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Abstract

We develop and apply a novel framework which is designed to extract information in the
form of a positive definite kernel matrix from possibly crude, noisy, incomplete, inconsistent
dissimilarity information between pairs of objects, obtainable in a variety of contexts. Any
positive definite kernel defines a consistent set of distances, and the fitted kernel provides a
set of coordinates in Euclidean space which attempt to respect the information available, while
controlling for complexity of the kernel. The resulting setof coordinates are highly appropriate
for visualization and as input to classification and clustering algorithms. The framework is
formulated in terms of a class of optimization problems which can be solved efficiently using
modern convex cone programming software. The power of the method is illustrated in the
context of protein clustering based on primary sequence data. An application to the globin
family of proteins resulted in a readily visualizable 3D sequence space of globins, where several
sub-families and sub-groupings consistent with the literature were easily identifiable.

1 Introduction

It has long been recognized that symmetric positive definitekernels (hereinafter “kernels”) play
a key role in function estimation [1][2], clustering and classification, dimension reduction, and
other applications. Such kernels can be defined on essentially any conceivable domain of interest
[3], originally function spaces and more recently, finite (but possibly large) collections of trees,
graphs, images, DNA and protein sequences, microarray geneexpression chips, and other objects.
A kernel defines a distance metric between pairs of objects inthe domain that admits an inner
product. Thus they play a key role in the implementation of classification algorithms (via support
vector machines (SVMs)) and clustering (viak-means algorithms, for example), along with their
more classical role in function approximation and estimation, and the solution of ill-posed inverse
problems [4]. Since the mid 90s, when the key role of these kernels became evident in SVMs
[5][6][7], a massive literature has grown related to the useand choice of kernels in many domains
of application, including, notably, computational biology [8]. A google search as of the date of this
writing gave overthree millionhits on “Kernel Methods”, along with an ad from Google soliciting
job applications from computer scientists!
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Mathematically defined kernels, for example, spline kernels, radial basis functions and related
positive definite functions defined on Euclidean space, havelong been the workhorses in the field,
generally with one or a few free parameters estimated from the data; see, for example [9]. A re-
cent work [10] proposes estimating a kernel by optimizing a linear combination of prespecified
kernels via a semidefinite programming approach. The readermay connect with the recent liter-
ature on kernel construction and use in a variety of contextsby going to the NIPS2004 website
(http://books.nips.cc/nips17.html) or the book [11].

It is frequently possible to use expert knowledge or other information to obtain dissimilarity
scores for pairs of objects, which serve as pseudo-distances between the objects. There are two
problem types of interest. The first is to estimate full relative position information for a (training)
set of objects in a space of preferably low dimension in orderto visualize the data or to conduct
further processing - typically, classification or clustering. One traditional approach for this purpose
is multidimensional scaling (MDS) [12], which continues tobe an active research area. The second
problem is to place new objects in the space, given some dissimilarity information between them
and some members of the training set, in the coordinate spaceof the training set.

This paper proposes regularized kernel estimation (RKE), aunified framework for solving both
problems by fitting a positive definite kernel from possibly crude, noisy, incomplete, inconsistent,
weighted, repetitious dissimilarity information, in a fully nonparametric approach, by solving a con-
vex optimization problem with modern convex cone programming tools. The basic idea is to solve
an optimization problem which trades off goodness of fit to the data and a complexity (shrinkage)
penalty on the kernel which is used to fit the data - analogous to the well known bias-variance trade-
off in the spline and ill-posed inverse literature, but not exactly the same. Within this framework,
we provide an algorithm for placing new objects in the coordinate space of the training set.

The method can be used instead of MDS to provide a coherent setof coordinates for the given
objects in few or many dimensions, without problems with local minima or (some) missing data. It
can also be used to solve problems discussed in [10], but in a fully nonparametric way.

The feasibility of the RKE approach is demonstrated in the context of protein sequence cluster-
ing, by applying the method to global pairwise alignment scores of the heme-binding protein family
of globins. In this example, we are already able to visualizethe known globin subfamilies from a 3D
plot of the training sequence coordinates that are obtainedby the regularized kernel estimate. Fur-
thermore, apparent sub-clusterings and outliers of the known globin subfamilies from the 3D plot
reveal interesting observations consistent with the literature. Clustering of protein sequences from a
family to identify subfamilies or clustering and classification of protein domains to determine pro-
tein function present one major application area for the novel framework presented here. However,
we envision many more applications involving clustering and classification tasks in biological and
non-biological data analysis, some of these are discussed in Section 5.

In Section 2, we present the general formulation of the problem and define the family of Regu-
larized Kernel Estimates. Section 3 describes the formulation of RKE problems and the problem of
placing test data in the coordinate space of training data asgeneral convex cone problems. Also in-
cluded is a brief discussion on tuning the parameters of the estimation procedure. Section 4 presents
an application to the globin protein family to identify subfamilies and discusses the biological im-
plication of the results. Examples of placing test data points in the coordinate system of training
protein sequences are illustrated here. We conclude with a summary and discussion of future work
in Section 5.
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2 Dissimilarity Information and RKE

Given a set ofN objects, suppose we have obtained a measure of dissimilarity, dij , for certain object
pairs(i, j). We introduce the class of Regularized Kernel Estimates (RKEs), which we define as
solutions to optimization problems of the following form:

min
K∈SN

∑

(i,j)∈Ω

L
(

wij, dij , d̂ij(K)
)

+ λJ(K), (1)

whereSN is the convex cone of all real nonnegative definite matrices of dimensionN , Ω is the set of
pairs for which we utilize dissimilarity information, andL is some reasonable loss function, convex
in d̂ij , whered̂ij is the dissimilarity induced byK. J is a convex kernel penalty (regularizing)
functional, andλ is a tuning parameter balancing fit to the data and the penaltyon K. Thewij

are weights that may, if desired, be associated with particular (i, j) pairs. The natural induced
dissimilarity, which is a real squared distance admitting of an inner product, iŝdij = K(i, i) +
K(j, j) − 2K(i, j) = Bij ·K, whereK(i, j) is the(i, j) entry ofK andBij is a symmetric matrix
of dimensionN with all elements0 exceptBij(i, i) = Bij(j, j) = 1, Bij(i, j) = Bij(j, i) = −1.
The inner (dot) product of two matrices of the same dimensions is defined as:A ·B =

∑

i,j A(i, j) ·
B(i, j) ≡ trace(AT B). There are essentially no restrictions on the set of pairs other than requiring
that the graph of the objects with pairs connected by edges beconnected. A pair may have repeated
observations, which just yield an additional term in (1) foreach separate observation. If the pair set
induces a connected graph, then the minimizer of (1) will have no local minima.

Although it is usually natural to require the observed dissimilarity information{dij} to satisfy
dij ≥ 0 anddij = dji, the general formulation above does not require these properties to hold. The
observed dissimilarity information may be incomplete (with the restriction noted), it may not satisfy
the triangle inequality, or it may be noisy. It also may be crude, as for example when it encodes a
small number of coded levels such as “very close”, “close”, “distant”, and “very distant”.

In this work we consider two special cases of the formulation(1), the first for its use in the
application to be discussed.

3 Numerical Methods for RKE

In this section, we describe a specific formulation of the approach in Section2, based on a lin-
early weightedl1 loss, and use the trace function in the regularization term to promote dimension
reduction. The resulting problem is as follows:

min
K�0

∑

(i,j)∈Ω

wij |dij − Bij · K| + λ trace(K). (2)

We show how this formulation can be posed as a general conic optimization problem and also de-
scribe a “newbie” formulation in which the known solution to(2) for a set ofN objects is augmented
by the addition of one more object together with its dissimilarity data. A variant of (2), in which a
quadratic loss function is used in place of thel1 loss function, is described in the appendix.
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3.1 General Convex Cone Problem

We specify here the general convex cone programming problem. This problem, which is central to
modern optimization research, involves some unknowns thatare vectors in Euclidean space and oth-
ers that are symmetric matrices. These unknowns are required to satisfy certain equality constraints
and are also required to belong to cones of a certain type. Thecones have the common feature that
they all admit a self-concordant barrier function, which allows them to be solved by interior-point
methods that are efficient in both theory and practice.

To describe the cone programming problem, we define some notation. Let Rp be Euclidean
p-space, and letPp be the nonnegative orthant inRp, that is, the set of vectors inRp whose com-
ponents are all nonnegative. We letQq be the second-order cone of dimensionq, which is the set of
vectorsx =

(

x(1), . . . , x(q)
)

∈ Rq that satisfy the conditionx(1) ≥ [
∑q

i=2 x(i)2]1/2. We define
Ss to be the cone of symmetric positive definites × s matrices of real numbers. Inner products
between two vectors are defined in the usual way and we use the dot notation for consistency with
the matrix inner product notation.

The general convex cone problem is then:

min
Xj ,xi,z

ns
∑

j=1

Cj · Xj +

nq
∑

i=1

ci · xi + g · z (3)

s.t.
ns
∑

j=1

Arj · Xj +

nq
∑

i=1

ari · xi + gr · z = br, ∀r

Xj ∈ Ssj
∀j; xi ∈ Qqi

∀i; z ∈ Pp.

Here,Cj, Arj are real symmetric matrices (not necessarily positive semidefinite) of dimensionsj,
ci, ari ∈ Rqi , g, gr ∈ Rp, br ∈ R1.

The solution of a general convex cone problem can be obtainednumerically using publicly
available software such as SDPT3 [13] and DSDP5 [14].

3.2 RKE with l1 Loss

To convert the problem of equation (2) into a convex cone programming problem, without loss of
generality, we letΩ containm distinct(i, j) pairs, which we index withr = 1, 2, . . . ,m. DefineIN

to be theN -dimensional identity matrix andem,r to be vector of length2m consisting of all zeros
except for therth element being1 and(m + r)th element being−1. If we denote therth element
of Ω as

(

i(r), j(r)
)

, and with some abuse of the notation leti = i(r), j = j(r) andw ∈ P2m with
w(r) = w(r + m) = wi(r),j(r), r = 1, . . . ,m, we can formulate the problem of equation (2) as
follows:

minK�0,u≥0 w · u + λIN · K
s.t. dij − Bij · K + em,r · u = 0, ∀r, (4)

K ∈ SN , u ∈ P2m.
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3.3 ‘Newbie’ Formulation

We now consider the situation in which a solutionKN of (2) is known for some set ofN objects. We
wish to augment the optimal kernel (by one row and column), without changing any of its existing
elements, to account for a new object. That is, we wish to find anew “pseudo-optimal” kernel
K̃N+1 of the form

K̃N+1 =

[

KN bT

b c

]

� 0, (5)

(whereb ∈ RN andc is a scalar) that solves the following optimization problem:

minc≥0,b
∑

i∈Ψ wi |di,N+1 − Bi,N+1 · KN+1| (6)

s.t. b ∈ Range(KN ), c − bT K+
N b ≥ 0,

whereK+
N is the pseudo-inverse ofKN andΨ is a subset of{1, 2, . . . , N} of sizet. The quantities

wi, i ∈ Ψ are the weights assigned to the dissimilarity data for the new point. The constraints in
this problem are the necessary and sufficient conditions forK̃N+1 to be positive semidefinite.

Suppose thatKN has rankp < N and letKN = ΓΛΓT , whereΓN×p is the orthogonal matrix of
non-zero eigenvectors andΛ is thep × p matrix of positive eigenvalues ofKN . By introducing the
variableb̃ and settingb = ΓΛ1/2b̃, we can ensure that the requirementb ∈ Range(KN ) is satisfied.
We also introduce the scalar variablec̃, and enforcec ≥ c̃2 by requiring that

Z
def
=

[

1 c̃
c̃ c

]

∈ S2. (7)

Using these changes of variable, the conditionc − bT K+
Nb ≥ 0 is implied by the condition

x
def
=[c̃ b̃T ]T ∈ Qp+1.

Further we define theN × (p + 1) matrix Σ
def
= [0N 2ΓΛ1/2], where0N is the zero vector of

lengthN , and letΣi· be the row vector consisting of thep + 1 elements of rowi of Σ. We use
KN (i, i) to denote theiith entry ofKN and define the weight vectorw ∈ P2t with components
w(r) = w(t + r) = wi(r), r = 1, . . . , t. We then replace problem (6) by the following equivalent
convex cone program:

min
Z�0,u≥0,x

w · u

s.t.

[

1 0
0 0

]

· Z = 1,

[

0 0.5
0.5 0

]

· Z −
[

1
op

]

· x = 0,

di,N+1 − KN (i, i) −
[

0 0
0 1

]

· Z

+Σi· · x + et,r · u = 0, ∀r=1,2,...,t,

Z ∈ S2, x ∈ Qp+1, u ∈ P2t,

wherei = i(r) as before. Note that the constraints onZ ensure that it has the form (7).
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3.4 Choosing Elements ofΩ

If the dissimilarity information is symmetric (i.e.,dij = dji), we can chooseΩ to be the subset
of {(i, j) : i < j} for which information is available. However, the codes we use for solving
formulation (4) [13, 14] requireO(m2) storage (wherem is the size ofΩ), which is prohibitive for
the application we describe in Section 4. Hence, we defineΩ by randomly selecting a subset of the
available dissimilarity information in a way that ensures that each objecti appears with roughly the
same frequency among the(i, j) pairs ofΩ. Specifically, for eachi, we choose a fixed numberk of
pairs(i, j) with j 6= i (we call the objectsj “buddies” ofi) and add either(i, j) or (j, i) to the set
Ω, reordering if necessary to ensure that the first index of thepair is smaller than the second. (It is
possible that(j, i) has been placed inΩ at an earlier stage.) We choose the parameterk sufficiently
large that the solution of (4) does not vary noticeably with different random subsets.

The “newbie” formulation (6) is comparatively inexpensiveto solve, so we takeΨ to be the
complete set of objects for which dissimilarity information di,N+1 is available.

3.5 Eigenanalysis, Tuning, Truncation

The left five panels of Figure1 illustrate the effect of varyingλ on the eigenvalues of the regularized
estimate ofK obtained by solving (4). The data is from the example to be discussed in Section 4
below, withN = 280 objects andk = 55 “buddies” for each of theN objects. Note that the vertical
scale is in units oflog10 λ. As λ increases the smaller eigenvalues begin to shrink, although in this
example there is a very broad range of values ofλ, spanning several orders of magnitude, where the
sensitivity toλ is barely visible. Atλ = 10−8 the condition number ofK is about103. As λ goes
much past200 in this example, the penalty onK dominates and the dissimilarity information in the
data is suppressed.
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Figure 1: Left five panels: log scale eigensequence plots forfive values ofλ. As λ increases,
smaller eigenvalues begin to shrink. Right panel: first ten eigenvalues of theλ = 1 case displayed
on a larger scale.

It is desirable to have a kernel with rank as low as possible while still respecting the data to
an appropriate degree. Even if the rank of the regularized kernel estimate is not low, a low rank
approximation obtained by setting all but a relatively small number of the largest eigenvalues to zero
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might retain enough information to provide an efficient way of doing classification or clustering.
In the work described here, as well as in various simulation studies, we started with a very small

positiveλ, increasedλ in a coarse log scale, and then experimented with retaining various numbers
of eigenvalues to get a low rank approximation toK. The rightmost panel in Figure 1 shows the
first 10 eigenvalues for theλ = 1 case, in an expanded log scale. Natural breaks appear after both
the second and the third eigenvalues. Setting all the eigenvalues ofK after the largestp to 0 results
in the νth coordinates of thejth object asxj(ν) =

√
λνφν(j), ν = 1, 2, . . . , p, where theλν , φν

are the firstp eigenvalues and eigenvectors ofK andφν(j) is thej component ofφν . We remark
that the coordinates of theN objects are always centered at the origin since the RKE estimate of
K always has the constant vector as a0 eigenvector. In the example discussed in Section 4 below
with four classes of labeled objects, the choice ofλ = 1 andp = 3 provided plots with a clear,
informative clustering on the labels, that was verified fromthe science of the subject matter. We
note that using the estimatedK or a low rank version of it as the kernel in an SVM will result
in linear classification boundaries in the object coordinates, (piecewise linear in the case of the
multicategory SVM (MSVM) of [15]). It will be seen in the plots for labeled objects in Section 4
that piecewise linear classification boundaries inp = 3 coordinates would apparently do quite well.
However, that will not necessarily always be the case, and a more flexible workhorse kernel in the
p object coordinates can be used. The MSVM [15] comes with a cross validation based method
for choosing the MSVM tuning parameter(s) in a labeled training set. In principle, the parameters
λ andp here can be incorporated in that method or other related methods, as additional MSVM
parameters. Further examination of principled methods of choosingλ andp along with MSVM
tuning parameter(s) will be deferred to later work.

4 Protein Clustering and Visualization with RKE

4.1 Background

One of the challenging problems of contemporary biology is inferring molecular functions of unan-
notated proteins. A widely used successful method of protein function prediction is based on se-
quence similarity. Statistically significant sequence similarity, which is typically based on a pairwise
alignment score between two proteins, forms the basis for inferring the same function. Two major
related problems exist for predicting function from sequence. The first problem is the clustering
of large number of unlabeled protein sequences into subfamilies for the purpose of easing database
searches and grouping similar proteins together. The second problem is concerned with assigning
new unannotated proteins to the closest class, given the labeled or clustered training data. There is a
substantial amount of literature addressing these two problems. [16] employ profile hidden Markov
models (HMMs) for both problems. Clustering of proteins is obtained by a mixture of profile HMMs
whereas assignment of new protein sequences to the clusters/classes is based on the likelihood of
the new sequence under each of the cluster specific HMMs. Later, [17] addresses the second prob-
lem by first obtaining an explicit vector of features (Fisherscores) for each protein sequence and
then utilizing a variant of SVMs, using a kernel called the Fisher kernel for classification purposes.
The feature vector for each protein sequence is based on the likelihood scores of the input sequence
evaluated at the corresponding maximum likelihood estimates of the HMM parameters fitted on the
training data. More recently, [18] similarly uses SVMs for protein classification. However, in con-
trast to obtaining a feature vector by likelihood scores, they define a feature vector for each protein
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sequence as a vector of its pairwise sequence similarity scores to all other proteins. Alternatively,
[19] represent protein sequences as vectors in a high-dimensional feature space using a string-based
feature map and train an SVM based on these vectors using a mismatch kernel. These latter works
clearly illustrate the advantage of representing each protein sequence by a high-dimensional feature
vector in some coordinate system and the power of kernel methods for protein classification. The
RKE methodology presented here provides an efficient way to represent each protein sequence by a
feature vector in a chosen coordinate system by utilizing the pairwise dissimilarity between protein
sequences.

4.2 Data

We illustrate the utility of RKE methodology using a datasetof globins that was first analyzed in
[16] by a profile HMM approach. The dataset, distributed withthe HMMER2 software package
[20], has a total of 630 globin sequences. The globin family is a large family of heme-containing
proteins with many sub-families. It is mainly involved in binding and/or transportation of oxygen.
For illustration purposes, we randomly choose 280 sequences from these data so that three large
sub-classes of the globin family (alpha chains, beta chains, myglobins) are included along with a
heterogeneous class containing various types of chains. This selection resulted in a total of 112
“alpha-globins”, 101 “beta-globins”, 40 “myglobins”, and27 “globins” (the heterogeneous class).
The proportion of sequences in each class were taken to be proportional to the class sizes in the
original dataset.

4.3 Implementation of RKE

We used the RKE formulation of Section 3.2 for this application. TheBiconductor package
pairseqsim [21] was used to obtain global pairwise alignment scores forall pairs ofN = 280
sequences. This procedure gave a total ofN(N − 1)/2 = 39060 similarity scores, which we
then normalized to map into the interval[0, 1]. We used one minus each of these numbers as the
dissimilarity measure for each pair of sequences. During this process, alignment parameters were
taken to be equal to the BLAST server [22] defaults. To construct the active index pair setΩ,
we used the procedure described in Section 3.4 withk = 55 randomly chosen buddies for each
protein sequence. The setΩ thus contained approximately14000 sequence pairs, corresponding
to about 36% of the size of the complete index set. Replicatedruns withk = 55 proved to be
nearly indistinguishable, as judged by examination of eigenvalue and 3D plots and the measure:
∑

i<j |d̂ij1−d̂ij2|/
∑

i<j
1
2 (d̂ij1+d̂ij2), where the third subscript in̂dijk indexes different replicates

(the above measure is typically about 5% for each pairwise comparison). The tuning parameterλ is
set to 1 in the plots that follow later in this section.

4.4 Visualization of the globin sequence space and results

Figure 2 displays the 3D representation of the sequence space of 280 globins. This figure shows that
the first three coordinates of the protein sequence space, corresponding to three largest eigenvalues,
is already quite informative. The four main classes of the globin family are visually identifiable:
The four colors red, blue, purple, and green represent alpha-globins, beta-globins, myglobins, and
globins, respectively.
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Further investigation of this 3D plot reveals several interesting results. First, we observe that the
five hemoglobin zeta chains, namelyHBAZ HORSE, HBAZ HUMAN, HBAZ MOUSE, HBAZ PANTR,
HBAZ PIG, shown by+, are located close to each other and are embedded within the alpha-globin
cluster. Zeta-globin chains are alpha-like polypeptides and are synthesized in the yolk sac of the
early embryo. It is well known that human zeta-globin polypeptide is more closely related to other
mammalian embryonic alpha-like globins (i.e., zeta-globins) than to human alpha globins [23].
Furthermore, the zeta-globin gene in humans is a member of the alpha-globin gene cluster. Second
we note thatHBAM RANCA, which is represented by* and is a hemoglobin alpha-type chain, seems
to be isolated from the rest of the alpha-globin sequences. Apossible explanation might be found
in the structure of this protein. [24] note that the gene encoding this protein appeared through a
gene duplication of hemoglobin and this took place near the time of the duplication that generated
the alpha and beta chains. Our third observation is that the myglobinsMYG MUSAN, MYG THUAL,
andMYG GALJA, denoted by2, - which are all fish myglobins (Mustelus antarcticus(Gummy
shark),Thunnus albacares(Yellowfin tuna),Galeorhinus japonicus(Shark)) - appear to be slightly
separated from the rest of the myglobin cluster. This is quite a remarkable observation because
fish myoglobins are known to be structurally distinct from the mammalian myoglobins [26] and
the RKE method nicely highlights this distinction on the basis of primary sequence data only. The
3D plot also reveals sub-clusters in the alpha-globin cluster. For example, all the 10 hemoglobin
alpha-D chains (shown by△ in Figure 2) are clustered together within the alpha-globincluster.

In a recent work, [27] provided a 3D plot of the protein structure space of 1898 chains. These
authors utilized multi-dimensional scaling to project protein structures to a lower dimensional space
based on the pairwise structural dissimilarity scores derived from 3D structures of proteins. Our
application of RKE to the globin family, which is a few levelsdown from the top level of the
protein structure hierarchy considered by [27], provide ananalogous 3D plot for the sequence space
of the globin family. It is quite encouraging that sub-protein domains of this family are readily
distinguishable from the 3D embedding of the protein sequences. It is also worth mentioning that
our current application is concerned only with pairwise sequence similarity, which can be obtained
efficiently. However, clustering at the higher levels of theprotein structure hierarchy is known to
benefit enormously from 3D structural similarities and we plan to perform clustering at that level in
future work (see Section 5 for details).

4.5 Classification of new protein sequences.

We next illustrate how the newbie algorithm can be used to visualize unannotated protein sequences
in the coordinate space of training data obtained by RKE. We used the following sequences as
our test data: (1)HBAZ CAPHI: hemoglobin zeta chain from goatCapra hircus; (2) HBT PIG:
Hemoglobin theta chain from pigSus scrofa. Figure 3 displays the positions of these two test
sequences with respect to 280 training sequences. We observe thatHBAZ CAPHI (black cicrle)
clusters nicely with the rest of the hemoglobin zeta chains,whereasHBT PIG (black star), which
is an embryonic beta-type chain, is located closer to beta-globins. Additionally, we also used 17
Leghemoglobins (black triangles) as test data and found that these cluster tightly within the het-
erogeneous globin group. This observation is consistent with the results of [16], who also found a
heterogeneous globin cluster with a tight sub-class of Leghemoglobins among their seven clusters
obtained by a mixture of HMMs. These results indicate that RKE together with newbie algorithm
provide a powerful means for clustering and classifying proteins.
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Figure 2: 3D representation of the sequence space for 280 proteins from the globin family.Dif-
ferent subfamilies are encoded with different colors: Red symbols are alpha-globin subfamily, blue
symbols are beta-globins, purple symbols represent myglobin subfamily, and green symbols, scat-
tered in the middle, are a heterogeneous group encompassingproteins from other small subfamilies
within the globin family. Here, hemoglobin zeta chains are represented by the symbol+, fish my-
globins are marked by the symbol2, and the diverged alpha-globinHBAM RANCA is shown by the
symbol* . Hemoglobin alpha-D chains, embedded within the alpha-globin cluster, are highlighted
using the the symbol△.
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Figure 3:Positioning test globin sequences in the coordinate systemof 280 training sequences from
the globin family.The newbie algorithm is used to locate one Hemoglobin zeta chain (black circle),
one Hemoglobin theta chain (black star), and seventeen Leghemoglobins (black triangles) into the
coordinate system of the training globin sequence data.
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5 Discussion

We have described a a framework for estimating a regularizedkernel (RKE methodology) from
general dissimilarity information via the solution of a convex cone optimization problem. We have
presented an application of the RKE methodology (includingthe “newbie” algorithm) to homology
detection in the globin family of proteins. The most striking result here is perhaps the fact that a
simple 3D plot is sufficient for visual identification of the subfamily information. However, in other
applications, the plot coordinates (or higher dimensionalcoordinate vectors obtained by retaining
more eigenvalues) may be used to build an automatic classification algorithm via the (principled)
multicategory support vector machine (MSVM) [15]. That algorithm comes with a tuning method,
it partitions the attribute space into regions for each training category, and it also comes with a
method for signaling “none of the above”. Multicategory penalized likelihood estimates may also
be used if there is substantial overlap of the data from different classes [9][28] [29][30].

A much harder problem in the context of protein classification and clustering is remote ho-
mology detection, that is, detecting homology in the presence of low sequence similarity. Since
our framework accommodates an arbitrary notion of dissimilarities, we can easily take advantage
of various types of dissimilarities such as presence or absence of discrete sequence motifs [31]
and dissimilarities based on the primary, secondary, and tertiary structure [32], and obtain opti-
mal kernels from each piece of information or data set. Without using labeled training sets, re-
lations between a pair of kernels from different sources of information (or their lower rank ap-
proximations) can be quantified in various ways. A simple example is a measure of correlation:
∑

ij d̂
s/2
ijαd̂

s/2
ijβ/((

∑

ij d̂s
ijα)1/2(

∑

ij d̂s
ijβ)1/2) whereα andβ index the different sources of informa-

tion ands is a real number to be chosen. With labeled data, these kernels can further be examined
and combined in an optimal way, as for example in [10], in the context of classification. As empha-
sized above, a striking feature of the presented methodology is the fact that it can exploit any type
of dissimilarity measure, and data sets with missing information. These properties are clearly bene-
ficial in biological data analysis, since many biologicallyrelevant dissimilarities may not naturally
result in positive semidefinite kernels (pairwise alignment scores, for example) which are essential
for powerful classification methods such as SVMs.

Homology detection is one type of of computational biology problem for which our framework
offers rigorous, flexible tools. However, there are many other computational biology applications
which can naturally be handled within this framework. Clustering of transcription factor position
weight matrices (binding profiles) is one such application.With the increasing growth of tran-
scription factor binding site databases, such as [33], a need for characterizing the space of DNA
binding profiles and for developing tools to identify the class of newly estimated/studied profiles is
emerging. A characterization of all available experimentally verified binding profiles such as in [33]
might provide invaluable information regarding the possible class of binding profiles. Such infor-
mation can then be utilized in supervised motif finding methods such as [34]. A natural dissimilarity
measure for binding profiles is the Kullback-Leibler divergence. Clustering of the experimentally
verified binding profiles based on a regularized kernel estimate of such dissimilarity measure might
group binding profiles in a way that is consistent with the DNAbinding domains of the transcription
factors. We envision that this might generate a “protein binding profile space”, as the work of [27]
generated a “protein structure space”.

Current work in progress includes both extension of the methodology and extension of the
applications; in biology, the clustering of proteins at thetop level of the protein hierarchy; and
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in other contexts, medical images in particular. We are alsoinvestigating other choices of loss
and penalty functionals in the noisy manifold unfolding problem (with Yi Lin). Future work of
interest includes exploring the properties of alternatives provided here and their application in other
contexts.
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Appendix

Formulations with Square Loss Functions

We describe here the formulations of the RKE and Newbie Problems when a square loss function is
used in place of anl1 loss function.

RKE Formulation

The sum-of-squares variant of (2) is

min
K�0

∑

(i,j)∈Ω

wij(dij − Bij · K)2 + λ trace(K). (8)

We user = 1, 2, . . . ,m to index the elements ofΩ, as in Section 3.2, and obtain the following
analog of (4):

min
∑m

r=1

[

0 0
0 w(r)

]

· Xr + λIN · K (9)

s.t. dij − Bij · K −
[

0 0.5
0.5 0

]

· Xr = 0, ∀r

[

1 0
0 0

]

· Xr = 1, ∀r

K � 0,Xr � 0, ∀r,

whereK ∈ SN andXr ∈ S2 for r = 1, 2, . . . ,m and(i, j) = (i(r), j(r)) as in Section 3.2. This
is a pure positive semi-definite programming (SDP) problem.However, because of the number of
constraints doubles, several times more space was needed for formulation (9) than for formulation
(4). And in simulation experiments, we obtained similar results using thel1 and square loss formu-
lations asλ varies. Hence, we decided to use thel1 formulation since it allowed us to solve larger
problems.

Newbie Formulation

The Newbie Problem with least-squares objective is

min
∑

i∈Ψ wi(di,N+1 − Bi,N+1 · KN+1)
2

s.t. b ∈ Range(KN ), c − bT K+
N b ≥ 0,
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wherec ∈ R andb ∈ Rp. After performing the same transformations as in Subsection 3.3, we
obtain the following formulation of this problem as a convexconic program:

min
∑t

r=1

[

0 0
0 w(r)

]

· Xr

s.t.

[

1 0
0 0

]

· Z = 1,

[

1 0
0 0

]

· Xr = 1, ∀r,

[

0 0.5
0.5 0

]

· Z −
[

1
op

]

· x = 0,

[

0 0.5
0.5 0

]

· Xr −
[

0 0
0 1

]

· Z

+Σi· · x + di,N+1 − KN (i, i) = 0, ∀r,

Z � 0, Xr � 0, ∀r,

where
Z ∈ S2, Xr ∈ S2, ∀r x ∈ Qp+1.

17


