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Abstract

In this paper we analyze the rate of local convergence of the Newton primal-dual interior-
point method when the iterates are kept strictly feasible with respect to the inequality con-
straints.

It is shown under the classical conditions that the rate is g—quadratic when the functions
associated to the inequality constraints define a locally concave feasible region. In the noncon-
cave case, the gq—quadratic rate is achieved provided the step in the primal variables does not
become asymptotically orthogonal to any of the gradients of the binding inequality constraints.
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1 Introduction

The local convergence theory of (infeasible) primal-dual interior-point methods for nonlinear
programming was developed in the papers by El-Bakry et al. [4] and Yamashita and Yabe [12].
These papers show a g—quadratic rate of local convergence under the classical assumptions (second
order sufficient optimality conditions, linear independence of the gradients of functions defining the
binding constraints (LICQ), and strict complementarity). The study of q—superlinear convergence
for quasi-Newton updates is reported in [8] and [12]. Furthermore, Vicente and Wright [10] proved
a gq—quadratic rate of convergence for a variant of the primal-dual interior-point method under de-
generacy (replacing the LICQ by the Mangasarian—Fromowitz constraint qualification). In these
approaches, the corresponding primal-dual interior-point method deals with the multipliers associ-
ated to both equality and inequality constraints as independent variables, and the primal-dual step
is a Newton step for a perturbation of the first order necessary conditions for optimality. These
approaches are infeasible since feasibility, corresponding to equality and, more importantly, to in-
equality constraints (rather than simple bounds), is only achieved asymptotically. Other rates of

convergence for different interior-point methods for nonlinear programming have been established
in [1], [3], [7], [9], and [11].
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Gould, Orban, Sartenaer, and Toint [6] investigated the rate of convergence of primal-dual log-
arithmic barrier interior-point methods for linear equality constraints and general inequalities. The
log-barrier approach maintains the iterates strictly feasible with respect to the inequality constraints,
and the multipliers corresponding to the equalities are treated implicitly as dependent variables.
The authors proved g—superlinear convergence, with a rate that may be chosen arbitrarily close
to quadratic. Basically, they studied conditions under which a single primal-dual Newton step is
strictly feasible and satisfies appropriate log-barrier subproblem termination criteria.

In this paper we analyze the rate of local convergence of the feasible primal-dual interior-point
method along the lines of the analyses in [4] and [12]. The aspect considered is that inequality
constraints are not converted into equalities using slack variables. The method keeps strict feasibility
with respect to the inequality constraints. The other components of the primal-dual interior-point
method remain essentially the same: the primal-dual step is a Newton step on the perturbed KKT
first order optimality conditions and the various parameters are updated appropriately to induce
a gq—quadratic rate on the sequence of primal-dual iterates. To our knowledge this is the first time
quadratic convergence is proved for interior-point methods for general nonlinear programming when
inequalities are treated directly without the introduction of slack variables.

Our work on the feasible primal-dual interior-point method was motivated by an application
to nonlinear programming problems arising from convex disjunctive programming [2]. In these
problems, some of the functions might not be smooth or well-defined if certain inequalities are not
satisfied strictly.

The material of this paper is organized in the following way. In Section 2, we describe the
feasible primal-dual interior-point method in detail. The method is analyzed in Section 3, where it
is shown that the iterates converge locally with a g—quadratic rate in the case of concave inequalities.
The analysis includes the case where the step length is computed inexactly. The nonconcave case
is discussed in Section 4. The rate remains g—quadratic for nonconcave inequalities as long as the
primal component of the step is asymptotically nonorthogonal to the gradients of the (nonconcave)
functions defining the binding inequalities. The paper is concluded in Section 5 with remarks about
the interest and limitation of the analyzed approach.

2 The feasible primal-dual interior-point method

We consider the general nonlinear programming problem written in the form

min  f(z),
st.  h(z) =0, (1)
g(x) <0,

where f : IR" — IR, h : IR® — IR™", and g : IR™ — IR"9. The assumptions on the differentia-
bility of the functions f, g, and h will be stated later. The numbers m; and m, are assumed to be
positive integers. The material of this paper remains valid in the case where there are no equality
constraints (my = 0).

The Lagrangean function for problem (1) is £ : IR™ "™+ +™s — R defined by

Uz, y,2) = f(z)+ h(z) Ty + g(x) " 2,



where z are the primal variables and the pair (y,z) represents the dual variables (or Lagrange
multipliers). The gradient and the Hessian of ¢ with respect to the primal variables are given by

Vol(z,y,2) = Vf(x)+ Vh(z)y+ V()=

mp Mg
V2 l(x,y,2) = Vif(z)+ Zijzhj(x) + Z 2jV2g; (),
J=1 Jj=1

whenever f, g, and h are continuously differentiable at x.
The Karush-Kuhn-Tucker (KKT) first order (necessary optimality) conditions for problem (1)
are described by
ng(l‘, y? Z)
Fo(.%',y,Z) déf h :L‘) (2)
—G(z)z
g(z) <0, z >0,

where G(z) = diag(g(z)). As we will see later, the primal-dual interior-point method is based on a
perturbation of the conditions (2), given by

Vaol(z,y, 2)
Fu(z,y,2) & h(x) =0,
—G(z)z — pe

where 1 is a positive scalar and e is a vector of ones of dimension m,. Note that, for é = (0, 0, e’ e
Rn—f—mh—l—mg
7

Fu(z,y,z) = Fy(z,y,z) — pé. (3)

The main part of the iterative step of the primal-dual interior-point method consists of the
linearization of the perturbed KKT system. One computes a primal-dual step Aw = (Az, Ay, Az),
by solving the linear system of equations

Fl(w) Aw = —F (w), (4)

for fixed w = (7,y,2) and p > 0, where F),(w) is the Jacobian of F),(w). Notice that, from (3),
F)(w) is also the Jacobian of Fy(w). The primal-dual system (4) can be written by blocks in the

Viel(@,y,2) Vh(z) Vg(z) Az Vel(z,y,2)
Vh(z)" 0 0 Ay | =— h(x) , (5)
~ZVg(x)T 0 —G(x) Az —G(x)z — pe

where Z = diag(z).

Most variants of the primal-dual interior-point method keep positive all the variables subject to
nonnegativity constraints. In our case, it means keeping the multipliers z positive. The parameter
1 is driven to zero asymptotically. Since we are looking at the feasible variant of the primal-dual
interior-point method, we must also keep g(z) negative throughout the iterations. The main steps
of this feasible variant are described below in Algorithm 2.1. For the purpose of analyzing local
convergence, we do not include any stopping criterion.



Algorithm 2.1 (Feasible primal-dual interior-point method.)
Choose an initial point wy = (x0, Yo, 20) With g(z¢) < 0 and zo > 0.

For £ =0,1,2,...
Step 1. Choose the parameter py.

Step 2. Compute the solution Awy = (Azk, Ayk, Azg) of the system (5), for x = xy, y = yx, and
zZ = Zk.

Step 3. Compute a positive step length oy such that
g(xk + agAzg) < 0 and  zp + oAz > 0. (6)
Step 4. Define the next iterate wgy1 = (Tg41, Yk+1, 2k+1) according to:
Wiy1 = Wy + apAwg. (7)

Since the step size «j must satisfy (6) throughout the iterations, we will impose that

. . 2k )i . _q
i = min {1, Th Z:{HII’lmq {_((AZZ)@ s (Azg) < O} ) Th Z:{HII’lmq az} , (8)
where A
ap, < min{a: gi(zy + alAzxg) =0, a > 0}, i=1,...,my. (9)

Whenever the minimum is not achieved, it is assumed by convention that it is set to +oc0.

We observe first that when the inequality constraints are of the simple bound type (—z < 0), the
choice for ay, is of the type given above with the inequalities in (9) satisfied as equalities. In general,
when the functions defining the inequality constraints are nonlinear, it might be computationally
expensive to actually determine the step lengths 642 such that

ai = min{a: g(vg +alz;) =0, a >0}, i=1,...,m,. (10)

On the other hand, to get a fast rate of local convergence one cannot compute step lengths o‘z}; that
differ too much from (10). However, it is possible to allow a certain inexactness in this computation.
Let us define the residuals

i def i .
r, = gi(zy + apAxy), t=1,...,mg.

We will show that the feasible primal-dual interior-point method will retain local q—quadratic con-
vergence as long as the residuals 7}, satisfy the condition

—gi(zr)cr | Awy]| }
14 c1|| Awg|

~rf < min{o(-g(o) ~Lm,, )
where o € (0,1) and ¢; > 0 are chosen independently of the iteration counter k.

Moreover, to achieve a q—quadratic rate of local convergence, the feasible primal-dual interior-
point method must update the parameters 7, and u satisfying the classical conditions

-7 < cof Fo(wg)l], (12)

e < sl Fo(wp)?, (13)

where co and c3 are constants independent of k. Vector and matrix norms in this paper are chosen
to be the Euclidean ones.



3 Analysis of local convergence

We start by defining the concept of a strictly feasible neighborhood around a feasible point x,.
Our goal is to state the convergence results and develop the corresponding analysis in the smallest
possible region of local smoothness allowed by the inequality constraints.

As we have pointed out before, the present work was actually motivated by the application
of the primal-dual interior-point method to nonlinear programming problems arising from convex
disjunctive programming [2]. These problems exhibit a local smoothness pattern which is similar to
the one analyzed in this paper. Basically, the region of smoothness is locally confined to a strictly
feasible neighborhood.

Definition 3.1 Given a feasible point z, € IR" (h(z,) = 0 and g(z.) < 0), we say that N (z,;€) is
a strictly feasible neighborhood of size € > 0 centered at x, if

N(zee) = {z} U {z e R": ||z — 24| <€ and g(x) < 0}.

The local convergence of the feasible primal-dual interior-point method is analyzed at a point
x, satisfying the following assumptions.

(A1) The second order partial derivatives of these functions exist at .. There exists an € > 0, such
that the functions f, g, and h are twice continuously differentiable in the set N(z,;€)\{z4}.
Moreover, the second order partial derivatives of f, g, and h are Lipschitz continuous in

N (x5 €).

(A2) The point z, is feasible and the gradients of the active constraints are linearly independent
at x,.

(A3) There exist Lagrange multipliers y, and z, such that w, = (2., ys, 2« ) satisfies the first order
KKT conditions and the second order sufficient conditions and such that the pair (—g(z), 2«)
satisfies the strict complementarity condition (—g(x.) + z. > 0).

Assumptions A2-A3 are the classical (nondegenerate) assumptions used to locally analyze interior-
point methods. The difference from what is classically assumed is given in Assumption Al. We have
restricted the smoothness of the functions defining the problem to a strictly feasible neighborhood
centered at the point x,, since the application of a feasible method might be motivated from the
fact that the functions might not be defined or might not be smooth outside such set.

It results from Assumption A3 that the multipliers associated to the inequalities are nonnegative
(z¢ > 0) and also that

Fy(wy) = 0. (14)

We recall now the basic smoothness results that are required in the proof of the local convergence
of the primal-dual interior-point method. Since we are interested in the feasible variant of this
method, we present these results only for points in the strictly feasible neighborhood of z., assured
by Assumption Al. We extend now this neighborhood to all variables (primal z, and dual (ys, z«)),
defining the set

N(wy;e) = {we} U {w = (2,9,2) € R ¢ |l —w,| < e and g(x) < 0},

where w, = (4, Yy«, 2«). Note that the existence of the multipliers y, and z, is guaranteed by
Assumptions A2-A3. Clearly, if w = (z,y,2) € N(ws;¢€) then x € N (xy;¢).



Lemma 3.1 Let z, be a point for which Assumptions A1-A3 hold and w, = (x4, Y, 2+). Then,
there exists a positive constant v such that

1Fo(w') = Fo(w?)| < ~llw' —w?], (15)
IFp(w') = Fy(w?)| < Allw! —w?],
[Fo(w') = Fo(w?) = Fy(w?)(w' —w?)| < allw! —w?|?, (16)

for all w! and w? in N (w.;e).

The next lemma states that the primal-dual matrix is nonsingular around wy, in the sense that
is of interest to us. For a proof see, for instance, [5].

Lemma 3.2 Let z. be a point for which Assumptions A1-A3 hold and w. = (z«, Yx, 2+). Then the
following holds:

(1) Fj(wy) is nonsingular;
(i1) F{(w) is nonsingular for w in N (ws; €,s), for some €, satisfying 0 < e, < €.
From this lemma, it is assured the existence of a constant ¢ > 0 such that
1F(w) Ml < ¢, (17)

for all w in N (wy;e€ns). For such points w, the primal-dual step Aw given by the solution of the
system (4) is well-defined and is equal to

Aw = —F,(w) " Fy(w). (18)

The local asymptotic behavior of the feasible primal-dual interior-point method is studied first
for concave binding inequalities.

(A4) The functions g;, for i € {1,...,my} such that g;(z,) = 0, are concave.

The main part of the analysis is spent proving a lower bound for the length of the step size
parameter ay. For this result we do not need 7, and uy to satisfy the precise orders of magnitude
given in the bounds (12) and (13), but rather being able to choose py sufficiently small and 7%
sufficiently close to one.

Lemma 3.3 Let x, be a point for which Assumptions A1-Aj hold and w, = (x4, Yx, 2+). Consider
a sequence {wy = (T, Yk, 2k)} generated by the feasible primal-dual interior-point method described
in Algorithm 2.1. If oy satisfies (8)-(9) and (11) and 7 and uy satisfy (12) and (13), then there
exist positive constants € and K independent of k such that, when

wy € N(ws;e), (19)

the bound
L—ag < (1—7g) + &C([Fo(w)|l + pelléll), (20)

holds for all iterates k.



Proof: First we have to set € = €,5, where €, is given in Lemma 3.2.
Using (18), (3), (14), (17), (15), and (19) sequentially, it is easily derived the following bound
for the primal-dual step:

[Awgll = | F(wg) " Fu(wy)
<[ Fpu(wr) I (wr) |+ el
< ((llwg = w* || + prll€l])
< C(ye + pllel).

Thus, from the condition (13) on the size of uy, and given a constant n > 0, one can reduce ¢ if
necessary such that
[Awg]| < 7. (21)

In particular, it is possible to choose a sufficiently small € such that
K[| Awg|| < 7, (22)

where k is defined by

def K2
P max{l ,/{1+/-$10117—|—01}.
-0

The constants x; and kg are given by

1
K1 = Qmax{ t (24)i >0, ie{l,...,mg}}
(Z*)i
and .
ko = 2Mvy,max<s ———— : gi(z,) <0, 1€ {l,...,m ,
2 = g max - () <0, i€ {1,y |

where My, is an upper bound on the size of Vg in N (z;e€).
We divide the proof in two separate cases: the case where the step length is defined by a
multiplier and the case where the step length is defined by an inequality.

Case where step length is defined by a multiplier. In this first case we assume that there

exists an index ¢ € {1,...,my} for which (Az); < 0 and
(2k)s

a = —T :

k Az,

If 7 is such that (z4); > 0 then, from the definition of £ and from (22),

(2k)i > Tk > 1
(Az)i — rl|Awg|

Qp = Tp—
When (z,); =0 (and g;(z.) < 0), we make use of the primal-dual block equation (see (5))
—Zng(mk)TAxk — G(xg)Azr = G(xk)zk + pre,

to write
—(21)iVgi(z) T Az — gi(ze)(Azg)i = gi(wr)(2r)i + s



or equivalently,

(Az); e ;
- — 1M,
(z1)i gilzr)(zr)i Tk
with T T
A () TA (1) TA
gi(zk) —gi(xg)
Thus, since p/(gi(zk)(2x)i) <0,
Azy)i
S8k A
(21)i
and
(21)i Tk

> 1—k||A .

Case where step length is defined by an inequality. Now we are interested in the case
ap = TR0,
for some index ¢ € {1,...,my}. By applying the mean value theorem, we have
r—gi(zr) = gi(xp + abAxy) — gi(xr) = aiVailzg + t%d%Amk)TAa@k,
for some ¢ € (0,1), and the step length @} can be written as

i ry — gi(zy)
Vgi(xp + tz@zAxk)TAmk'

Since —rf < o(—gi(zy)), both the numerator and the denominator in this expression for & are
positive.
If 7 is such that g;(z.) < 0 then, from the definitions of k9 and x and from (22),

(1 = o)(=gi(zr))

k Tk = ngi(ack + tt ot Axy) T Ay,
> (1- O'i)gi—gi(%))
[V gi(z + tapAzg) || || Az
(1-0)
> Ty
Ka|| Awg||
> _ Tk
K[| Awg]|
> 1.

When g;(z.) =0 (and (24); > 0), we must first add and subtract

7 Mk
M ()i

gi (k) (21)i

+ 7+



to the right hand side in the primal-dual equation

Azk)z HEk
—VixTAx:ix( + g;(zp) + gi(xp) —————.
gi(zg) Azg = gi(zy) o) gi(zk) + gi( k)gi(xk)(zk)i
After division by g;(zy) — ri, this results in
_Vgi(xk)TAxk _ (Azy); 1Lk
gi(xr) " — 7 (2k)i gi(7x) (k)i
n e (Az) "k HRT],

gilwg) =i ()i gilew) =l giler) (2e)i(gi(zr) — )

Since the third and the sixth terms in the right hand side of this equality are negative and since,
from (11),
i
—— 7 < alAuwl,
9i(wg) — 1},

we obtain, from (21),

Vi(zy) T Az
Yol Bok o A+ sl + er | Au |
gi(zr) " =y
< 1+ (k1 + m1an + 1) [[Awg |
< 14 &||Awgl.

Now, from the concavity of g;, we derive

Vi(zk + t};d};Amk)TAmk

gi(zy) — 7}
Vgl + tt a;Axy) T Axy, N Vgi(zy) T Azy, B Vgi(zy) T Azy
a gi(zx) —7j, gi(zr) =i, gi(zx) —7j,
_ [Vgi(zp + t};d};Amk) - Vgi(ack)]TAmk B Vgi(mk)TAxk
i — 9i(r) gilak) =y,
< _Vgi(wk)TA% (23)
gi(xr) — 7y,
< 1Akl Awg
and A
. — 9i(%k) Tk

TRal, = Ti(1 — K[| Awg])).

Tk i o T = =z
Vgi(xy +t,a) Axy) " Ay, 1+ k|| Awg|

Conclusion. Combining all the four bounds derived for oy (two in each case considered), one
obtains
ar > min{l, m(1 = sl|Awgl)} = m(1 — sl Awgl) > 7 — sl Awy]).

The last inequality above is based on the fact that 7, < 1 for all k£ provided ¢ is chosen small enough.
Finally, from this lower bound on «y, we get

0 < 1-ap < (1—7)+alAw]| < (1 —7)+ wC([Fo(we)| + pxllél),



which concludes the proof of the lemma. )

We can state now the q—quadratic rate of local convergence of Algorithm 2.1. The proof can be
found in [12] and we describe it briefly for completeness. It is in this part of the theory that one
uses the fact that 7 and py, satisfy the orders of magnitude given in the bounds (12) and (13).

Theorem 3.1 Let x, be a point for which Assumptions A1-A4 hold and w, = (., Yx, 2+). Consider
a sequence {wy = (T, Yk, 2k)} generated by the feasible primal-dual interior-point method described
in Algorithm 2.1. If «y satisfies (8)-(9) and (11) and 7y, and py satisfy (12) and (13), then there
exists a positive constant € independent of k such that, when

wy € N(wy;e),
the sequence {wy} is well defined and converges to w.. Moreover, we have
g1 — wal) < vl — wall? (24)
for all iterates k, where v is a positive constant independent of k.
Proof: Let us assume that ||wy — w.|| < e. By applying (7), (18), (3), and (14), we obtain

Wer1 — wx = (W — wy) + apAwy

Now, using (20), (16), (17), and oy < 1, we have, for a sufficiently small ¢,

[wppr = wel - < (1= ) |lwp — wa

+ || F, (wi) T | Fo(ws) — Fo(wy) — F, (wi) (wi —wy)|

+ apprl| Fy, (wi) 7 [lel]

IN

[(1 = 7&) + ¢l Fo(wi) || + wClléfl ] llwr — w.|

¢y )
+ 7Hwk —wi|* + |1é]|¢ -

We also known that 7, and py satisfy (12) and (13). Thus, using the fact that ||Fp(wg)| =
|1 Fo(wg) — Fo(ws)|| < 7y||wg — ws]|, we assure the existence of a constant v > 0 independent of the
iterates such that (24) holds. It is possible to prove by induction that {wy} converges to wy, if € is
chosen sufficiently small. The inequality (24) shows that the local convergence rate is g—quadratic. o

4 The nonconcave case

The concavity of the inequality constraint functions was required in (23) when the binding
constraint function g; was responsible for the step size a;. However, one can see that the method

10



retains a q—quadratic rate in the nonconcave case as long as there exists a positive constant 3 such
that

i = giwr) = gilzx +apAay) — gi(zr) > Bag )| Axy (25)
for all £ and all indices i corresponding to g;(x.) = 0. In fact, one would get

[Vgi (mk + ti@éAwk) —Vg; (xk)]TAmk
7y, = gi(zk)

Ly,
< “|| Az,
3 Az

where Ly, is the Lipschitz constant of the function Vg; in AV (x4;€). Then,

1 Vgi(mk + tZdZAxk)TAxk
- = - ~ < 1+ (k1 + ki +c1) + Lyg, /B)] [[Awy
i . { )+ Lo,/ 0)] | A
< 1+ k|| Awl],
after an appropriate redefinition of .
The bound (25) is satisfied as long as
Axy,
liminf Vg;(zg)" =23 > 0. 26
gmind Vailee) yagy = 20 (26)

To see why this is true let us expand g;(zx + d};Axk) around xj:
‘ 2 Az — o R TA (d2)2AT 2 i 5 ATOA
gi(zr + apBar) — gi(zr) = A Vgi(ar) Az + — = Az, Vogi(ay + spapAzg) Azy,

for some sfc € (0,1). Since we are only looking at the cases where 07}'§ < 1, one can see that

gi(zy + ab Axg) — gi(w)

— > B
ayl|Azy||
as long as
20
A < lA <
e e

where My:2,, is an upper bound on the size of the Hessian V2g; in N(x.;¢€), requiring again a
redefinition of .

In our preliminary numerical testing with the feasible primal-dual interior-point method we
have clearly observed how condition (26) for small values of 3 deteriorated the convergence of the
method. Decreasing values of 3 caused the method to take longer to achieve the region of fast local
convergence.

Condition (26) has no influence if the constraint is concave because, even when this condition is
not satisfied, the concavity of the function defining the constraint allows a locally full step (ax = 1)
with respect to that constraint.

11



5 Concluding remarks

Keeping the iterates strictly feasible with respect to the inequality constraints in the way required
for the feasible primal-dual interior-point method is a numerically expensive procedure. The exact
computation of the step size would require the solution of a number of nonlinear equations per
iteration. The inexact requirements (11) stated for the size of the residual of the equation solvers
do alleviate the computational burden, but not by much. The proposed method would only become
efficient for a small number of inequality constraints or when the structure of the functions defining
the inequality constraints eases the step size calculation considerably.

However, the primal-dual interior-point method could be applied in a strictly feasible mode
to only a subset of the problem inequalities, the remaining being treated by slack variables. The
inequalities imposed strictly could be those for which the evaluation of the objective function or
other constraint functions require their strict feasibility.

Despite the numerical considerations, looking at the infeasible variant of the primal-dual interior-
point method is of interest on itself. It is worth pointing out that the approach presented in this
paper covers the infeasible case ([4, 12]) since simple bounds of the type z > 0 <— —z < 0
correspond to concave inequalities. Linear inequality constraints are also concave and can be treated
without slack variables for achieving the purpose of fast local convergence. Finally, the observation
that the g—quadratic rate is retained in the general nonconcave case provided the angle between the
primal step and the gradients of the binding constraints is kept away from ninety degrees, see (26),
fits well into the theory of interior-point methods since it corresponds to the notion of centrality.
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