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Abstract

Given a complete graph Kn = (V, E), with edge weight ce on each edge, we con-
sider the problem of partitioning the vertices of graph Kn into subcliques that each
have at least S vertices, so as to minimize the total weight of the edges that have
both endpoints in the same subclique. It is an extension of the classic Clique Parti-
tion Problem that can be well solved using triangle inequalities, but the additional
size requirement here makes it much harder to solve. The previously known inequal-
ities are not good enough to solve even a small size problem within a reasonable
amount of time. In this paper, we’ll discuss the polyhedral structure and introduce
new kinds of cutting planes: pigeon cutting planes and flower cutting planes. We
will report the computational results with a branch-and-cut algorithm confirming
the strength of these new cutting planes.
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1 Introduction

Given a graph G = (V,E) with edge weights ce, and an integer S < |V |, the
Clique Partition Problem with Minimum clique size requirement (CPPMIN)
requires dividing the vertices V into subsets that each have at least S vertices.
The objective is to minimize the total weight of the edges that have both
endpoints in the same set.

We define a binary variable xe, which takes the value 1 if edge e is within
one subset and 0 if it is across two subsets. We can formulate CPPMIN as an
integer programming problem,
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min
∑

e∈E

cexe

s.t.
∑

e∈δ(v)

xe ≥ S − 1 ∀v ∈ V (1)

x is the incidence vector of a partition on G

where δ(v) denotes the set of edges incident to vertex v. Constraint (1) is called
the size constraint. We will use n = |V | to denote the number of vertices. With
S given, we can define k = bn/Sc, r = n mod S, 0 ≤ r ≤ S− 1. Thus we have
n = kS + r. We will explain later in section 2.1, what we mean by “x is the
incidence vector of a partition on G”, and rewrite this above formulation in a
more concrete formulation as problem (CPPMIN).

Throughout this paper, we assume G is the complete graph on V . A non-
complete graph can easily be converted to a problem on a complete graph by
adding the missing edges in with a very big edge weight ce, or with edge weight
0, depending on the application. We can also just add explicit constraints
xe = 0 for the missing edges e in a non-complete graph.

The CPPMIN problem is closely related to the classic partition problem that
has no restrictions on the size or number of the partitions – the Clique Par-
tition Problem (CPP). CPP partitions the vertices V into subcliques, so as
to minimize the total weight of the edges that have both endpoints in the
same subcliques. Grötschel and Wakabayashi [6, 7] have provided a detailed
description with several kinds of cutting planes, especially triangle constraints
and 2-partition constraints. Their experiments showed that it suffices to use
only triangle inequalities and 2-partition inequalities. An LP relaxation con-
sisting of all triangle inequalities and some 2-partition inequalities turns out
to be empirically very effective. In fact, only adding cutting planes of triangle
inequalities was sufficient to find and prove the optimal solution in most cases.

Variations of CPP have also been studied. One of them is the equipartition
problem, which requires dividing the vertices into 2 clusters of equal size. When
there is an odd number of vertices, they need to be divided into to 2 clusters
with size difference of 1 vertex. Conforti, Rao and Sassano [4] discussed the
polyhedral theory for this problem. A further extension is the k-way equiparti-
tion problem, which requires dividing the n points into k equally sized clusters.
In this problem, the number of the vertices n has to be a multiple of the num-
ber of partitions k. This is equivalent to the constraint that each cluster has to
be of size n/k. Mitchell [16] discussed the facial structure of the polytope as-
sociated with this problem and provided a branch-and-cut algorithm to solve
it. He used this method to successfully solve the NFL scheduling problem in
[17].

However in many instances the total number of vertices n may not be a mul-
tiple of the desired number of partitions k, so a k-way equipartition is not
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possible. One way is to solve the k-way partition problem instead, which re-
quires dividing the graph into no more than k clusters. Chopra and Rao [3]
investigated this problem on a general graph. They don’t assume a complete
graph, so they can take advantage of the structure of the graph to be divided.
They also discussed the opposite problem of requiring at least k clusters. A
special case of the k-way clustering problem is the max cut problem, which
has k = 2. Various approaches have been studied on this problem. A good
survey can be found in Poljak and Tuza [21].

Another way to solve the problem when n is not a multiple of k is to relax
the constraint on the size of each cluster and only require that each clus-
ter size is not smaller than S = bn/kc. This leads to the problem in this
paper: CPPMIN, a Clique Partition Problem with Minimum Clique Size re-
quirement. Applications of CPPMIN include micro-aggregation of statistical
data, see Domingo-Ferrer [5], sports team alignment, see Mitchell [17], Ji and
Mitchell [11], telecommunication clustering, see Lisser and Rendl [14], locating
communication centers, see Guttmann-Beck and Rubinstein [8].

It is natural to ask about the opposite problem : Clique Partition Problem with
an upper bound on the cluster size. In fact, this can be converted into a k-way
equipartition problem by adding dummy vertices. So the k-way equipartition
problem and CPPMIN have covered all three kinds of constraints on cluster
size for a clique partition problem.

Mehrotra and Trick [15] did research on clustering problem with Knapsack
capacity constraints. In their problem, each vertex has a weight. The total
weight of the vertices in the same cluster cannot exceed a capacity. This is
a generalized version of the problem requiring each cluster has to be smaller
than a certain size. They used a branch and price method to solve the prob-
lem. Similarly, we can consider the opposite problem of requiring each cluster
to be bigger than a certain weight. It can also be formulated as an integer
programming problem in the similar fashion as CPPMIN:

min
∑

e∈E

cexe

s.t.
∑

j∈V

wjxij ≥ CAP − wi ∀i ∈ V (2)

x is the incidence vector of a partition on G

where wi denotes the the weight of vertex i. CAP is the required minimum
capacity. This problem is addressed in a later work [12].
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1.1 Notations and Definitions

In this section, we define some useful notations.

Given an undirected graph G = (V,E), let V1 and V2 be two disjoint subsets
of V , we define the following notation.

δ(V1) = {uv ∈ E|u ∈ V1, v 6∈ V1}
δ(V1, V2) = {uv ∈ E|u ∈ V1, v ∈ V2}

δ(V1, V2, . . . , Vk) = {uv ∈ E|u ∈ Vi, v ∈ Vj, i, j = 1, ..., k, i 6= j}
E(V1) = {uv ∈ E|u, v ∈ V1}

E(V1, V2) = E(V1) ∪ E(V2)

E(V1, V2, . . . , Vk) =∪i=1...kE(Vi)

A clustering of G is a division of V into Π = {V1, V2, . . . , Vk}, where V =
∪i=1..kVi and Vi ∩ Vj = ∅, ∀1 ≤ i < j ≤ k. V1, V2, . . . , Vk are the components
in the clustering. When G is a complete graph, we also call these components
subcliques. The edge set E(Π) = E(V1, V2, . . . , Vk) is called the partition set
or simply partition, while δ(Π) = δ(V1, V2, . . . , Vk) is called the multi-cut
set or simply multi-cut. Notice that E(G) = δ(Π)∪E(Π), δ(Π)∩E(Π) = ∅.
The partition and the multi-cut are just two ways of representing the same
clustering problem. They are both used often in the literature. Next, we define
the corresponding incidence vectors.

Definition 1 Given a graph G = (V, E) and a clustering Π = (V1, V2, . . . , Vk)
on G. Let |E| = m, xΠ ∈ {0, 1}m is called the incidence vector of partition
Π if the entries in xΠ satisfy

xe =





1 e ∈ E(Π)

0 otherwise

yΠ ∈ {0, 1}m is called the incidence vector of multi-cut Π if the entries
in yΠ satisfy

ye =





1 e ∈ δ(Π)

0 otherwise

For any U ⊆ V , define x(U) =
∑

i,j∈U
xij, y(U) =

∑
i,j∈U

yij.

4



According to the above definition xΠ + yΠ = 1, where 1 denotes the vector of
all coefficients one.

In the following, we repeat a few definitions in integer programming. They
will be used in the theorems and proofs in the later sections. For more details
on these definitions, see Nemhauser and Wolsey [20].

Definition 2 A set of points x1, . . . , xk ∈ IRn is affinely independent if

the unique solution to
k∑

i=1
λix

i = 0,
k∑

i=1
λi = 0, is λi = 0 for all i ∈ {1, . . . , k}.

Proposition 3 A set of points x1, . . . , xk ∈ IRn is affinely independent if and
only if the vectors x2 − x1, x3 − x1, . . . , xk − x1 are linearly independent.

Definition 4 Let P be a polyhedron of dimension d. A face of dimension d−1
is a facet.

Definition 5 Given an inequality πT x ≤ π0, the support of this inequality
is defined as the index set J = {j ∈ {1, . . . , n} : πj 6= 0}. If the x variables
correspond to the edges of a graph G, the support graph of this inequality is
the subgraph of G, spanned by the edges indexed by the elements in the support
J .

2 Polyhedral Theories

We define the corresponding polytope R(G,S) and R̄(G,S) for problem (1)
as follows:

R(G,S) := conv{x ∈ {0, 1}n :
∑

e∈δ(v)

xe ≥ S − 1 ∀v ∈ V

x is the incidence vector of a partition on G}
R̄(G,S) := {x ∈ [0, 1]n :

∑

e∈δ(v)

xe ≥ S − 1 ∀v ∈ V }

where conv{X} represents the convex hull of a set of points X. Obviously
R(G,S) ⊆ R̄(G,S). Once we solve the problem on R(G,S), we are done, but
since we don’t know a concrete description for R(G,S), we will start from
R̄(G,S).

We also need to define some other related polytopes:
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P (G) := conv{x ∈ {0, 1}n : x is the incidence vector of a clique partitioning

of graph G}
PBC(G) := conv{y ∈ {0, 1}n : y is the incidence vector of a 2-way cut of graph G}
PEC(G) := conv{y ∈ {0, 1}n : y is the incidence vector of an equicut of graph G}
PEP (G) := conv{x ∈ {0, 1}n : x is the incidence vector of an equipartition

of graph G}

2.1 Polyhedral Theory for P (G), PBC(G), PEC(G) and PEP (G)

We are going to summarize some results for the above polytopes. Since all other
variations base on the basic Clique Partition Problem (CPP), we start with
its corresponding polytope P (G). Grötschel and Wakabayashi [6, 7] described
a simplex-based cutting plane algorithm for CPP. The most important facets
they used there are Triangle Inequalities and 2-partition equalities.

Theorem 6 ([7]) P (G) is full dimensional, i.e., dim(P (G)) = |E| .

Theorem 7 ([7], Theorem 3.1) Each Triangle Inequality

xij + xil − xjl ≤ 1 ∀0 ≤ i 6= j 6= l ≤ |V | (3)

defines a facet of the clique partitioning polytope P (G).

In fact the triangle inequalities with binary constraints completely describe
the incidence vector of the clique partition problem of a complete graph. In
other words, the solution of (4) are exactly the incidence vectors for the CPP
of a complete graph.

min
∑

e∈E

cexe

s.t. xij + xil − xjl ≤ 1 ∀i, j, l 0 ≤ i 6= j 6= l ≤ n (4)

xij ∈ {0, 1} ∀i, j 1 ≤ i < j ≤ n

Similarly, we can rewrite our initial formulation for CPPMIN, i.e., problem
(1), in a more concrete form as the following:
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min
∑

i,j∈E,i 6=j

cijxij

s.t.
∑

j∈E,j 6=i

xij ≥ S − 1 ∀i ∈ V

xij + xil − xjl ≤ 1 ∀i, j, l, 0 ≤ i 6= j 6= l ≤ n

xij ∈ {0, 1} ∀i, j, 1 ≤ i < j ≤ n

(CPPMIN)

Theorem 8 ([7], Theorem 4.1)For every nonempty disjoint subsets U,W ⊆
V , the 2-partition inequality

x(U,W )− x(U)− x(W ) ≤ min{|U |, |W |} (5)

defines a facet of the clique partitioning polytope P (G), provided |U | 6= |W |.

Their experiments showed that these two kinds of constraints, especially the
triangle constraints give a good approximation for the polytope.

The results below for PBC(G) and PEC(G) are from Barahona and Mahjoub
[2], Barahona, Grotschel and Mahjoub [1], Conforti, Rao and Sassano[4]. We
will use them in our later proofs.

Theorem 9 ([1]) PBC(G) is full dimensional, i.e., dim(PBC(G)) = |E|.

Theorem 10 ([4], Lemma 3.4) The dimension of PEC(K2p+1) is
(

2p+1
2

)
− 1.

Theorem 11 ([4], Lemma 3.5) The dimension of PEC(K2p) is
(

2p
2

)
− 2p.

Corollary 12 The dimension of equipartition polytope PEP (K2p+1) is
(

2p+1
2

)
−

1. The dimension of equipartition polytope PEP (K2p) is
(

2p
2

)
− 2p.

PROOF. ∀y ∈ PEC , let x = e − y, then x ∈ PEP . So every set of affinely
independent vectors in PEC corresponds to a set of affinely independent vectors
in PEP , thus the corollary follows.

2.2 Dimension for R(G,S)

Theorem 13 The dimension of CPPMIN polytope R(G,S) is

(i) If S < n
2
, then dim(R(G,S)) =

(
n
2

)
.

(ii) If S = n
2
, then dim(R(G,S)) =

(
n
2

)
− n.
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(iii) If S > n
2
, then dim(R(G,S)) = 0.

PROOF. We are going to prove the theorem according to three cases.

(i) For S < n
2

case, consider:
(a) n = kS +r is odd. Suppose n = kS +r = 2p+1, consider the hyperplane

corresponding to an equipartition Hep = {x ∈ R(2p+1
2 ) : x(G) =

(
2p+1

2

)
−

p(p+1)}. From Corollary 12, we have dim(Hep) =
(

2p+1
2

)
−1. Since Hep ⊂

R(G,S), e ∈ R(G,S), e /∈ Hep, we get dim(R(G,S)) =
(

2p+1
2

)
=

(
n
2

)
.

(b) n = kS + r is even. Suppose kS + r = 2p, we will consider the case
when S = p − 1. We can embed the graph G = K2p into a complete

graph K2p+1 by adding one more vertex v2p+1. Let m =
(

2p
2

)
, m′ =

(
2p+1

2

)
.

From (a), we know dim(R(K2p+1, p)) =
(

2p+1
2

)
= m′, so there exist m′ + 1

affinely independent incidence vectors x1, . . . , xm′
, xm′+1 ∈ R(K2p+1, p).

They can be represented as the column vectors in a m′ × (m′ + 1) matrix

A′. According to the definition of affine independence, system
[

eT

A′

]
λ = 0

has a unique solution λ = 0. So rank(
[

eT

A′

]
) = m′ + 1. Now we remove the

2p rows in A′ that corresponds to the 2p edges incident to vertex v2p+1.

The remaining matrix
[

eT

A

]
has full row rank

(
2p+1

2

)
+ 1 − 2p =

(
2p
2

)
+ 1.

We can pick
(

2p
2

)
+1 linearly independent column vectors from

[
eT

A

]
to get[

eT

B

]
, now

[
eT

B

]
µ = 0 implies µ = 0, so the

(
2p
2

)
+ 1 column vectors in B

are affinely independent, and they correspond to the incidence vectors in
R(K2p, p− 1), so we have dim(R(K2p, p− 1)) ≥

(
2p
2

)
. Since

(
2p
2

)
is already

full dimension, we have dim(R(K2p, p− 1)) =
(

2p
2

)
=

(
n
2

)
.

In the case that S ≤ p− 1, R(G,S) ⊇ R(G, p− 1), so dim(R(G,S)) =(
n
2

)
.

(ii) For S = n
2

case, it becomes an equipartition problem, so dim(R(G,S)) =(
2S
2

)
− 2S from Conforti and Rao[4],

(iii) For S > n
2

case, the only possible solution is to put all vertices in the same
subset. Then polytope R(G,S) degenerates to a single point, so dim(R(G,S)) =
0.
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3 Cutting Planes

3.1 Bound Constraints

Before introducing the theorems to establish facets for CPPMIN, we intro-
duce two lemmas first. Lemma 14 is almost exactly the same as lemma 3.2
from Chopra and Rao [3], except that we need to make sure here that every
component in the partition satisfies the minimum size requirement. The proof,
which we will skip here, follows the same as in Chopra and Rao [3].

Lemma 14 Let aT x ≥ b be any valid inequality with respect to R(G,S), let j
be any vertex in G. Consider the following partitions of G,

Π1 = N1, N2 ∪ j,N3, . . . , Nr,

Π2 = N1 ∪ j, N2, N3, . . . , Nr.

If Π1, Π2 ∈ R(G,S) and the incidence vector for Π1 and Π2 both satisfy
the inequality aT x ≥ b at equality, then we have a(N1, j) = a(N2, j), where
a(N, j) =

∑
v∈N

a(v, j).

CPPMIN polytope R(G,S) is full dimension implies that every facet-defining
inequality is unique up to multiplication by a constant (cf. [20] Theorem 3.5).
We summarize in the next lemma another result on the relationship between
the constraints of CPPMIN.

Lemma 15 Suppose aT x ≤ b and gT x ≤ h are both valid constraints for
CPPMIN polytope R(G,S), s.t. {x|aT x = b, x ∈ R(G,S)} ⊆ {x|gT x = h, x ∈
R(G,S)}, then a(i, j) = 0 implies g(i, j) = 0 under the following condition:
there exist a feasible partition incidence vector x̄ s.t.

• aT x̄ = b,
• x̄ij = 1,
• The cluster U containing vertex i and j in partition x̄ satisfies |U | ≥ 2S+1,

E(U) ⊆ Ec := {e ∈ E : ae = 0}.

PROOF. ∀v, u, w ∈ U , N1 ⊆ U , N2 ⊆ U s.t. |N1| ≥ S, |N2| ≥ S, N1 ∩N2 =
∅, v ∈ U − N1 − N2, u ∈ N1, w ∈ N2. Without loss of generality we can
rearrange x̄ s.t. aT x̄ = b, x̄e = 1,∀e ∈ E(N1 + v); x̄e = 1, ∀e ∈ E(N2);
x̄e = 0,∀e ∈ δ(N1+v, N2). We can move v from the cluster of N1 to the cluster
of N2 to construct another solution x̃ s.t. aT x̃ = b, and x̃e = 1,∀e ∈ E(N1);
x̃e = 1,∀e ∈ E(N2 + v); x̃e = 0,∀e ∈ δ(N1, N2 + v).
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Since E(U) ⊆ Ec, both x̄ and x̃ satisfy aT x = b, therefore both satisfy gT x = h
too.

From lemma 14, we get g(v,N1) = g(v, N2), which can be written equivalently
as

g(v, N1 − u) + g(v, u) = g(v,N2 − w) + g(v, w). (6)

Switch u and w between N1 and N2, repeat the above process, we get

g(v, N1 − u) + g(v, w) = g(v, N2 − w) + g(v, u). (7)

(6)-(7) gives us

g(v, w) = g(v, u) =: α ∀u, v, w ∈ U (8)

Now consider another incidence vector x̂ with N = N1 + N2 + v all in one
cluster, i.e. x̂(e) = 1,∀e ∈ E(N). Comparing with incidence vector x̄, we get

∑

e∈δ(N1+v,N2)

ge = 0

⇒ (|N1|+ 1)|N2|α = 0

⇒ α = 0

⇒ g(u, v) = 0 ∀u, v ∈ U.

In particular, g(i, j) = 0.

Theorem 16 xkl ≥ 0 is a facet for R(G,S) when n ≥ 3S + 1.

PROOF. This follows easily from Lemma 15 as follows. For every edge
(i, j) 6= (k, l), there exist a feasible solution with xkl = 0 and xij = 1. Taking
U = V − k satisfies the other conditions in the lemma. Thus any constraint
gT x ≥ h that implies the constraint xkl ≥ 0 must have gij = 0,∀i, j 6= k, l,
therefore gT x ≥ h becomes the same as xkl ≥ 0.

Note that xij ≤ 1 is not a facet because it is implied by summing up 2 triangle
constraints: xij + xik − xjk ≤ 1, xij + xjk − xik ≤ 1.
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3.2 Triangle Inequalities and 2-partition Inequalities

Triangle Inequalities and 2-partition Inequalities are inherited directly from
CPP. Since CPPMIN is just a special case of CPP, these two kind of constraints
are also valid for CPPMIN. Using lemma 15, we can show the following result
for R(G,S).

Theorem 17 2-partition constraint (5): x(U,W )−x(U)−x(W ) ≤ min{|U |, |W |}
is a facet for |U | > |W |, provided |V | > S|U |+ 2S + 1.

PROOF. Suppose |U | = p, |W | = q, we can write U = {ul, l = 1..p}, W =
{wl, l = 1..q}. Consider any constraint gT x = h such that {x|x satisfy (5) at
equality, x ∈ R(G,S)} ⊆ {x|gT x = h, x ∈ R(G, S)},

(i) First, we would show that g(i, j) = 0,∀(i, j) ∈ E − E(U ∪W ).
Consider the partition Π = {N1, N2, ..., Nq, ..., Np, Np+1} s.t. ul ∈ Nl for

l = 1..p, wl ∈ Nl for l = 1..q, Np+1 = V − ∪p
l=1Nl. Partition Π satisfies (5)

at equality. We use x to denote its corresponding incidence vector.
∀i ∈ U , j ∈ V −U −W , we can rearrange Π to also satisfy j ∈ Nl̄, |Nl̄| ≥

2S + 1 for l̄ s.t. q < l̄ ≤ p and i ∈ Nl̄. Now the three conditions in Lemma
15 are satisfied by Π, namely, aT x = b, xij = 1, Nl̄ ⊆ Ec, and |Nl̄| > 2S +1.
So g(i, j) = 0.
∀i ∈ V − U − W, j ∈ V − U − W , we can rearrange Π to also satisfy

i ∈ Np+1, j ∈ Np+1, |Np+1| ≥ 2S + 1. Again Lemma 15 is satisfied on this
partition. So g(i, j) = 0.

Now we only need to show g(i, j) = 0,∀i ∈ W, j ∈ V − U −W . We can
rearrange Π to satisfy j ∈ Nl̄, |Nl̄| ≥ S + 1 for l̄ s.t. i ∈ Nl̄. We call this
partition Π̄. Since 1 ≤ l̄ ≤ q, Nl̄ ∩ U 6= ∅. Let v = Nl̄ ∩ U .

We can get another partition Π̃ by switching vertex j from Nl̄ to Np+1 in
Π̄. Both Π̄ and Π̃ satisfy constraint (5) at equality, so we have

g(j, Nl̄ − j) = g(j,Np+1)

⇒ g(i, j) + g(v, j) + g(j, Nl̄ − j − i− v) = g(j, Np+1).

Along with

g(v, j) = 0 since v ∈ U,

g(j, Nl̄ − j − i− v) = 0 since Nl̄ − j − i− v ⊆ V − U −W,

g(j, Np+1) = 0 since Np+1 ⊆ V − U −W,

we get g(i, j) = 0, ∀i ∈ W, j ∈ V − U −W .
Thus we have showed that g(i, j) = 0, ∀(i, j) ∈ E − E(U ∪W ).

(ii) In this part, we are going to show that g(u, v) = g(w, w′) = −g(u,w) = −α,
∀u, v ∈ U,w,w′ ∈ W .
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∀u, v ∈ U,w, w′ ∈ W , without loss of generality, we can assume u =
u1, v = uq+1, w = w1, w

′ = w2. Again we can construct a partition Π in
the same way as in (i), Π = {N1, N2, ..., Nq, ..., Np, Np+1} s.t. ul ∈ Nl for

l = 1..p, wl ∈ Nl for l = 1..q, Np+1 = V −
p∑

l=1
Nl. Partition Π satisfies (5) at

equality. With x denoting the incidence vector of Π, we have gT x = h.
Now switch u = u1 and v = uq+1 between N1 and Nq+1, we get partition

Π̄, represented by incidence vector x̄, which also satisfies constraint (5), thus
satisfying gT x̄ = h. Comparing gT x = h and gT x̄ = h, along with the result
from (i), we get g(u,w) = g(v, w). Since u, v, w are picked randomly from
U and W , we have that for any fixed w ∈ W , g(u,w) = αw is a constant
∀u ∈ U .

Modify partition Π by combining two clusters N1 and Nq+1, we get parti-
tion Π̃, represented by incidence vector x̃, which also satisfies (5) at equality,
so gT x̃ = h. Comparing gT x = h and gT x̃ = h, we get g(u, v) = −g(v, w) =
−αw.

Since w is picked randomly from W , we have g(u, v) = −α, g(u, w) =
α, ∀u, v ∈ U,w ∈ W .

Finally, we need to show g(w, w′) = −α. Since w = w1, w
′ = w2, combin-

ing clusters N1 and N2 in partition Π, we get partition Π̂, represented by
incidence vector x̂. x̂ satisfies constraint (5), thus satisfying gT x̂ = h. Com-
paring with gT x = h, we have g(u, v)+g(w, w′)+g(u,w′)+g(v, w) = 0. Since
g(u, v) = −α, g(u,w′) = g(v, w) = α, we have g(w, w′) = −α ∀w, w′ ∈ W .

Summarize the above results, we get that g(i, j) = 0, ∀(i, j) ∈ E−E(U ∪W );
g(u, v) = g(w, w′) = −g(u,w) = −α, ∀u, v ∈ U,w, w′ ∈ W . So we conclude
that gT x = h is equivalent to the constraint (5). Therefore we have proved
that (5) is a facet.

Since triangle constraints are just special cases of 2-partition constraints when
min{|U |, |W |} = 1, the above theorem also applies to triangle constraints.

3.3 Pigeon Inequalities

From now on, we only consider the case when r > 0, i.e. when n is not a
multiple of S. When r = 0, the new constraints we are going to introduce are
still valid, but they may not be facets under the conditions given.

3.3.1 Pigeon Inequalities for k-way Partition P1(G, k)

To consider the pigeon constraint for CPPMIN problem, we would like to
introduce the pigeon constraint for the k-way partition problem first. Given a
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connected graph G = (V, E) with edge weights ce, the k-way partition problem
is to partition the vertices V into no more than k nonempty subsets so as to
minimize the total weight of the edges with end points in two different subsets.
Chopra and Rao [3] investigated this problem, and gave the following integer
programming formulation. Let Π = (Ni, i = 1, 2, . . .m) denote an m−partition
of the vertices V , i.e., a partition that has m clusters. Each subset Ni in Π is
assigned an index ti, 1 ≤ ti ≤ m to identify the subset Ni. For partition Π,
they defined an incidence vector (x, z) where

xe =





1 if edge e ∈ EΠ

0 otherwise
zit =





1 if node i ∈ Nt

0 otherwise

Notice that z variables are introduced here to differentiate different cliques,
so as to take advantage of the sparsness of graph G, since G is not assumed
to be complete in [3].

The corresponding polytope is defined as

P1(G, k) = conv{(x, z)|(x, z) is the incidence vector of an m-partition for m ≤ k}

Theorem 18 ([3], Theorem 3.1.1) Let Q = (V (Q), E(Q)) ⊆ G be a clique of
size p = tk + q where t ≥ 1 and 0 ≤ q < k. The pigeon inequality

∑

e∈E(Q)

Xe ≥ 1

2
t(t− 1)(k − q) +

1

2
t(t + 1)q (9)

is facet defining for P1 if and only if 1 ≤ q < k, i.e. p is not an integer
multiple of k.

3.3.2 Pigeon Inequality for R(G,S)

Now consider CPPMIN: S is the minimum size for each cluster, so the graph
can be divided into no more than k = bn

S
c clusters. Thus any solution to our

problem can be represented as a valid solution to Chopra and Rao’s k-way
partition problem, so the pigeon constraints are valid for our problem too. We
will give a necessary and sufficient condition for pigeon constraint (9) to be a
facet for R(G,S).

As shown in Figure 1, a partition Π holding at equality for equation (9) would
have the following structure: there are totally k components in the partition,
Π = (N1, N2, . . . , Nk), k − q of them each has exactly t vertices from Q, i.e.,
|Nl ∩ V (Q)| = t for l = 1, 2, . . . , k − q. The other q components each has
exactly t + 1 vertices from Q, i.e., |Nl ∩ V (Q)| = t + 1 for l = k− q + 1, . . . , k.

13
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Fig. 1. Illustration for Pigeon Inequalities

Theorem 19 Given a graph G = (V,E) and an integer S, let k = bn
S
c, r = n

mod S, i.e. n = kS + r. Let Q = (V (Q), E(Q)) ⊆ G be a clique of size
p = tk + q where t ≥ 1 and 1 ≤ q < k. Consider the pigeon constraint (9),

(i) When r = 0, pigeon constraint (9) is valid for R(G,S), but not facet defin-
ing.

(ii) When r = 1, pigeon constraint (9) is facet defining for R(G,S) if and only
if Q = V .

(iii) When r > 1, pigeon constraint (9) is always facet-defining for R(G,S).

PROOF. The proof goes according to the three cases.

(i) Case I: r = 0.
A partition Π satisfying Pigeon constraint (9) at equality implies that

there are exactly k clusters, with r = 0, each cluster would have exactly
S vertices. Thus the size constraints (1) hold at equality. In other words,
the pigeon constraints are implied by the size constraints (1). So no pigeon
constraints are facets.

(ii) Case II: r = 1.
Any feasible partition Π that satisfies constraint (9) at equality for a

p < n must also satisfy at equality the constraint (9) for p = n, which is
written as (10),

∑

e∈E(V )

xe ≥ (k − r)

(
S

2

)
+ r

(
S + 1

2

)
(10)

because it has to be of the structure with k − 1 clusters of size S and
1 cluster of size S + 1, i.e., Π = (N1, N2, . . . , Nk), where |Ni| = S for
i = 1, . . . , k − 1, and |Nk| = S + 1. Thus constraint (9) with p < n is not a
facet. It will be shown in Part (iii) (b) along with the case when r > 1 that
Constraint (10) is a facet.

(iii) Case III: r > 1.
Since a full-dimensional polyhedron has a unique (to within scalar mul-

tiplication) minimal representation by a finite set of linear inequalities (see
Nemhauser and Wolsey [20], Theorem 3.5), we have the following prop-
erty for a full dimensional polytope P : a valid constraint aT x ≤ α is a
facet for P if and only if any valid constraint bT x ≤ β of P satisfying
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{x ∈ P |aT x = α} ⊆ {x ∈ P |bT x = β} must also satisfy ai

bi
= α

β
,∀i. In the

following proof, we are going to show that when r > 1, pigeon constraints
satisfy the above property, therefore they are facets.

Consider any valid inequality bT x ≤ β s.t. {x ∈ P | x satisfies (9) at
equality} ⊆ {x|bT x = β}. For clarity, we rewrite the biggest pigeon con-
straint (10) as the following,

∑

e∈E(Q)

xe +
∑

e∈δ(Q)

xe +
∑

e∈E(V−Q)

xe ≥ (k − r)

(
S

2

)
+ r

(
S + 1

2

)
(11)

∀v ∈ V , we can construct a partition Π = (N1, N2, . . . , Nk), where |Nl| ≥
S, for l = 1, 2, . . . , k; |Nl ∩ V (Q)| = t, for l = 1, 2, . . . , k − q; |Nl ∩ V (Q)| =
t + 1, for l = k− q + 1, . . . , k; and v ∈ Ni, |Ni| ≥ S + 1, |Ni ∩V (Q)| = t + 1.

(a) By moving vertex v from Vi to V1, we obtain partition Π
′

= (N
′
1, N2,

N3, . . . , N
′
i , . . . , Nk), where N

′
1 = N1 ∪ {v}, N

′
i = Ni − {v}.

No matter whether v ∈ V (Q) or not, both Π and Π
′

satisfy pigeon
constraint (9) at equality. From lemma 14, we have

b(N1, v) = b(Ni − v, v) (12)

(b) Now suppose v ∈ V (Q), we are going to show b(i1, v) = b(i2, v) =:
δv, ∀i1, i2, v ∈ V (Q). This is exactly the same as the proof in [3]. For
completeness, we put it down here again.

We can assume the partition Π was constructed so that i1 ∈ N1 ∩
V (Q), i2 ∈ Ni ∩ V (Q). Switching i1 and i2, we get another partition Π̄
= (N̄1, N2, . . . , N̄i, . . . , Nk) where N̄1 = N1 ∪ i2 − i1, N̄i = Ni ∪ i1 − i2.
Now repeat the procedure (a) with partition Π̄, we will get

b(N̄1, v) = b(N̄i − v, v) (13)

In other words, we move v from N̄i to N̄1 in Π̄, to obtain partition
Π̂ = (N̄1 + v,N2, . . . , N̄i − v, . . . , Nk). Since both Π̄ and Π̂ satisfy pigeon
constraint at equality, from lemma 14, we obtain (13).

Rewrite (12) and (13), we have

b(N1 − i1, v) + b(i1, v) = b(Ni − v − i2, v) + b(i2, v) (14)

b(N̄1 − i2, v) + b(i2, v) = b(N̄i − v − i1, v) + b(i1, v) (15)

(14)− (15) give us

b(i1, v) = b(i2, v) = δv ∀i1, i2 ∈ Q (16)

Since i1, i2, v are chosen arbitrarily, we have

b(i, v) = δv ∀i, v ∈ V (Q) (17)

This actually implies what we have stated in part (ii) of the theorem,
i.e., when Q = V , the biggest pigeon constraint (9) is a facet.
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(c) For the rest of the proof, we assume v ∈ V − V (Q). Let i1 ∈ N1 ∩ V (Q),
i2 ∈ Ni ∩ V (Q).

Repeat the procedure in (b) on partition Π, we get

b(i1, v) = b(i2, v)

Again, since v, i1, i2 are chosen arbitrarily, we have

b(i, v) = αv, ∀i ∈ V (Q), v ∈ V − V (Q) (18)

(18) holds for every v ∈ V − V (Q).
(d) When |V − V (Q)| ≥ 3, without loss of generality, let j1, j2 ∈ V − V (Q),

j1 ∈ N1, j2 ∈ Ni. Switching j1 and j2, we get Π̃ = (Ñ1, N2, . . . , Ñi, . . . , Nk)
where Ñ1 = N1 − j1 ∪ j2, Ñi = Ni − j2 ∪ j1.

Repeat the procedure in (a) with Π̃, we have

b(Ñ1, v) = b(Ñi − v, v) (19)

Rewrite these two equations (12) and (19), we have

b(N1 − j1, v) + b(j1, v) = b(Ni − r − j2, v) + b(j2, v) (20)

b(Ñ1 − j2, v) + b(j2, v) = b(Ñi − v − j1, v) + b(j1, v) (21)

(20)− (21) gives us

b(j1, v) = b(j2, v)

Again since j1, j2, v are chosen arbitrarily, we have

b(j, v) = βv, ∀j ∈ V − V (Q), v ∈ V − V (Q) (22)

When |V − V (Q)| < 3, (22) is obviously true.
(e) From equation (12) in part (a), we have

b(N1, v) = b(Ni − v, v)

⇒ tαv + (|N1| − t)βv = (t + 1)αv + (|Ni| − t− 1)βv

⇒ αv = (|N1| − |Ni|+ 1)βv, ∀v ∈ V − V (Q) (23)

since r > 1, v 6∈ Q, we can construct at least two different valid partitions,
one with |N1| = |Ni| and the other with |N1|+1 = |Ni|. To have equation
(23) hold for both of these two partitions, we have to have

αv = βv = 0 (24)

(f) Having (17), (18), (22), (24) together, we have proved that any constraint
bT x ≥ β dominating pigeon constraint (9) has the same coefficient for the
edges within Q and 0 as the coefficient for all other edges, i.e., bT x ≥ β is
of the form
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∑

e∈E(Q)

xe ≥ β (25)

Thus we have shown that pigeon constraint (9) is a facet when r > 1.

We give two examples to illustrate cases (ii) and (iii) in the theorem.

Example I: A pigeon constraint that is not a facet, shown in Figure 2. Con-
sider a CPPMIN on G = K7, with S = 3. Here n = 7, S = 3, k = 2, r = 1. Let
W be any q = 3 vertices from V . The pigeon constraint on W : x(W ) ≥ 1 is not
a facet because any solution satisfying this inequality at equality will satisfy
the biggest pigeon constraint, i.e. the pigeon constraint involving all edges,
X(G) ≥ 9 at equality. The biggest pigeon constraint is a facet. In the figure,
W = {v3, v4, v7}, the dash line is the support graph for the pigeon constraint
on it. The black lines gives one feasible solution to the CPPMIN problem.

1
7

6

5

4

3

2

Fig. 2. Example I - Pigeon Constraint on K7, with q = 3

Example II: A pigeon constraint that is a facet, shown in Figure 3. Consider
complete graph G = K8, here n = 8, S = 3, k = 2, r = 2. Let W be any q = 4
vertices from V . The pigeon constraint on W : x(W ) ≥ 2 is in fact a facet.
For a problem of this size, it is possible to verify the result by enumerating
all the solutions that satisfy this inequality at equality. In Figure 3, W =
{v2, v3, v7, v8}, the dash line is the support graph for the pigeon constraint
on it. The black lines gives one feasible solution to the CPPMIN problem,
which satisfies the pigeon constraint on W : x(W ) ≥ 2 at equality, but does
not satisfy the pigeon constraint on V , i.e., equation (10) at equality.

3.3.3 How to Find Violated Pigeon Constraints

Take the complete graph G in the CPPMIN problem with the edge weight
changed into the corresponding x value in the LP solution. The problem of
finding violated pigeon constraints of size p is the same as the problem of
finding a clique of size p on this weighted graph that has the total weight
smaller than the minimum value required in the pigeon constraint. If we know
the minimum weight clique of size p, then we can either find a violated con-
straint or prove that there is no pigeon constraint of size p violated. However,
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Fig. 3. Example II - Pigeon Constraint on K8, with q = 4

in general, the problem of finding minimum weight clique of size p is a NP-
hard problem, except for some specific value of p, such as p = n, p = n − 1,
p = 1, p = 2. Thus in our experiment, we will look for only 3 kinds of pigeon
constraint as follows:

• when p = n = |V |, there is only one pigeon constraint. We simply add it
into the initial formulation.

• when p = n − 1, there are n such pigeon constraints, and they are easy to
check. We add the violated ones in the cutting plane step. But in our experi-
ment, this kind of constraint is seldom violated, consequently seldom added.

• When p = k + 1, there are
(

n
k+1

)
such pigeon constraints. They are time-

consuming to enumerate, and it is hard to find the violated ones. but these
constraints are not as dense as the previous ones, and they are more often
violated as shown from the experiments.

We modified a greedy algorithm for maximum dispersion suggested by
Hassin [10] to look for the minimum clique of size p. Our modified algorithm
is shown in Algorithm 1. Note that one reason that we could adopt this
method successfully is based on the assumption that the LP solutions satisfy
the triangle inequalities. For this reason and also because pigeon constraints
are comparably more dense, we add in this kind of pigeon constraints only
when no triangle and 2-way constraints are added in the current iteration.
Through the experiments we see that the majority of the added pigeon
constraints are of this kind.

3.4 Flower Constraints

3.4.1 Flower Constraints for R(G,S)

Lemma 20 Given G=(V,E), let W = (V (W ), E(W )) ⊆ V be a clique of size
w = S + q, q < S, the flower inequality
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Algorithm 1 Find a small weight clique of size k + 1
Input:

n - the total number of vertices in G
k - number of clusters
lpx - the linear program solution

Output:
support - a small weight clique of size (k + 1)
sweight - the total weight of support

Steps:
Let G′ = (V ′, E ′) be Kn, a complete graph of size n.
Let support = ∅.
for i = 1 to (k + 1)/2 do

Find an edge (vi, vj) s.t. lpx(vi, vj) = min{lpx(vk, vl)|(vk, vl) ∈ G′}.
Let support = support + {vi, vj}.
Let V ′ = V ′ − {vi, vj} − ∪{v|lpx(v, vi) > 0.5 or lpx(v, vj) > 0.5}.
Let E ′ = a complete graph on V ′.

end for
If k is odd, add to support an arbitrary vertex.
Let sweight =

∑
vi,vj∈support

lpx(vi, vj).

∑

e∈E(W )

xe +
∑

e∈δ(W )

xe ≥
(
S

2

)
+

(
q

2

)
+ q(S − q), ∀W ⊂ V (26)

is a valid constraint for R(G,S).

PROOF. Equation (26) is at equality when S vertices from W are clustered
together, and the other q vertices are clustered together. Following from the
minimum size constraint on cluster size, each vertex in the set of q vertices has
to be connected to S − q vertices outside W . This is the minimum value for
the number of edges connected with W , because to replace any 1 edge inside
W , we have to add another 2 edges connected to V \W to maintain the size
constraint (1); and to shift any vertex from the group of size q to the group
of size S would also increase the total number of edges by (S − q).

Figure 4 shows the support graph for an example of constraint (26). Here
w = 7, S = 4, q = 3.

∑

e∈E(W )

xe +
∑

e∈δ(W )

xe ≥ 9 + 3 = 12 (27)
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W

Fig. 4. Illustration for Flower Inequalities

Figure 5 illustrates the two possible ways to tighten up constraint (27), which
corresponds to the solid line in the figure. The values of

∑
e∈δW

xe and
∑

e∈E(W )
xe

are plotted in the graph as x axis and y axis. The tightenings modify the
coefficients of (27) so that other configurations of W also satisfy the constraint
at equality. We are interested in two particular configurations: one is to have
every vertex in W in one big cluster so that

∑
e∈E(W )

xe = 21 and
∑

e∈δ(W )
xe = 0 ;

the other is to have each vertex in W in a separate cluster so that
∑

e∈E(W )
xe = 0

and
∑

e∈δ(W )
xe = 21. These give the constraints corresponding to the dashed

line and the dotted line, respectively. The cutting plane generated from the
latter case turns out to be already implied by the degree constraints. So we
are left with the first case, tightening up the solid line to the dashed line.

(3,9)

Outside Sum

Sum
Inside

(21,0)

(21,0)

(0,21)

(3,9)
(6,10)

(11,5)

(3,15)

    inside + 4 outside = 21

 2 inside +    outside = 21

    inside +    outside = 12

(0,21)

Fig. 5. Lifting Flower Inequalities

As we can see from figure 5, to the right of the intersection point (3,9), the
solid line is already tighter than the dashed line. Since solid line is already
valid, the dashed line has to be valid. This gives the first part of the proof for
the following theorem, which summarizes the above observations.

Theorem 21 The lifted flower constraint

(S − q)
∑

e∈E(W )

xe + S
∑

e∈δ(W )

xe ≥ (S − q)

(
S + q

2

)
(28)
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is a valid constraint for R(V, S), ∀W ⊂ V, |W | = S + q, 0 ≤ q < S.

PROOF. For any partition Π on W , let x be the incidence vector of Π.
We will prove the theorem according to two cases, depending on the value of∑
e∈δ(W )

xe for Π.

(i) When
∑

e∈δ(W )
xe > (S − q)q,

(S − q)
∑

e∈E(W )

xe + S
∑

e∈δ(W )

xe

= (S − q)(
∑

e∈E(W )

xe +
∑

e∈δ(W )

xe) + q
∑

e∈δ(W )

xe

≥ (S − q)(
S(S − 1)

2
+

q(q − 1)

2
+ q(S − q)) + q

∑

e∈δ(W )

xe

from (26)

> (S − q)(
S(S − 1)

2
+

q(q − 1)

2
+ q(S − q)) + q(q(S − q))

from the assumption
∑

e∈δ(W )

xe > (S − q)q

= (S − q)(
S(S − 1)

2
+

q(q − 1)

2
+ qS)

= (S − q)

(
S + q

2

)

(ii) When
∑

e∈δ(W )
xe ≤ (S − q)q, partition Π on W has to be of the form

Π = {W1,W2}, and S ′ = |W1| ≥ S, r′ = |W2| ≤ q, S ′ + q′ = S + q. Let
w ∈ W2. Define another two partitions on W, Π̂ = {W1 +w, W2−w} and
Π̃ = {W}. Let

̂inside+ = |E(Π̂)| − |E(Π)|,
̂outside− = |δ(Π)| − |δ(Π̂)|,
˜inside+ = |E(Π̃)| − |E(Π)|,
˜outside− = |δ(Π)| − |δ(Π̃)|

So the value of ̂inside+/ ̂outside− represents the the absolute value of
the slope of the line connecting partitions Π and Π̂, and the value of
˜inside+/ ˜outside− represents the absolute value of the slope of the line

connecting partitions Π and Π̃. To compare these two values, we need to
compute first
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̂inside+ = S ′ − (q′ − 1),

̂outside− = (S − q′)− (q′ − 1),

˜inside+ = S ′q′,

˜outside− = (S − q′)q′.

Therefore we have

̂inside+

̂outside−
=

S ′ − (q′ − 1)

(S − q′)− (q′ − 1)
= 1 +

S ′ − S + q′

(S − q′)− (q′ − 1)
,

˜inside+

˜outside−
=

S ′

S − q′
= 1 +

S ′ − S + q′

S − q′
.

So we get

̂inside+

̂outside−
≥

˜inside+

˜outside−
, (29)

i.e. the absolute value of the slope of the line connecting Π and Π̂ is always
bigger or equal to the absolute value of slope of the line connecting Π and
Π̃. This implies that Π̂ will satisfy equation (28) as long as both Π̃ and Π
satisfy equation (28). We can easily verify that Π̃ satisfy (28), so we only
need to find one initial partition Π satisfying equation (28) too. Since
partition {W1, W2}, S ′ = |W1| = S, q′ = |W2| = q satisfies (28), starting
with this partition, and from induction we get that all other partitions
satisfy (28).

Part (ii) of the proof is also illustrated in figure 5. Notice that a line connecting
points Π = (3, 9) and Π̂ = (3, 15) has a bigger slope in absolute value than the
dash line that connects Π = (3, 9) and Π̃ = (0, 21), which also corresponds to
constraint (28), so point Π̂ = (3, 15) is above this dash line, in other words,
constraint (28) is valid for the partition Π̂ corresponding to point (3,15).

From lemma 15, we know any valid constraint gT x ≤ h implying a flower
inequality must have g(i, j) = 0, i, j 6∈ W . But the flower constraint is not a
facet in general. For example, see Figure 6, when |W | = 5, S = 4, q = 1, any
incidence vector satisfying the following flower constraint at equality

3
∑

e∈E(W )

xe + 4
∑

e∈δ(W )

xe ≥ 30 (30)

also satisfies the following constraint at equality:
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− ∑

e∈cycle(W )

xe + 4
∑

e∈E(W )−cycle(W )

xe + 2
∑

e∈δ(W )

xe ≥ 15 (31)

where cycle(W ) is a cycle in W . Figure 6 shows the only two configurations
satisfying flower constraint (30) at equality. They also both satisfy constraint
(31) on any cycle covering the 5 vertices, for example cycle ABCDEA. The
question remains open on how to lift the flower constraint to a facet.

A

x(cycle) = 3

W W

C

A

B E

C D

x(E-cycle)=3
x(outside) = 3

x(cycle) = 5
x(E-cycle)=5
x(outside) = 0

EB

D

Fig. 6. Two Configurations Satisfying Inequalities (31) at Equality

3.4.2 How to Find Violated Flower Constraints

Since flower constraints are dense constraints, we only look for them when
we couldn’t find other cutting planes. Again, we use heuristic method to find
them. According to the current LP solutions, we divide the vertices into con-
nected components heuristically, then we check if any of these components
violate the flower constraint. The intuition behind this strategy is a realiza-
tion that the flower constraint is more likely to be violated when the x weights
are more concentrated on the edges within a component. For example, con-
sider again the example of figure 4, set xe = 1

2
for e ∈ E(W ) and xe = 0

for e ∈ δ(W ). This solution satisfies the degree constrains on W , but violates
flower constraint (28).

4 Computational Results

In this part, we are going to show the frame work of our algorithm and the
computational results.
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4.1 Branch and Cut algorithm

Algorithm 2 shows the framework of a branch and cut algorithm that we use
here. When we are concentrating on adding in cutting planes at the root node,
the LP relaxations are solved by an interior point method, this is because,
initially the cutting planes are deep, the LP solution is only used to generate
cutting planes, an absolute optimal solution is not necessary. In fact, a close
to optimal solution helps to generate deeper cutting planes. After we start
branching, we switch to the simplex method to solve the LP relaxation, since
at this time the LP solution are much closer to optimality. A more detailed
explanation on the combination of interior point method and simplex method
in a branch and cut algorithm can be found in Mitchell and Borchers[18].

The cutting planes that are specific to this problem are added in the separation
routine shown in algorithm 3.

Algorithm 2 Branch and Cut Framework

1: Initialize.
2: Approximately solve the current LP relaxation using an interior point

method.
3: If the gap between the value of the LP relaxation and the value of the

incumbent integer solution is sufficiently small, STOP with optimality.
4: If the duality gap for the current LP is smaller than 10−8 or if a given

limit on the number of outer iterations have been reached, call MINTO
[19] to do a branch-and-cut until an optimal solution is proved or a time
limit runs out. To guarantee the solution returned by MINTO is a feasible
solution, we add in violated triangle constraints as cutting planes.

5: Try to improve the incumbent solution locally by switching vertices and
moving extra vertices around.

6: Use the separation routine Algorithm 3 to find violated cutting planes and
return to Step 2.

4.2 A Heuristic Algorithm

Domingo-Ferrer and Mateo-Sanz [5] surveyed heuristic methods for a very
similar problem to CPPMIN in the application to micro-aggregation prob-
lems. The difference between the problem discussed in [5] and CPPMIN is
the objective function. A slightly different objective function is used in [5] to
model the homogeneity within a cluster. We implemented one heuristic algo-
rithm for this slightly different problem in [5] to compare with our cutting
plane approach. The reason we choose this particular algorithm is because its
one-run performance is among the best of the heuristic algorithms mentioned
in [5]. Notice computation time is not an issue here, instead the optimality
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Algorithm 3 Separation Routine

1: The algorithm first searches for triangle inequalities using complete enu-
meration. Inequalities are bucket sorted by the size of the violation. In-
equalities are added starting with those in the most violated subset, en-
suring that no two of these added inequalities share an edge. The violation
of the last constraint added is restricted to be no smaller than a multiple
of the violation of the first constraint added.

2: If not enough constraints are added so far, add 2-partition inequalities.
3: If not enough constraints are added so far, add pigeon constraints of size

n− 1.
4: If not enough constraints are added so far, add pigeon constraints of size

k + 1.
5: If not enough constraints are added so far, add flower constraints.

of the heuristic solution is important. The heuristic algorithm is illustrated in
Algorithm 4.

Algorithm 4 A Heuristic Algorithm for CPPMIN
1: Let U = V .
2: Find the two most distant vertices xs, xt ∈ U .
3: Form a cluster around xs with the S− 1 closet vertices to xs in U , remove

these S vertices from U .
4: Form a cluster around xt with the S− 1 closet vertices to xt in U , remove

these S vertices from U .
5: If |U | ≥ 2S, go back to step 2.
6: If S ≤ |U | < 2S, form a new cluster using these vertices.
7: If |U | < S assign each vertex to the same cluster its closest neighbor

belongs to.
8: Try to improve the solution locally by switching vertices and moving extra

vertices around.

4.3 Random Uniform Problems

In this category, we generate 2 types of data.

Type I : Vertices are generated randomly on a unit square following a uniform
distribution. The edge weight is the integral part of 100 times the distance
between vertices.

Type II : In this case, we don’t generate vertices explicitly, instead, edge weights are
generated directly as uniformly distributed random variables between 1 and
100. In this case, the edge weights do not satisfy the the triangle inequalities
any more, thus the problem turns out to be much harder to solve than Type
I problems, because on average, every vertex is equally close to every other
vertex.
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For each type of data, we consider two choices of S, S = 4 or S = 7. In the
following discussion, we will be concentrating on the case of S = 4, but as one
can see from the tables, the case of S = 7 is very similar, so the analysis for the
case of S = 4 holds the same as for the case of S = 7. In Tables 1, 2 and 4, we
consider S = 4, we generate 5 groups of problems between 21 and 103 vertices.
Each group includes all the 3 cases of remainders, 1, 2 and 3. Our experimental
data showed that there is no major difference between these three cases, so
we don’t show the results separately in the tables. 5 problems of each case
were generated, so totally, for each column, 15 instances were generated and
solved. Every number reported in the tables is the average performance of 15
instances with the same number of partitions k.

Every problem is tackled in three ways. First, the heuristic method is used to
find a good solution, then the cutting plane approach tries to generate a good
linear programming approximation to the problem. If this can not prove the
optimality of the best feasible solution, we resort to a branch-and-cut code in
MINTO.

Accordingly, each table is divided into 3 blocks, corresponding to these three
approaches, labelled as “Heuristic Alg”, “Cutting Plane” and “MINTO run”
respectively. The first block gives the gap and time after running the heuristic
algorithm written in Fortran 77. The second block corresponds to the cutting
plane stage of the algorithm. At each iteration, the LP relaxation is solved by
an interior point method, implemented in Fortran 77. The rows in the table
give the total number of instances, the number of problems solved to opti-
mality at this stage, how many cutting plane solutions improved the heuristic
solution, the average final gap, the average running time (in seconds), the aver-
age number of total number of cuts, pigeon constraints and flower constraints
added, the average number of outer iterations, and the average number of
interior point iterations. The third block is the result after branching using
MINTO 3.0.2. For problems not solved by the cutting plane scheme, we finish
the process off with MINTO to try to obtain an optimal solution. It reads in
the cutting plane formulation from an MPS file, then uses a branch and cut
algorithm with only triangle constraints added in as cutting planes. The LP
relaxations are solved by simplex method using CPLEX 6.6. The runtimes are
reported with an upper bound of 500 seconds. The results reported include
the total number of problems that needs to call MINTO, the number of prob-
lems solved to optimality by MINTO before reaching time limit, how many
MINTO IP solutions improved best upper bound from the cutting plane stage,
the final gap between the best IP solution and LP lower bound, total running
time, the number of branch and bound nodes. The heuristic and cutting plane
algorithms are coded in FORTRAN. The MINTO branch and bound part is
coded in C. The experiments are done on a Sun Ultra 10 Workstation.
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To demonstrate the strength of the cutting planes, first we would like to men-
tion that feeding all the triangle inequalities to CPLEX to solve the problem
directly as an IP is impractical; CPLEX was unable to solve a 25 vertex in-
stance in 1 day. The strength of the pigeon and flower constraints is shown by
comparing Table 1 and Table 2. Both tables used the same set of testing data,
but in Table 1, we did not try to add in any pigeon or flower constraints. The
block labelled “Improvement” compared the difference between the two sets of
results after cutting plane code, first by the number of better integer solutions
found, then by the improvement on LP lower bound. Considering these im-
provements with the extra time we have to spent to look for pigeon and flower
constraints, which is about 1 or 2 minutes more, we can say that pigeon and
flower constraints are important constraints for CPPMIN problems. Of course
the performance of the branch and bound part of the problem is improved
too in Table 2 since we started with a tighter relaxation here. Figure 7 shows
a typical run of the cutting plane algorithm. We show the performance with
triangle and 2-way constraints only for Type I data here, but similar results
are observed in other kind of data too. Table 3 for the case of S = 7 follows
the same structure.
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Fig. 7. Progress of the Cutting Plane Algorithm

Table 2 and Table 3 show that the cutting plane algorithm was typically able
to solve the Type I problems within 4% of optimality in about 3 minutes for
a problem of size around 100. The branching stage basically just check the
optimality of the solution. So we only checked and added triangle constraints.
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The numerical results show that the branch and bound part does not improve
the solution or the gap much, so it is probably not necessary in most of the
cases.

Table 4 shows the result for Type II problems. These are harder partition prob-
lems, because on average, each vertex is equally close to every other vertex.
A lot more violated triangle inequalities are generated since the edge weights
do not satisfy the triangle inequality any more. As we can see from Table 4,
it takes much more time to solve them. Due to the difficulty of this type of
problems, we only show the case for S = 4.

The CPPMIN is a partition minimizing problem, it can be equivalently formed
as a multi-cut maximization problem, which maximize the sum of inter-cluster
distances. In the latter case, the error percentage is far smaller. In our CPPP-
MIN formulation, suppose the best integer solution found is x̄, the optimal
solution to the lp relaxation is x. We compute the relative gap as

gapmin =

∑
e∈E

cex̄e − ∑
e∈E

cexe

∑
e∈E

cexe

In the equivalent problem of maximizing the sum of inter-cluster distances,
the corresponding relative gap would be

gapmax =

∑
e∈E

ce(1− xe)− ∑
e∈E

ce(1− x̄e)

∑
e∈E

ce(1− xe)

=

∑
e∈E

cex̄e − ∑
e∈E

cexe

∑
e∈E

ce − ∑
e∈E

cexe

When the graph G is a complete graph, most of the xe are zero, therefore,
gapmax is much smaller than gapmin. For example, for a Type I problem of
102 nodes, a gap of gapmin = 3% in our formulation can easily correspond to
a gap of around gapmax = 0.02% in this alternative formulation.

4.4 Micro-aggregation Problems

One application of CPPMIN that we are particularly interested in is micro-
aggregation problem. Micro-aggregation is a technique to process statistical
data for releasing to the public, so that the confidentiality of respondents is
protected and the informational content of the data are preserved as much as
possible. It is commonly used in economic data where respondent identifiability
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n 21-23 41-43 61-63 81-83 101-103

k = bn
S c 5 10 15 20 25

Heuristic Alg.

Gap 9.85% 12.32% 13.12% 14.54% 12.68%

Time 0.0060 0.0141 0.0278 0.0441 0.0672

Cutting Plane 15 15 15 15 15

Solved exactly 1 0 0 0 0

Better Solution 12 14 15 15 15

Gap 4.63% 4.65% 5.28% 5.97% 5.37%

Time 0.89 3.80 7.98 19.43 41.05

Cuts added 64 121 168 227 311

Pigeon - - - - -

Flower - - - - -

Outer Iter 8 12 12 15 18

Inner Iter 55 120 132 195 253

MINTO run 14 15 15 15 15

Solved exactly 14 15 14 4 0

Better Solution 0 2 9 12 12

Gap 0% 0% 0.55% 4.28% 4.47%

time 3.26 41.43 189.18 417.39 500.60

nodes 39 156 361 457 290
Table 1
Branch-and-Cut Results on CPPMIN Type I Problems for S = 4 with only Triangle
and 2-way constraints

is high. Data are divided into groups with varying size (≥ fixed size), to
avoid a large gap within a group. For univariate data, the problem can be
solved efficiently using a dynamic programming approach after sorting the
data, see [9], but for higher dimensional data, sorting is no longer well defined.
Sande [22] introduced the problem and several possible methods for higher
dimensional data. Domingo-Ferrer and Mateo-Sanz [5] gives a good summary
on the heuristic methods. Micro-aggregation problems in higher dimensions
can be described as clustering problems with a variable number of clusters
and a minimum cluster size.

Data from micro-aggregation problems usually has the following two impor-
tant properties one is that cluster size are usually small, i.e S << k; the other
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n 21-23 41-43 61-63 81-83 101-103

k = bn
S c 5 10 15 20 25

Heuristic Alg.

Gap 6.97% 10.27% 11.04% 12.40% 11.19%

Time 0.0066 0.0143 0.0273 0.0438 0.0664

Cutting Plane 15 15 15 15 15

Solved exactly 4 1 0 0 0

Better Solution 12 14 15 15 15

Gap 1.87% 2.67% 3.02% 3.65% 3.77%

Time 6.99 23.08 58.42 110.58 175.63

Cuts added 97 178 261 339 433

Pigeon 12 9 9 8 7

Flower 2 4 7 9 8

Outer Iter 16 25 31 36 37

Inner Iter 121 285 415 523 577

Improvement

Better than Tri 0 1 0 8 7

LPOBJ Improve 2.57% 1.75% 1.82% 1.87% 1.31%

MINTO run 11 14 15 15 15

Solved exactly 11 14 14 5 0

Better Solution 0 1 3 8 6

Gap 0% 0% 0.30% 2.67% 3.47%

time 3.25 24.07 157.06 393.70 510.13

nodes 11 38 182 240 139
Table 2
Branch-and-Cut Results on CPPMIN Type I Problems for S = 4

is that economic data tends to be highly skewed. So in this section, we generate
two types of data to simulate economic data for our numerical experiments.
The simulation is suggested by Sande [23].

Type III : Vertices are randomly generated on a plane with the axes being bivari-
ate, and each following an exponential distribution independently. The edge
weight is the integral part of 100 times the distance between vertices. This
case can simulate economic data that tends to be highly skewed with a long
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n 36-41 71-76

k = bn
S c 5 10

Heuristic Alg.

Gap 4.65% 8.03%

Time 0.0100 0.0272

Cutting Plane 30 30

Solved exactly 0 0

Better Solution 25 35

Gap 2.10% 2.32%

Time 67.93 235.65

Cuts added 418 773

Pigeon 19 15

Flower 1 2

Outer Iter 35 40

Inner Iter 336 546

MINTO run 30 30

Gap 0.58% 2.04%

time 150.60 402.68

nodes 147 76
Table 3
Branch-and-Cut Results on CPPMIN Type I Problems for S = 7

tail. An example of the solution on this kind of data is shown in Figure 8.
The performance of the algorithm on this kind of data is shown in Table 5
and 6.

Type IV : Vertices are randomly generated on a plane. One axis has an exponential
distribution, the other axis has a uniform×exponential distribution. More
precisely, let u be exponential, v be uniform between 0 and 1, then x = u
and y = u×v. The edge weight is the integral part of 100 times the distance
between vertices. In term of economic data, one can think of u as the size
of measure of economic data and v as the fraction of the size which is spent
on payrolls. Some businesses are very labor intensive and others are capital
intensive with less labor. An example of the solution on this kind of data is
shown in Figure 9. The results for this type of problems are shown in Tables
7 and 8.

From the results in Tables 5-8, we can see that these two types of problems
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n 21-23 41-43

k = bn
S c 5 10

Heuristic Alg.

Gap 13.50% 24.16%

Time 0.0062 0.0124

Cutting Plane 15 15

Solved exactly 0 0

Better Solution 15 15

Gap 4.74% 13.28%

Time 75.69 1657.34

Cuts added 393 1027

Pigeon 11 9

Flower 0 0

Outer Iter 25 34

Inner Iter 192 305

MINTO run 15 15

Solved exactly 15 0

Better Solution 0 6

Gap 0% 8.93%

time 40.83 476.70

nodes 80 169
Table 4
Branch-and-Cut Results on CPPMIN Type II problems for S = 4

are harder than the Type I problems, but none the less we can solve them to
within 4% of optimality in about 3 minutes. Again it takes quite a long time
to use a branch and bound algorithm to try to verify that the solutions we get
really are optimal solutions.

We can also see that the problems of Type IV are a little bit easier than Type
III. This is because the y variable is always less than x, thus making the x
axis more important, and the problem closer to the easier one dimensional
clustering problem.
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Fig. 8. Solution for a CPPMIN Problem of Type III: n = 22, S = 4
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Fig. 9. Solution for a CPPMIN Problem of Type IV: n = 22, S = 4

5 Conclusions, Other Applications and Future Work

In summary, we have shown that the Clique Partition Problem with Mini-
mum Size Constraints can be formulated as an IP problem (CPPMIN) and
approximated nicely by a LP relaxation by adding cutting planes. We gave
the mathematical formulation of the IP problem, discussed the polyhedral
structure of the corresponding polytope, gave two kind of specialized cutting
planes, and proved the necessary and sufficient condition for the pigeon con-
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n 21-23 41-43 61-63 81-83 101-103

k = bn
S c 5 10 15 20 25

Heuristic Alg.

Gap 3.12% 6.98% 9.49% 8.54% 9.01%

Time 0.0056 0.0113 0.0207 0.0313 0.0475

Cutting Plane 15 15 15 15 15

Solved exactly 1 0 0 0 0

Better Solution 6 14 15 15 15

Gap 2.14% 2.56% 2.03% 2.60% 3.46%

Time 9.45 20.20 49.94 104.74 181.08

Cuts added 123 184 274 369 438

Pigeon 13 10 8 8 8

Flower 1 4 5 8 11

Outer Iter 24 26 31 36 39

Inner Iter 195 298 434 560 646

MINTO run 14 15 15 15 15

Solved exactly 14 15 13 7 1

Better Solution 0 2 2 7 4

Gap 0% 0% 0.48% 1.76% 3.01%

time 4.39 28.52 155.85 361.73 485.88

nodes 25 81 253 247 125
Table 5
Branch-and-Cut Results on CPPMIN Type III Problems for S = 4

straints to be facet defining. Our computational results showed that with these
special constraints, a cutting plane scheme leads consistently to high quality
solutions in a reasonable amount of time. This proves the effectiveness of these
special constraints.

In micro-aggregation problems, different kinds of objective function have also
been proposed to characterize the within-group homogeneity. Domingo-Ferrer
and Mateo-Sanz [5] introduced a few of them that are all based on the distance
between each vertex and its cluster center, which would result in a non-linear
objective function. Sande [22] suggested using the total weight of the minimum
spanning tree within each clusters. We will address this particular form in Ji
and Mitchell [13].
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n 36-41 71-76

k = bn
S c 5 10

Heuristic Alg.

Gap 3.87% 6.42%

Time 0.0129 0.0285

Cutting Plane 30 30

Solved exactly 0 0

Better Solution 16 29

Gap 2.05% 2.11%

Time 62.12 229.22

Cuts added 390 733

Pigeon 17 14

Flower 1 3

Outer Iter 33 40

Inner Iter 327 547

MINTO run 30 30

Solved exactly 24 0

Better Solution 0 1

Gap 0.59% 1.56%

time 194.75 465.86

nodes 136 71
Table 6
Branch-and-Cut Results on CPPMIN Type III Problems for S = 7
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[6] M. Gröschel and Y. Wakabayashi. A cutting plane algorithm for a clus-
tering problem. Mathematical Programming, 45:59–96, 1989.
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