John Wiley and Sons, New
York, 1997.

[24] Y. Zhang. User’s guide to LIPSOL: linear-programming interior point solvers V0.4.
Optim. Methods Softw., 11/12(1-4):385-396, 1999.

[25] Y. Zhang and D. T. Zhang. On polynomiality of the Mehrotra-type predictor-corrector
interior-point algorithms. Math. Programming, 68(3, Ser. A):303-318, 1995.

24

