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Abstract

We develop and apply a novel framework which is designed tmekinformation in the
form of a positive definite kernel matrix from possibly crugeisy, incomplete, inconsistent
dissimilarity information between pairs of objects, ohtle in a variety of contexts. Any
positive definite kernel defines a consistent set of disgnard the fitted kernel provides a
set of coordinates in Euclidean space which attempt to céspe information available, while
controlling for complexity of the kernel. The resulting sétoordinates are highly appropriate
for visualization and as input to classification and clustgralgorithms. The framework is
formulated in terms of a class of optimization problems whian be solved efficiently using
modern convex cone programming software. The power of thiaadeis illustrated in the
context of protein clustering based on primary sequenca. dah application to the globin
family of proteins resulted in a readily visualizable 3D seqce space of globins, where several
sub-families and sub-groupings consistent with the litemwere easily identifiable.

1 Introduction

It has long been recognized that symmetric positive defitmels (hereinafter “kernels”) play
a key role in function estimation [1][2], clustering and sddication, dimension reduction, and
other applications. Such kernels can be defined on essdgratial conceivable domain of interest
[3], originally function spaces and more recently, finiteit(lpossibly large) collections of trees,
graphs, images, DNA and protein sequences, microarray @gression chips, and other objects.
A kernel defines a distance metric between pairs of objectsgndomain that admits an inner
product. Thus they play a key role in the implementation asification algorithms (via support
vector machines (SVMs)) and clustering (iameans algorithms, for example), along with their
more classical role in function approximation and estiorgtiand the solution of ill-posed inverse
problems [4]. Since the mid 90s, when the key role of thesadierbecame evident in SVMs
[5][6][7], a massive literature has grown related to the aise choice of kernels in many domains
of application, including, notably, computational biojoi@]. A google search as of the date of this
writing gave ovetthree millionhits on “Kernel Methods”, along with an ad from Google sdiig
job applications from computer scientists!



Mathematically defined kernels, for example, spline kexnedial basis functions and related
positive definite functions defined on Euclidean space, lawg been the workhorses in the field,
generally with one or a few free parameters estimated frardtia; see, for example [9]. A re-
cent work [10] proposes estimating a kernel by optimizingnadr combination of prespecified
kernels via a semidefinite programming approach. The re@dgrconnect with the recent liter-
ature on kernel construction and use in a variety of contbytgoing to the NIPS2004 website
(htt p: // books. ni ps. cc/ ni psl7. ht m ) orthe book [11].

It is frequently possible to use expert knowledge or othérination to obtain dissimilarity
scores for pairs of objects, which serve as pseudo-distabetveen the objects. There are two
problem types of interest. The first is to estimate full igi&aposition information for a (training)
set of objects in a space of preferably low dimension in otderisualize the data or to conduct
further processing - typically, classification or clusteri One traditional approach for this purpose
is multidimensional scaling (MDS) [12], which continueshi® an active research area. The second
problem is to place new objects in the space, given somentliasity information between them
and some members of the training set, in the coordinate sgdbe training set.

This paper proposes regularized kernel estimation (RKEpjied framework for solving both
problems by fitting a positive definite kernel from possibiude, noisy, incomplete, inconsistent,
weighted, repetitious dissimilarity information, in alfuhonparametric approach, by solving a con-
vex optimization problem with modern convex cone progranmgribols. The basic idea is to solve
an optimization problem which trades off goodness of fit ® data and a complexity (shrinkage)
penalty on the kernel which is used to fit the data - analogotisetwell known bias-variance trade-
off in the spline and ill-posed inverse literature, but nea&tly the same. Within this framework,
we provide an algorithm for placing new objects in the comati space of the training set.

The method can be used instead of MDS to provide a coherenf sebrdinates for the given
objects in few or many dimensions, without problems withalaoinima or (some) missing data. It
can also be used to solve problems discussed in [10], butulyanonparametric way.

The feasibility of the RKE approach is demonstrated in th&ext of protein sequence cluster-
ing, by applying the method to global pairwise alignmentss®f the heme-binding protein family
of globins. In this example, we are already able to visualizeknown globin subfamilies from a 3D
plot of the training sequence coordinates that are obtdiyatie regularized kernel estimate. Fur-
thermore, apparent sub-clusterings and outliers of thevkrglobin subfamilies from the 3D plot
reveal interesting observations consistent with theditee. Clustering of protein sequences from a
family to identify subfamilies or clustering and classitica of protein domains to determine pro-
tein function present one major application area for theehramework presented here. However,
we envision many more applications involving clustering atassification tasks in biological and
non-biological data analysis, some of these are discussgddtion 5.

In Section 2, we present the general formulation of the gmobhnd define the family of Regu-
larized Kernel Estimates. Section 3 describes the fornaulaif RKE problems and the problem of
placing test data in the coordinate space of training dageasral convex cone problems. Also in-
cluded is a brief discussion on tuning the parameters ofgtiemation procedure. Section 4 presents
an application to the globin protein family to identify sabfilies and discusses the biological im-
plication of the results. Examples of placing test data {goim the coordinate system of training
protein sequences are illustrated here. We conclude witlmarsry and discussion of future work
in Section 5.



2 Dissimilarity Information and RKE

Given a set ofV objects, suppose we have obtained a measure of dissiwitgritfor certain object
pairs (i, 7). We introduce the class of Regularized Kernel EstimatesE&Kwhich we define as
solutions to optimization problems of the following form:

Knéian (‘Z);QL(U)Z‘JG dij, dij(K)) + A (K), 1)
2,]

whereS)y is the convex cone of all real nonnegative definite matri¢enoensionV, €2 is the set of
pairs for which we utilize dissimilarity information, ardis some reasonable loss function, convex
in cZZ-j, wheredij is the dissimilarity induced by<. J is a convex kernel penalty (regularizing)
functional, and\ is a tuning parameter balancing fit to the data and the peoalti. The w;;
are weights that may, if desired, be associated with pdatidd, j) pairs. The natural induced
dissimilarity, which is a real squared distance admittifigaiw inner product, isiij = K(i,i) +
K(j,j) —2K(i,j) = B;; - K, whereK (i, j) is the(i, j) entry of K and B;; is a symmetric matrix
of dimensionN with all element) exceptB;;(i,i) = B;;(j,7) = 1, Bij(i,7) = Bij(4,1) = —1.
The inner (dot) product of two matrices of the same dimerssislefined asA - B = Zi’j A(i, 7)-
B(i,j) = tracd AT B). There are essentially no restrictions on the set of paitsrdghan requiring
that the graph of the objects with pairs connected by edgestugected. A pair may have repeated
observations, which just yield an additional term in (1) déach separate observation. If the pair set
induces a connected graph, then the minimizer of (1) wilehaw local minima.

Although it is usually natural to require the observed disfgirity information{d;;} to satisfy
d;; > 0 andd,;; = d;;, the general formulation above does not require these giepéo hold. The
observed dissimilarity information may be incomplete fwifte restriction noted), it may not satisfy
the triangle inequality, or it may be noisy. It also may bederuas for example when it encodes a
small number of coded levels such as “very close”, “closdistant”, and “very distant”.

In this work we consider two special cases of the formulatibyy the first for its use in the
application to be discussed.

3 Numerical Methods for RKE

In this section, we describe a specific formulation of therapph in Sectior2, based on a lin-
early weighted loss, and use the trace function in the regularization terpromote dimension
reduction. The resulting problem is as follows:

%é% wij\dij — Bij . K’ + )\tl’aCdK). (2)
(4,5)€Q
We show how this formulation can be posed as a general cotiimiaption problem and also de-
scribe a “newbie” formulation in which the known solution(8) for a set ofV objects is augmented
by the addition of one more object together with its dissamity data. A variant of (2), in which a
guadratic loss function is used in place of théoss function, is described in the appendix.



3.1 General Convex Cone Problem

We specify here the general convex cone programming probldms problem, which is central to
modern optimization research, involves some unknownsatteatectors in Euclidean space and oth-
ers that are symmetric matrices. These unknowns are relqoisatisfy certain equality constraints
and are also required to belong to cones of a certain typecdines have the common feature that
they all admit a self-concordant barrier function, whiclowabk them to be solved by interior-point
methods that are efficient in both theory and practice.

To describe the cone programming problem, we define soméiomtaLet RP be Euclidean
p-space, and leP, be the nonnegative orthant id”, that is, the set of vectors [R” whose com-
ponents are all nonnegative. We (gf be the second-order cone of dimensigmvhich is the set of
vectorsz = (z(1),...,z(q)) € R? that satisfy the condition(1) > 37, z(i)?]'/2. We define
S; to be the cone of symmetric positive definie< s matrices of real numbers. Inner products
between two vectors are defined in the usual way and we usethmthtion for consistency with
the matrix inner product notation.

The general convex cone problem is then:

N Nq
min ZC’j-Xj—FZci-xi—l—g-z 3
Xj,xiz =y =1
ng Ng
S.t.ZATj-Xj—l—ZaM'xi—l—gr-z:br, V.,

j=1 i=1

Xj € Ssj \V/j; x; € qu Vi, z € Pp.

Here,C;, A,; are real symmetric matrices (not necessarily positive defimite) of dimensiors;,
i, ari € R%, g, g € RP, b, € RL.

The solution of a general convex cone problem can be obtainederically using publicly
available software such as SDPT3 [13] and DSDP5 [14].

3.2 RKE with [; Loss

To convert the problem of equation (2) into a convex cone famogning problem, without loss of
generality, we lef2 containm distinct (4, j) pairs, which we index withh = 1,2,...,m. Definely

to be theN-dimensional identity matrix and,, , to be vector of lengti2m consisting of all zeros
except for the'th element being and(m + r)th element being-1. If we denote the'th element

of Qas(i(r),j(r)), and with some abuse of the notationdet i(r), j = j(r) andw € P, with
w(r) = w(r +m) = wiey iy, ©=1,...,m, we can formulate the problem of equation (2) as
follows:

minKtO,uZO w-u-+ Ny K
s.t. dij — Bij K+ em - u =0, Ve, (4)
K e Sy, ue Py,.



3.3 ‘Newbie’ Formulation

We now consider the situation in which a solutifny; of (2) is known for some set d¥ objects. We
wish to augment the optimal kernel (by one row and columnjhaeuit changing any of its existing
elements, to account for a new object. That is, we wish to fimé& “pseudo-optimal” kernel
K41 of the form

Ky b'

KN—H:[ b e ] =0, ©))

(whereb € R andc is a scalar) that solves the following optimization probiem

mingsop Y ieq Wi |diNt1 — Biny1 - Kyl (6)
s.t. b€ RangéKy), c¢—bTKb> 0,

whereKj{, is the pseudo-inverse @y andV is a subset of1,2,..., N} of sizet. The quantities
w;, 1 € U are the weights assigned to the dissimilarity data for the peint. The constraints in
this problem are the necessary and sufficient conditiongfer ; to be positive semidefinite.

Suppose thak'y has ranky < N and letKy = TATT, wherel 'y, is the orthogonal matrix of
non-zero eigenvectors ardis thep x p matrix of positive eigenvalues df . By introducing the
variableb and settingy = T'A'/2b, we can ensure that the requiremért Rang¢ K ) is satisfied.
We also introduce the scalar varialdleand enforce: > & by requiring that

Zdéf[{ C}esg. 7)
CcC C

Using these changes of variable, the conditionb” K ;b > 0 is implied by the condition

v Z0e b7 € Qpia.

Further we define th&/ x (p + 1) matrix X & [0 2I'A'/2], whereOy is the zero vector of
length N, and letX;. be the row vector consisting of the+ 1 elements of row of 3. We use
K (i,1) to denote theith entry of K and define the weight vectes € P,; with components
w(r) = w(t+71) = wy,, r=1,...,t. We then replace problem (6) by the following equivalent
convex cone program:

min  w-u
Z>=0,u>0,z

1 0
S.t. [0 0}-2_1,

0 05 1
o5 W17 Lo =

. 0 0
dint1 — Kn(i,1) — { 0 1 ] -z
+Yi x4 e, u=0, Vizio 4,
Z €Sy, €Qp+1, u€E Py,

wherei = i(r) as before. Note that the constraintsrensure that it has the form (7).
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3.4 Choosing Elements of?

If the dissimilarity information is symmetric (i.ed;; = d;;), we can choos€! to be the subset
of {(i,7) : @ < j} for which information is available. However, the codes we @ solving
formulation (4) [13, 14] requir€(m?) storage (wheren is the size of2), which is prohibitive for
the application we describe in Section 4. Hence, we déliby randomly selecting a subset of the
available dissimilarity information in a way that ensureatteach objectappears with roughly the
same frequency among tlie j) pairs ofQ2. Specifically, for each, we choose a fixed numbérof
pairs (i, j) with j # ¢ (we call the objectg “buddies” ofi) and add eithe(i, j) or (j,7) to the set
Q, reordering if necessary to ensure that the first index op#ieis smaller than the second. (It is
possible thatj, i) has been placed i1 at an earlier stage.) We choose the parameairfficiently
large that the solution of (4) does not vary noticeably wiffedent random subsets.

The “newbie” formulation (6) is comparatively inexpensiesolve, so we tak& to be the
complete set of objects for which dissimilarity informatia; n - is available.

3.5 Eigenanalysis, Tuning, Truncation

The left five panels of Figurgillustrate the effect of varying on the eigenvalues of the regularized
estimate of obtained by solving (4). The data is from the example to beudised in Section 4
below, with N = 280 objects and: = 55 “buddies” for each of théV objects. Note that the vertical
scale is in units ofog,, A. As X increases the smaller eigenvalues begin to shrink, althouthis
example there is a very broad range of values,@panning several orders of magnitude, where the
sensitivity to) is barely visible. At\ = 10~® the condition number ok is about10®. As A goes
much pasR00 in this example, the penalty dd dominates and the dissimilarity information in the
data is suppressed.

A=1e-08 A=0.1 A=1 A=10 A=250 A=1
15 15 ——

Y
N

o L 1
1 280 1 280 1 280 1 280 1 280 15 10
Rank Rank Rank Rank Rank Rank

Logm(eigenvalue)

Figure 1: Left five panels: log scale eigensequence plotdifervalues of\. As X increases,
smaller eigenvalues begin to shrink. Right panel: first igemvalues of the. = 1 case displayed
on a larger scale.

It is desirable to have a kernel with rank as low as possibladewdill respecting the data to
an appropriate degree. Even if the rank of the regularizedekestimate is not low, a low rank
approximation obtained by setting all but a relatively dmamber of the largest eigenvalues to zero



might retain enough information to provide an efficient wagloing classification or clustering.

In the work described here, as well as in various simulatiodiss, we started with a very small
positive A, increased\ in a coarse log scale, and then experimented with retairangws numbers
of eigenvalues to get a low rank approximationio The rightmost panel in Figure 1 shows the
first 10 eigenvalues for th& = 1 case, in an expanded log scale. Natural breaks appear after b
the second and the third eigenvalues. Setting all the eidiees of K’ after the largesp to 0 results
in the vth coordinates of thgth object asz;(v) = VA, ¢,(j),v = 1,2,...,p, where the),, ¢,
are the firsip eigenvalues and eigenvectorsigfand ¢, (j) is thej component ofp,. We remark
that the coordinates of th& objects are always centered at the origin since the RKE attiiwf
K always has the constant vector a8 @igenvector. In the example discussed in Section 4 below
with four classes of labeled objects, the choice\of 1 andp = 3 provided plots with a clear,
informative clustering on the labels, that was verified friiva science of the subject matter. We
note that using the estimatdd or a low rank version of it as the kernel in an SVM will result
in linear classification boundaries in the object coordisatpiecewise linear in the case of the
multicategory SVM (MSVM) of [15]). It will be seen in the pleffor labeled objects in Section 4
that piecewise linear classification boundariep ia 3 coordinates would apparently do quite well.
However, that will not necessarily always be the case, andr fiexible workhorse kernel in the
p object coordinates can be used. The MSVM [15] comes with ascvalidation based method
for choosing the MSVM tuning parameter(s) in a labeled trajrset. In principle, the parameters
A andp here can be incorporated in that method or other relatedodstlas additional MSVM
parameters. Further examination of principled methodshobsing\ and p along with MSVM
tuning parameter(s) will be deferred to later work.

4 Protein Clustering and Visualization with RKE

4.1 Background

One of the challenging problems of contemporary biologyiserring molecular functions of unan-
notated proteins. A widely used successful method of prdianction prediction is based on se-
guence similarity. Statistically significant sequenceilgirity, which is typically based on a pairwise
alignment score between two proteins, forms the basis ferring the same function. Two major
related problems exist for predicting function from sequeenThe first problem is the clustering
of large number of unlabeled protein sequences into sub&mfior the purpose of easing database
searches and grouping similar proteins together. The seggmblem is concerned with assigning
new unannotated proteins to the closest class, given te&eldbr clustered training data. There is a
substantial amount of literature addressing these twolgmad [16] employ profile hidden Markov
models (HMMs) for both problems. Clustering of proteinslitaned by a mixture of profile HMMs
whereas assignment of new protein sequences to the clakisses is based on the likelihood of
the new sequence under each of the cluster specific HMMsr, [&7 addresses the second prob-
lem by first obtaining an explicit vector of features (Fiskeores) for each protein sequence and
then utilizing a variant of SVMs, using a kernel called thsitér kernel for classification purposes.
The feature vector for each protein sequence is based oikéibdod scores of the input sequence
evaluated at the corresponding maximum likelihood estshaf the HMM parameters fitted on the
training data. More recently, [18] similarly uses SVMs faoein classification. However, in con-
trast to obtaining a feature vector by likelihood scoresyttiefine a feature vector for each protein



sequence as a vector of its pairwise sequence similaritgsao all other proteins. Alternatively,
[19] represent protein sequences as vectors in a high-diomal feature space using a string-based
feature map and train an SVM based on these vectors usingnaatcis kernel. These latter works
clearly illustrate the advantage of representing eactepraequence by a high-dimensional feature
vector in some coordinate system and the power of kerneladstfor protein classification. The
RKE methodology presented here provides an efficient wagpesent each protein sequence by a
feature vector in a chosen coordinate system by utiliziegodarwise dissimilarity between protein
sequences.

4.2 Data

We illustrate the utility of RKE methodology using a datastglobins that was first analyzed in

[16] by a profile HMM approach. The dataset, distributed with HMMER?2 software package

[20], has a total of 630 globin sequences. The globin fangilg large family of heme-containing

proteins with many sub-families. It is mainly involved imhking and/or transportation of oxygen.

For illustration purposes, we randomly choose 280 sequsefioen these data so that three large
sub-classes of the globin family (alpha chains, beta chanyglobins) are included along with a

heterogeneous class containing various types of chaing sEfection resulted in a total of 112

“alpha-globins”, 101 “beta-globins”, 40 “myglobins”, ar&¥ “globins” (the heterogeneous class).
The proportion of sequences in each class were taken to Ipentianal to the class sizes in the

original dataset.

4.3 Implementation of RKE

We used the RKE formulation of Section 3.2 for this applimati TheBi conduct or package
pai r seqsi m[21] was used to obtain global pairwise alignment scoreslfigpairs of N = 280
sequences. This procedure gave a totalNgfV — 1)/2 = 39060 similarity scores, which we
then normalized to map into the intervl 1]. We used one minus each of these numbers as the
dissimilarity measure for each pair of sequences. Duriigplocess, alignment parameters were
taken to be equal to the BLAST server [22] defaults. To comstthe active index pair sé?,

we used the procedure described in Section 3.4 wita 55 randomly chosen buddies for each
protein sequence. The s@tthus contained approximatelyt000 sequence pairs, corresponding
to about 36% of the size of the complete index set. Replicaied withk = 55 proved to be
nearly indistinguishable, as judged by examination of migkie and 3D plots and the measure:
Sic; \dij1—dijal/ Sic; 1(dij1+d;j2), where the third subscript i ;. indexes different replicates
(the above measure is typically about 5% for each pairwisepewison). The tuning parametkis

set to 1 in the plots that follow later in this section.

4.4 Visualization of the globin sequence space and results

Figure 2 displays the 3D representation of the sequence &80 globins. This figure shows that
the first three coordinates of the protein sequence spacesponding to three largest eigenvalues,
is already quite informative. The four main classes of tlabgl family are visually identifiable:
The four colors red, blue, purple, and green represent ajfiifans, beta-globins, myglobins, and
globins, respectively.



Further investigation of this 3D plot reveals several iegting results. First, we observe that the
five hemoglobin zeta chains, naméiAZ_HORSE, HBAZ_HUNVAN, HBAZ _MOUSE, HBAZ _PANTR,
HBAZ Pl G, shown by+, are located close to each other and are embedded withirpthe-globin
cluster. Zeta-globin chains are alpha-like polypeptided are synthesized in the yolk sac of the
early embryo. It is well known that human zeta-globin polytide is more closely related to other
mammalian embryonic alpha-like globins (i.e., zeta-ghgpithan to human alpha globins [23].
Furthermore, the zeta-globin gene in humans is a membeediha-globin gene cluster. Second
we note thaHBAM.RANCA, which is represented byand is a hemoglobin alpha-type chain, seems
to be isolated from the rest of the alpha-globin sequencegossible explanation might be found
in the structure of this protein. [24] note that the gene dimapthis protein appeared through a
gene duplication of hemoglobin and this took place nearithe of the duplication that generated
the alpha and beta chains. Our third observation is that gggaiins MYG.MJUSAN, MYG_THUAL,
and MYG.GALJA, denoted by, - which are all fish myglobinsMustelus antarcticugGummy
shark), Thunnus albacaregrellowfin tuna),Galeorhinus japonicugShark)) - appear to be slightly
separated from the rest of the myglobin cluster. This isegairemarkable observation because
fish myoglobins are known to be structurally distinct frone tnammalian myoglobins [26] and
the RKE method nicely highlights this distinction on theibasf primary sequence data only. The
3D plot also reveals sub-clusters in the alpha-globin elustor example, all the 10 hemoglobin
alpha-D chains (shown bix in Figure 2) are clustered together within the alpha-glafirster.

In a recent work, [27] provided a 3D plot of the protein struetspace of 1898 chains. These
authors utilized multi-dimensional scaling to projecttein structures to a lower dimensional space
based on the pairwise structural dissimilarity scoresvadrirom 3D structures of proteins. Our
application of RKE to the globin family, which is a few leved®wn from the top level of the
protein structure hierarchy considered by [27], provideuaalogous 3D plot for the sequence space
of the globin family. It is quite encouraging that sub-pitedomains of this family are readily
distinguishable from the 3D embedding of the protein segegnlt is also worth mentioning that
our current application is concerned only with pairwiseussge similarity, which can be obtained
efficiently. However, clustering at the higher levels of firetein structure hierarchy is known to
benefit enormously from 3D structural similarities and wanplo perform clustering at that level in
future work (see Section 5 for details).

4.5 Classification of new protein sequences.

We next illustrate how the newbie algorithm can be used taoalize unannotated protein sequences
in the coordinate space of training data obtained by RKE. &xuhe following sequences as
our test data: (1HBAZ_CAPHI : hemoglobin zeta chain from go&tapra hircus (2) HBT_PI G
Hemoglobin theta chain from pi§us scrofa Figure 3 displays the positions of these two test
sequences with respect to 280 training sequences. We ebdetHBAZ_CAPHI (black cicrle)
clusters nicely with the rest of the hemoglobin zeta chaiwigreadHBT_PI G (black star), which

is an embryonic beta-type chain, is located closer to bletairgs. Additionally, we also used 17
Leghemoglobins (black triangles) as test data and foundthiese cluster tightly within the het-
erogeneous globin group. This observation is consistettt thé results of [16], who also found a
heterogeneous globin cluster with a tight sub-class of eegiglobins among their seven clusters
obtained by a mixture of HMMs. These results indicate thaER#&gether with newbie algorithm
provide a powerful means for clustering and classifyingqire.
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Figure 2: 3D representation of the sequence space for 280 proteims fiee globin family.Dif-
ferent subfamilies are encoded with different colors: Redlols are alpha-globin subfamily, blue
symbols are beta-globins, purple symbols represent mygkalbfamily, and green symbols, scat-
tered in the middle, are a heterogeneous group encompgssitegns from other small subfamilies
within the globin family. Here, hemoglobin zeta chains apresented by the symbe] fish my-
globins are marked by the symbd| and the diverged alpha-globHBAMRANCA is shown by the
symbol*. Hemoglobin alpha-D chains, embedded within the alph&igloluster, are highlighted
using the the symbaol\.
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Figure 3:Positioning test globin sequences in the coordinate sysfe2B0 training sequences from
the globin family.The newbie algorithm is used to locate one Hemoglobin zetndblack circle),
one Hemoglobin theta chain (black star), and seventeendregglobins (black triangles) into the
coordinate system of the training globin sequence data.
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5 Discussion

We have described a a framework for estimating a regularkeedel (RKE methodology) from
general dissimilarity information via the solution of a @er cone optimization problem. We have
presented an application of the RKE methodology (includiveg“newbie” algorithm) to homology
detection in the globin family of proteins. The most strikiresult here is perhaps the fact that a
simple 3D plot is sufficient for visual identification of thetsfamily information. However, in other
applications, the plot coordinates (or higher dimensiauardinate vectors obtained by retaining
more eigenvalues) may be used to build an automatic claasiicalgorithm via the (principled)
multicategory support vector machine (MSVM) [15]. Thataithm comes with a tuning method,
it partitions the attribute space into regions for eachtraj category, and it also comes with a
method for signaling “none of the above”. Multicategory akred likelihood estimates may also
be used if there is substantial overlap of the data from miffeclasses [9][28] [29][30].

A much harder problem in the context of protein classificatemd clustering is remote ho-
mology detection, that is, detecting homology in the preseof low sequence similarity. Since
our framework accommodates an arbitrary notion of dissiritiés, we can easily take advantage
of various types of dissimilarities such as presence orrafesef discrete sequence motifs [31]
and dissimilarities based on the primary, secondary, aridie structure [32], and obtain opti-
mal kernels from each piece of information or data set. Witheasing labeled training sets, re-
lations between a pair of kernels from different sourcesnfifrimation (or their lower rank ap-
proximations) can be quantified in various ways. A simplengxa is a measure of correlation:
> dffjdff;/((zij dfja)l/z(zij dfjﬁ)l/Q) wherea and 3 index the different sources of informa-
tion ands Is a real number to be chosen. With labeled data, these keragrlfurther be examined
and combined in an optimal way, as for example in [10], in thetext of classification. As empha-
sized above, a striking feature of the presented methogatothe fact that it can exploit any type
of dissimilarity measure, and data sets with missing inftian. These properties are clearly bene-
ficial in biological data analysis, since many biologicaigtevant dissimilarities may not naturally
result in positive semidefinite kernels (pairwise aligntregores, for example) which are essential
for powerful classification methods such as SVMs.

Homology detection is one type of of computational biologghpem for which our framework
offers rigorous, flexible tools. However, there are manyeoitomputational biology applications
which can naturally be handled within this framework. Géustg of transcription factor position
weight matrices (binding profiles) is one such applicatidffith the increasing growth of tran-
scription factor binding site databases, such as [33], d f@echaracterizing the space of DNA
binding profiles and for developing tools to identify thesdaf newly estimated/studied profiles is
emerging. A characterization of all available experimiytzerified binding profiles such as in [33]
might provide invaluable information regarding the poksitlass of binding profiles. Such infor-
mation can then be utilized in supervised motif finding mdthsuch as [34]. A natural dissimilarity
measure for binding profiles is the Kullback-Leibler divenge. Clustering of the experimentally
verified binding profiles based on a regularized kernel eggrof such dissimilarity measure might
group binding profiles in a way that is consistent with the DiNAding domains of the transcription
factors. We envision that this might generate a “proteirdinig profile space”, as the work of [27]
generated a “protein structure space”.

Current work in progress includes both extension of the odilogy and extension of the
applications; in biology, the clustering of proteins at the level of the protein hierarchy; and
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in other contexts, medical images in particular. We are aigestigating other choices of loss
and penalty functionals in the noisy manifold unfolding fdesm (with Yi Lin). Future work of
interest includes exploring the properties of alternatipevided here and their application in other
contexts.
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Appendix

Formulations with Square Loss Functions

We describe here the formulations of the RKE and Newbie Broblwhen a square loss function is
used in place of ak loss function.

RKE Formulation

The sum-of-squares variant of (2) is

%;I(l) Wij (dw — Bij . K)2 + Atrace(K). (8)
— (i,5)eQ
We user = 1,2,...,m to index the elements &2, as in Section 3.2, and obtain the following
analog of (4):
min ™ |0 Y lx pary K )
=10 w(r) "
0 0.5
S.t.dij—Bij'K—[Ob 0 :|X7« = O,VT
10
(10 x -
K*>0,X, =0, Yo,

whereK € Sy andX, € Sy forr =1,2,...,mand(i,j) = (i(r),j(r)) as in Section 3.2. This
is a pure positive semi-definite programming (SDP) problétowever, because of the number of
constraints doubles, several times more space was needimirfulation (9) than for formulation
(4). And in simulation experiments, we obtained similautssusing thd; and square loss formu-
lations as\ varies. Hence, we decided to use théormulation since it allowed us to solve larger
problems.

Newbie Formulation

The Newbie Problem with least-squares objective is
min Y ,cq wi(di N1 — Bint1 - Kny1)?

s.t. b€ RangéKy), c¢— b Kb >0,
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wherec € R andb € RP. After performing the same transformations as in Subse@i@, we
obtain the following formulation of this problem as a conamxic program:

min S, { 8 w?r) } X,

10
S.t. [O O]-Z = 1,

1 0
[0 0:|'X7" - 17 vm

0 05 1

s 0 ]2 |0 ) =0

0 0.5 0 0

{0.5 0 }’X’“_{o 1]'2
+Ezm+dz,N+1_KN(Z72) = 07 vTa

Z =0, X, =0, Vo,

where
Z €Sy, X,.€8 Vr xe Qp-i—l'
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