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Abstract

We present an analytic center cutting surface algorithm that uses
mixed linear and multiple second-order cone cuts. Theoretical issues
and applications of this technique are discussed. From the theoretical
viewpoint, we derive two complexity results. We show that an approx-
imate analytic center can be recovered after simultaneously adding p
second-order cone cuts in O(plog(p + 1)) Newton steps, and that the
overall algorithm is polynomial. In the implementation part, we apply
the algorithm to the eigenvalue optimization problem by relaxing the
semidefinite inequalities into multiple second-order cone inequalities.
Computational results on randomly generated problems are reported.

“This work has been completed with the support of the partial research grant from the
College of of Business Administration, California State University San Marcos, and the
University Professional Development Grant.

fThis material is based upon work supported by the National Science Foundation
under Grant No. 0317323. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.



Keywords: Second-order cone, semidefinite inequality, cutting plane
techniques, eigenvalue optimization.

1 Introduction

The analytic center cutting plane method (ACCPM) is an efficient tech-
nique for nondifferentiable optimization problems. The method was first
introduced by Sonnevend [22] in 1988. Theoretical issues of this method
have been studied in the literature for several settings. The main difference
in all methods is the geometry of cuts. In polyhedral cases, single linear,
multiple linear, and quadratic cuts have been studied. The theoretical com-
plexity of the method has been reported in several papers. See for instance,
Ye [25], Atkinson and Vaidya [2], and Goffin, Luo and Ye [7] for single linear
cuts, Ye [26] and Goffin and Vial [8] for multiple linear case, and Luo and
Sun [12], Liithi and Bieler [13], and Sharifi Mokhtarian and Goffin [21] for
the case of quadratic cuts.

Recently, there has been a growing interest in ACCPM incorporated with
nonpolyhedral models, which we would like to call, analytic center cutting
surface method (ACCSM). Complexity results for ACCSM have been stud-
ied in Sun, Toh, and Zhao [23], Toh, Zhao, Sun [24], Oskoorouchi and Goffin
[17], and Chua, Toh, and Zhao [4] for semidefinite cuts and in Oskoorouchi
and Goffin [18] and Basescu [3] for second-order cone cuts.

These methods have been implemented in practice for various appli-
cations. Goffin, Gondzio, Sarkissian, and Vial [6] implement ACCPM for
solving nonlinear multicommodity flow problems, Mitchell [14] employs this
technique for integer programming problems and uses a predictor-corrector
interior point method to solve the relaxations, and Elhedhli and Goffin [5]
integrate ACCPM with branch-and-price algorithm and implement it for
the bin-packing problem and the capacitated facility location problem with
single sourcing.

In the nonpolyhedral models, Oskoorouchi and Goffin [19] implement an
ACCSM with semidefinite cuts to solve eigenvalue optimization problem and
Krishnan and Mitchell [9] use a cut-and-price approach based on a polyhe-
dral approximation of ACCSM to solve the maxcut problem to optimality.

In this paper, we first explore the theoretical issues of integrating mixed
linear cuts (LC) and multiple second-order cone cuts (SOCC) with ACCSM.
We then apply this technique to eigenvalue optimization. In the theoretical
part, we derive two complexity results. First, we show that an approximate



analytic center can be achieved after simultaneously adding p(> 1) SOCCs in
O(plog(p+1)) Newton steps. Then, we obtain the complexity of the overall
algorithm by deriving a bound on the total number of linear and second-
order cone cuts, and show that ACCSM with mixed linear and multiple
second-order cone cuts is a fully polynomial algorithm.

In the implementation part, we consider minimizing the maximum eigen-
value of an affine combination of symmetric matrices. We show that this
problem is equivalent to a convex feasibility problem with semidefinite in-
equalities. In [19], this problem is treated by an ACCSM with semidefinite
cuts. The difficulty in this approach is the need to compute the Gram matrix
at each iteration. Computing this expensive matrix increases the computa-
tion time of the algorithm. In order to achieve better computational results
and at the same time benefit from the nice properties of ACCSM, we relax
the positive semidefinite inequality into multiple second-order cone inequali-
ties. Although this relaxation enlarges the working set and may result in the
need for more cuts to find the optimal solution, it saves a lot of computation
within each iteration. We report numerical results and compare them with
those reported in [19].

2 Preliminaries

Throughout this paper we extensively use some well-known characteristics of
second-order cone programming. To keep the paper self-contained, we briefly
review the most important properties of the second-order cone. Proofs of
statements given in this section and more comprehensive analysis can be
found in Alizadeh and Goldfarb [1].

First we introduce our notation: We use uppercase letters for matrices,
lowercase letters for vectors and Greek letters for scalars. The space of
n—dimensional symmetric matrices is denoted by M", positive semidefinite
matrices by M", n—dimensional real vectors by i", and nonnegative real
vectors by R’t. We also use A = 0 to indicate that A € M"}. We use 1 for
an all one vector, and 1; for a vector with 1 in the ith position and zero
elsewhere. The largest eigenvalue of a matrix A € M" is denoted A\; and
the second largest by As.

For z,s € R™, we use the following notations: “xs” is a component-wise
product of z; and s;, that is (zs); = z;5;; ! is the component-wise inverse
of z, and [[z = [[j—; ;. We use ;" for joining two vectors in a column,
i.e., (z;s) is a vector in 2" made up of vectors z and s joined in a column.

For two matrices A and B, (A, B) makes a matrix by joining them in



rows, and A @ B makes a matrix by joining A and B in the diagonal

A 0
non-(43);

|A|| is the Frobenius norm of A defined via ||A||p = tr(AT A), where “tr”
adds the diagonal elements of a symmetric matrix; and finally A e B is the
inner product of A and B defined via A e B = tr(AT B).

The second-order cone is defined as follows:

Sn = {]7 ER":x= (f;i)a ||"i‘|| < 5}7

where ||.|| is the standard Euclidean norm, ¢ is a scalar, € R*~!, and n is
the dimension of §,,. We use z =g, y to indicate that x —y € S,. When
n = 1, Sn = %_1_.

Associated with the second-order cone, one can define a special case of
Euclidean Jordan Algebra. Let z = (£;z) € R" and s = (0;5) € R™. Define
zos=(x's;u), where u € R"~!, with a; = &s; + ox;.

One can verify that binary operator “o” is distributive and commutative,
but not associative. The unique identity vector of this algebra is represented
by e = (1;0). Clearly, zoe=eox = z.

Conventionally, we represent z o z by z2. One can verify that every
z € S, has a unique square root in S,,.

Spectral decomposition and eigenvalues of z can be defined analogously
to the cone of symmetric matrices. For z = (¢, z), one has

A =&+ [[z] and Mg = & — |z

If \; and Ay are both nonzero, then z is invertible, with 2! satisfying
zoxz~! =e. If \ and )y are both nonnegative, then z € S,,, and if they are
both positive, then z € 8% := {z € R" : z = (§; 1), |7 < ¢}

Using the eigenvalues of z, the following algebraic matrix functions can
be defined:

tI‘((L‘) = A1+ Ay =2¢
det(z) = Ay = €2 — 2|2

o]l == /AT + A3 = V2|



lz]l2 := max{|As], [Aa]} = [€] + [|]]

Now let z = (£, z) € R" with n > 2 and define

[ l=lP 2¢5"
Qr = 2z det(x)I +2zzt )

Q) is a quadratic operator that maps any vector s € R" to a vector composed
of quadratic terms of . For n = 1 with x = £, we can define the scalar

Q:v = 52-

In this paper we are dealing with the vectors of the form x = (z1;...; z%),
where z; is in the second-order cone S,,. The primal algebra is therefore
St = Spy X ... X 8y,. When there is no ambiguity, we drop the superscript
k from S*¥. One can extend the above algebraic functions to these block
forms. Let s = (s1;...;5¢) and € = (e1;...;eg). Then

X 08 := (21081;...; Tk © k).
Qx = Qu, B ... ® Qu,

tr(x) :=2e"x = Y8 | tr(x)
det(x) := [T¥_, det(z;)

Il = i il

|x|l2 := max; [|z;]|2

x L= (o7 2

The following lemma, presents some important properties of the quadratic
operator (Jx in the block form.

Lemma 1 Let x = (z1;...;2) and s = (s1;...;8;), where x;,s; € Sy,, for
1=1,....k, and x is nonsingular. Then

~N

Qxx~' =x and thus Q7'x = x!
2. Qse =s?

3. Qx1 = Q!

4. Qy-12x =€

5. Vx(logdet(x)) = 2x ! and V2(log det(x)) = —2Q,*



6. QQSX = QstQs
7. det(Qxs) = det?(x) det(s) = det(x?) det(s)
8. Qx(S) =8 and Qx(S°) = S°.

Alizadeh and Goldfarb [1] prove the same lemma for the vectors with a

single block. As they note, the extension to k& blocks is trivial.

The next lemma generalizes the inequality proved in [18] to the block

format:

Lemma 2 Let x = (z1;...;x5) €S, where x; € Sy,,. If |[x —e|l2 < 1, then

I — ell7

logdet(x) > tr(x —e) — 30 —Tx—el)

Moreover, if ||x||p < 1, then
log det(x + e) > tr(x) + ||x||r + log(1l — ||x||F).
Proof. Since log det(x) = Y logdet(z;), and (see [18])

|z; — el
2(1 — [|lzi — eill2)

logdet(z;) > tr(z; —e;) —

then
logdetx > 3 tr(ay —ep) -y - Lzl
ogdetx > r(x; —e;) —
i=1 ' ' i=1 2(1 - ||33z - 6z‘||2)
k
> tr(x—e) — dic I — ei”%

2(1 — max; ||z; — e;l2)

(1)

The first inequality follows from the definition of the Frobenius norm and
2-norm. Now let A € R2* be a vector made up of the eigenvalues of z;, i.e.,

)\T = ()\1(151), )\2((1)1), e ,Al(ack), )\z(xk)) .

Observe that

k

k
Il = > lallh = D2 (AP @) + A3(a)) = AN
=1

=1



Now since ||x||r < 1, then ||A]] < 1, and therefore

k
> (log (1 + A () +log(1 + Aa(x))) > 17X+ |[A]l +log(1 — [|A]).
=1

The right hand side of the above inequality is clearly equal to that of (2).
On the other hand

k k

Zlog (T 4+ X (zi)) (L + Xo(z;)) = log H det(e; + z;),
i=1 i=1

which is equal to the left hand side of (2). m

3 Second-order cone cutting surface method

In this section we present an analytic center cutting surface technique that
uses multiple second-order cone and single linear cuts.

Let AiTy =8, Gis fori=1,...,n%% be n%° second-order cone inequalities
and ATy < ¢ be n! linear inequalities. Define

D={yeR™: ATy <sc, and ATy < ¢},

where A = (A1, Ag, ..., Apsoc), € = (€1;¢2;5...;Cpsoc), A € RM and S =
Sq X oo X Sy soc-

Suppose that D is a compact convex set that contains a full dimensional
ball with € radius. We are interested in finding a point in this ball. Let us
call D, the dual set of localization.

In the algorithm that we describe here, a query point is obtained by
computing an approximate analytic center of the set of localization. For the
moment, we assume that there exists an oracle that determines either the
query point is in the e-ball, or returns a cut that cuts off the current query
point and contains the e-ball. The cut is either a linear cut (LC) or a set
of multiple second-order cone cuts (SOCC). We describe the details of this
oracle in Section 5, where we discuss the implementations of the algorithm.

Let us first discuss a computational algorithm for the analytic center of
D. Let

1
@(s,8) = 5 log dets + log H s,
where
s:=c— ATy >s0 (3)
s:=c— ATy >0.



It is easily verified that ¢ is a strictly concave function on D. Therefore,
the maximizer of this function over D exists and is unique. This maximizer
is called the analytic center of D. From the KKT optimality conditions y
is the analytic center of D if and only if, there exists x = s~ =5 0 and
x = s~ ! > 0 such that

Ax+ Az =0, (4)

where s and s satisfy (3).
Corresponding to the optimality condition (4), one can derive the primal
set of localization and its associated barrier function. Let

P={xecS"" z¢c §R7frlc : Ax + Az = 0},

then 1
Y(x,z) = —c'x + 3 log detx — 'z + log H x

is strictly concave on P. The Cartesian product of P and D gives the primal-
dual set of localization. The corresponding barrier function is defined via

D(x,z,8,8) =P(x,z) + ¢(s, s).

The unique maximizer of ¢ over P and that of ® over P x D coincide with
the analytic center derived for D. Therefore when there is no ambiguity, we
refer to this point just as the analytic center.

Definition 3 An approximate analytic center is a point that satisfies the
dual feasibility (3), the primal feasibility (4) and

,r’(x’x’ s’ S) S n < 1’
where n?(x,z,s,s) = ||Q1/28 — e||% + ||zs — 1|%.

An approximate analytic center can be computed using the primal, dual
or primal-dual barrier functions. In this paper we use the primal directions
to compute the analytic center. The reason is that in practice, adding
the cuts returned by the oracle to the primal set of localization can be
handled more efficiently than that of the dual or primal-dual sets. Notice
that calculating the analytic center of one set yields the center of the other.
Therefore, one can switch between the primal, dual and primal-dual sets as
needed.



Let us derive the primal direction now. Let a strictly feasible point of
P be given. Since 9 is strictly concave on P, one can efficiently implement
Newton’s method to maximize ¢ (x, z) over P. Doing so, yields

dy = x— QxS (5)

dey = x— X2s, (6)

where X is a diagonal matrix made up of vector z, and s and s satisfy (3),
with

y=G"lyg, (7)

where
G = AQxAT + AX?AT
g = AQxc + AX?c.

Starting from a strictly feasible point, the above direction is implemented
at each iteration. One can prove that, this increases the barrier function 1
at least by a constant amount at each step. The rate of convergence becomes
quadratic as the iteration gets closer to the analytic center.

Let us present the framework of the analytic center cutting surface al-
gorithm:

Algorithm 1 (ACCSM) Let (x°,2°), a strictly feasible point of P be given

Step 1. Compute (x,%), an approzimate analytic center of P using the
directions dx and dy given in (5) and (6). Compute y, an approzimate
center of D from (7).

Step 2. Cdll the oracle. If y is in the e-ball, stop.
Step 3. If the oracle returns a single linear cut b’y < d, update P via
Pt = {x =gneoc 0,2 >0, >0: Ax + Az + b¢ = 0}.
Otherwise go to Step 4.

Step 4. If the oracle returns multiple second-order cone cuts BTy <s d,
update P via

Pt = {x =gusoc 0,2 =sp 0,7 > 0: Ax + Bz + Az = 0}.

Step 5. Find a strictly feasible point of Pt and return to Step 1.



In the remainder of this section, we elaborate Steps 3-5 in greater detail.
Step 2 will be discussed in Section 5.

After adding a cut to the set of localization, whether an LC or a set
of SOCCs, the analytic center of the updated set of localization should be
recovered. As mentioned before, Newton’s method is employed to obtain an
approximate center from a strictly feasible point. However, after adding a
cut, the only available information is the previous approximate center, which
may not be strictly feasible. Therefore, we need an efficient procedure to
obtain an initial point for Newton’s algorithm. The procedure that we de-
scribe here not only gives a strictly feasible point in PT, but also gives a
warm start for the Newton directions. In Section 4.1, we show that starting
from such a point requires O(plog(p + 1)) Newton steps to recover the an-
alytic center after adding p SOCCs. This procedure was initially proposed
by Mitchell and Todd [16] in the linear case when a single cut is added.

For the sake of simplicity, we combine the two types of cuts and treat
a linear cut as a second-order cone cut of size 1. All algebraic functions
defined for the second-order cone can be simplified to be used for the linear
inequalities. For example for the linear cut s := ¢ — a’y > 0, we define
det(s) = s2. With this definition the potential function term from the
SOCC and LC become identical. Therefore “¢(s) = logdets” works for
both cases regardless of the size of n. Notice that with the above definition
tr(s) = 2s, and Q; is simply the scalar s?. All other definitions as well as
Lemma 1 and Lemma 2 hold.

3.1 The updating direction

A strictly feasible point of P updated in Step 3 or 4, can be obtain from
the following optimization problem:

max % log det z
s.t.
Ady +Bz =0
1Qu-1/2dx|lF <1,
where standard choices for w include w = x, w = s™!, and w = x'/2s71/2,
Using the KKT optimality conditions, the updating direction reads

dy = —QwATH 'Bz
where

H = AQwAT (8)

10



and
z~ ! = pB" H'Baz. (9)

The updating directions depend on z. Let

1
o(z) = —ngVz + 3 log det z, (10)
where V = BTH'B. Observe that (9) is indeed the optimality condition
of

max{p(z) : z € S},

and since ¢ is a strictly concave function, Newton’s method is most suitable
for this problem. Therefore using the quadratic approximation of ¢(z+ dy),
one can derive

ds = (pV + Q)7 (z™! —pVaz)

or
dy = Qur2(pQy12V Q2 + 1) (€ — pQ,u/2 V)

An advantage of using second-order cone cuts over semidefinite cuts is
in the computation of the updating directions. When the set of localization
is updated by adding a semidefinite cut, exact Newton iterations cannot be
used to obtain a feasible direction (see [19]). This is because, an explicit
expression of the gradient of the counterpart of ¢ in terms of dg, cannot be
achieved in the semidefinite case. Oskoorouchi and Goffin [19] overcome this
difficulty by using a Pseudo-Newton direction. Although, their technique
works fine in practice, however, they lose the nice quadratic convergence
property of Newton’s method. As shown above, when a semidefinite cut is
relaxed into second-order cone cuts, the precise Newton direction d, can be
employed to obtain an updating direction dx and therefore enhancing the
performance of the algorithm in practice.

Observe that the updating directions after adding a single linear cut can
be simplified via

dx« = —(QwATH™'b
¢ = (b"H b)Y

In the next section we discuss the convergence analysis and complexity
of our algorithm.

11



4 Convergence analysis and complexity

In this section we present two complexity results. First we establish a bound
on the number of Newton steps to recover centrality after adding multiple
SOCCs, and then we discuss the convergence and complexity of the overall
algorithm.

4.1 Complexity of recovering the center

Let P and D be the current primal and dual localization sets respectively,
and x and § be their approximate analytic centers. Let PT be the updated
primal set as in Step 4 of Algorithm 1. In order to derive the theoretical
complexity, we need to make an assumption on the cuts in the dual space.

Assumption 1 The updated dual set of localization is
Dt ={yeD:B"y <5 By}
That s, the cuts pass through the center.

Note that while Assumption 1 appears to be necessary in the complexity
analysis, it does not interfere with our algorithm in practice. This is be-
cause in practice we use the primal space to recover the centrality. As we
observed in Section 3.1, in the primal space the location of the cuts does not
matter; and the updating direction can always be efficiently obtained using
the primal setting.

We need a dual direction. Similar to the primal case, one can obtain a
dual updating direction by solving the optimization problem

max 3 logdet(—B”'d,)
s.t.
1Qui2ATdy|lF < 1

where d, = y — 7, and the same choices are available for w as before. From
the KKT optimality conditions the optimal d, reads

1
dy=—--H 'Bt !
p
and 1
t=-BTH'Bt™!, (11)
p
with
ds = —ATd,

12



Note that in view of (11)

1
zot = —e. (12)
p

We now fix w =s !, s0 H = AQs-1 AT = AQ;'AT. We have the following
lemma.

Lemma 4 Let xt = (x + ady; az) and st = (s + adg; at), for a <1 —1.
Then

O(x",s7) > P(x,8) + (o +1log(l - %)) +2plog a — plog p.
-n
Proof. A similar lemma for the case of single SOCC is proved in [18].
The extension to multiple SOCCs can be done following the same line of

proof. We only sketch the proof here.
Let us first derive a bound on the dual barrier function ¢. Observe that

1 1
p(sT) = ¢(s)+ 3 log det at + 5 log det(e + aQq-1/2ds).
Now since ||Qg-1/2ds||F < Tln’ in view of (2)

¢(s7) > ¢(s)
« 1 «

1 o
—logdet at + —t _1/2dg —— + —log(l — —).
+2 0gea+2r(Qs 1/2 )+2(1_n)+20g( 1_77)

On the other hand since Ax = 0, then %tr(Qx1/2 ds) =0, and

1
§t1’(Qsﬂ/zds) = dl(Qg 12 — Qyi/2)e
= dZQs—lﬂ (e - Qsl/Qx)'

Now since x is an n-approximate analytic center, then

1 —
§tI‘(QS_1/2dS) = 2(1 _ 77)
Therefore
n 1 o} 1
d(sT) > d(s) + 5 lat log(1 — ﬂ) t3 log det at. (13)
Similarly, one can obtain a bound on the primal barrier function.
+ 1 o} 1
P(xT) > h(x) + 5 lat log(1 — ﬂ) +5 log det az. (14)

13



Now adding up (13) and (14), in view of (12) and the following observa-
tion

1 1
log det QZ1/2(;BZ*1) = log(5)2p +logdet(Q,1/2z" ) = —2plogp
we prove the lemma. m

The next theorem establishes a bound on the gap between the next
analytic center and the updated point (x™,s™).

Theorem 5 Let PT x DT be the updated primal-dual set of localization and
(xT,s™) be a strictly feasible point defined in Lemma 4. Let (x%,s%) be the
analytic center of PT x D*. Then

P(x,s") — @(xt,sT) < plogp — I(p,,n)

where

2

n
I (p,a,n) =p+2ploga+ (a+ log(l — —

Proof. Since
T 1
d(x,8) = —x's+ 3 log det(Qy1/28)

and (x,s) is an approximate analytic center, in view of (1)

1
@(X, S) Z —XTS + §tr(Qx1/25 — e) — ﬁ
2
k n
=) (15)
Now in view of Lemma 4
d(xt,sh) >
k n? a
—nf — ———— + (a+log(l — ——)) + 2ploga — plog p.
4(1 —n) l—n

The lemma now follows from the above inequality and noting that

d(x%, s%) = —nk —p.

14



Theorem 5 proves that after adding p(> 1) SOCCs to the set of local-
ization simultaneously, the gap between the primal-dual barrier function at
(xT,s™) and at the new analytic center is bounded by O(plog(p + 1)). On
the other hand Newton’s method is known to increase the primal-dual po-
tential function at least by a constant amount at each iteration. Thus at
most O(plog(p + 1)) Newton steps are needed to recover centrality after
adding p SOCCs.

4.2 Convergence

In this section we derive a bound on the total number of cuts needed to
obtain a point in the e-ball. We establish upper and lower bounds on the
dual barrier function after k iterations, and then show that these bounds
must cross. The algorithm must terminate before the bounds cross. Let us
first establish a bound on the dual barrier function at the analytic center of
D+,

Let ¥*, ¢*, ®* be the the optimal values of primal, dual and primal-
dual barrier functions respectively. That is ¢* = ¢ (x%), ¢* = ¢(s*), and
d* = &(x%s%), and let T, ¢T, ®T be the updated barrier functions for
Pt, Dt and P x DT respectively. From (14)

(6%)* > 9(x) + 3 logdeta + 91 (p, ),

where

1 «
Y1 (p,a,m) = 3 (a—i— log(1 — ﬂ)> + ploga.

Since (¢ 1)* + (¢7)* = —n — p, one has

(67) < —n—p —h(x) — 5 logdet s — i1 (p, ).

On the other hand in view of (15)

Therefore

1
(¢H)* < ¢ — 5 logdetz + —p—V1(p, a,n). (16)

4(1—n)

15



We now obtain a lower bound on ilogdetz. Notice that from (12)
z/ (BTH 'B)z = I—IJZTZ*1 = 1. Consequently, since z maximizes ¢(z), for
any z° € SP such that

)T (BTH 'B)z’ =1, (17)

one has

log det z > log det z°. (18)
Now define z

2’ = (19)

vz'BT"H-1Bz

where z = (21;...;%p) is defined such that z; = 7;162-, where

i =/ ()" H~'bi, (20)

and b is the first column of matrix B;. With this definition observe that
PP
z B'H 'Bz = Y Y z/'BI'H 'Bjz
i=1j=1
PP

= S5 vyl BFH ' Bje;
i=1j=1

< p?

Now on one hand, z° satisfies (17), and on the other hand
1\
log det z° > log (—) + log det z
p

Therefore (18) reads
logdetz > —2plogp + logdet z
and since logdetz = > logdet z; = >_ log 'yi_Q, then
logdetz > —2p10gp—2210g'yi. (21)

Inequalities (16) and (21) together yield the following inequality:

2

7 ) —p—ﬁl(p,aﬂl)-

(¢%)* < ¢* +plogp+ Y logyi + ]

With the arbitrary values n = 0.15 and « = 0.60, we proved the following
lemma:

16



Lemma 6 If the oracle returns p blocks of SOCC, where p > 1 and the dual
set of localization D is updated by adding these cuts simultaneously, then the
optimal value of the updated dual barrier function has the following upper
bound:

p
(¢7)* < ¢* 4+ logyi + plogp.
=1

Next, we present a lemma to establish an upper bound on the optimal
value of the dual barrier function at the k-th iteration. In order to keep this
bound simple, we make a scaling assumption.

Assumption 2 The initial dual set of localization D is the unit ball.

It is important to note that Assumption 2 is simply a scaling assumption
and it is made to keep constants away from the bound.

Lemma 7 Let ny be the total number of cuts up to the iteration k. Let vy;,
fori=1,...,ny be defined as in (20). Then

N
(st)* < Z log i + ng log prmaz»
i=1
where Pmag = max{p;,i =1,...,nk}.

Proof. Let k be the current iteration. From Lemma 6

Nk
(") < (¢ + D log i + pr log pi,
-1

where py, is the number of SOCCs added in the k-th iteration. Since ppaz >
py for all k, applying this inequality recursively, one has

n
(") < (8°)" + Y log i + n, 10g Prnace-
=1

The lemma, follows from Assumption 2. m

We now define a condition number on a second-order cone cut.
Definition 8 Let BTy <s d be a second-order cone cut and u € R™. Define

1 = max det(BTw),
llull<1 ( )
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This condition number was first defined for semidefinite cuts in [17], and
then modified for the second-order cone cuts in [18]. We make the following
assumption on the multiple second-order cone cuts added at each iteration:

Assumption 3 Let (A{)Ty = c{, fori=1,...,p; be multiple SOCCs added
at iteration 7 =1,...,k and let

,u‘z = max det((Ag)Tu) (22)
llull<1

be the condition numbers. Then

p? == min ,u{>0, forall 5=1,... k.

ZZI,...,pj

We now find a lower bound on the optimal value of the dual barrier
function at the kth iteration.

Lemma 9

(st)* > n log(ey/tmin),
where i = minj—; ,uj and ¢ is the radius of the e-ball.

Proof. Let y¢ be the center of the e-ball. For each i = 1,...,p; and

each j = 1,...,k, let u} be the vector that achieves the maximum p} in
(22). Then since the dual set of localization D contains the e-ball, one has

d — (ADTy = e(AD)Tu!, and so

k Ppj
det(c — ATy*) = [ []det(c] - (4])"y)
j=li=1
kP . .
[T IT det(=(A7)"u))
j=li=1
k .
g2k H(My)pj

J=1

Vv

Vv

2ng , Nk
€ Honiin -

Vv

The proof follows. m

Combining Lemmas 7 and 9 gives the following inequality:

ng
o
S log i > my log Y

i=1 Pmaz

18



or

1 & Vimin \ 2
> log~; > log (E Mmm) : (23)

L2 ) Pmaz

: a2\
On the other hand, since [[7? < (n—kl> then

1 & Sk 2
— Y logy? < log ==L 24
o 2o - (24)

Inequalities (23) and (24) yield

—\2  ng
n (—V”m) <3 A2 (25)
=1

pmax

It remains to bound the right hand side of (25). Let us first make another
scaling assumption.

Assumption 4 Let ATy <s ATy, fori=1,...,n°¢ and aly < al'y, for
i=1,...,n', be second-order cone cuts and linear cuts added to the set of
localization. One can assume that

mavx {[4il -, [} < 1.

Assumption 4 is another scaling assumption and does not reduce gener-
ality. Notice that if ||4;||r < 1, then the Euclidean norm of all columns of
A; is less than or equal 1.

Lemma 10 Let

g

1 o
M=+ 23 (B0,
=1
where b} ’s are the first columns of matrices B; of the second-order cone cuts,
Then

(01) 1, 11 > o
Proof. See Lemma 15 of [18]. =

The next lemma, establishes an upper bound on the right hand side of
Inequality (25).

Lemma 11

N

n
> " 77 < 2m(pmas + 16) log(1 + 4—k)
i=1 m

19



Proof. Let
1 Pk . o
He =M1+ 15 > b (bh)
i=1

with Hg = I. Let pr > 2 (the case of p, = 1 yields a tighter bound, see
[18]). One has

=2 Dk
Y 1 i 1i\T
= (1 4+ — - — 2
det(Hy) = (1 + 16)det (’Hk L+ 16;171(61) > (26)
. . —1
where 72 = (b})7 (-1 + 45 2,0 (1)) bl. Now let
7= g SO

We prove that
16

J s ———1. 27
It suffices to show that 27 Jz < ’%64'16, for all z € R™ with ||z|| = 1. This

can be seen from the following chain of inequalities and Assumption 4.

Pk

1
o' Jo =l + 15 Z( T30, 1 200)?

1 ok iNTq/—1 13
1+E2(b1) Hi ! b

IA

lpk

T Z 16511
Therefore

¥ o= O)THI T M1
16
2 -
pma:v + 16
162

(b1)TH1;_11bl

Therefore (26) reads

2 Dk
1 1 i piNT
det(Hg) > (1 + ————)det | Hy_ — bt (b
et(Hi) > ( +pmacv+]-6) e ( k 1+16i§:2 1( 1)>

20



Repeating this inequality for i = 2,. .., pg, and taking “log” from both sides
one has

D 2
Yi
log det H ZE log| 14+ ——) +logdet Hy_1.
g k = g( Do 16) g k—1

On the other hand since v; < 1 and pyee > 2,0ne has

2 2
Y Vi
log |1+ ¢ > L .
& ( Pmaz T 16) - 2(pmam + ]-6)

Consequently
1 Pk 72
logdet Hy > = ———— +logdet Hj_1.
g k_2;pmaw+16 g k-1

Notice that, a tighter inequality can be derived when p;, = 1.
By repeating the same procedure for all second-order cone cuts, one has

1 i
log det Hy > ] 2’7,2 + log det Hy
i=1

2(pma:v + 16 —
Now since log det H;, < mlog(%h) and

ng
trH;, < —,
r k_m+16

therefore
1

ng
S S w U B (1 ﬂ)
2(p7~,m:,,;+16);%—mog * Tom

The lemma follows immediately. =

Combining Lemma 11 and inequality (25), yields our main result.

Theorem 12 The analytic center cutting surface algorithm (Algorithm 1)
finds a point in the £-ball when the total number of linear and second-order

cone cuts reaches to the bound
0 [ MPmas
2
€7 Umin

Theorem 12 shows that Algorithm 1 is polynomial with respect to m
and p.
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5 Application to the maximum eigenvalue func-
tion

Consider the following eigenvalue optimization problem

min )\1 (F() + Zﬁl yz-Fz)
s.t. (28)
lyll < B,

where the F;’s are linearly independent symmetric matrices. We implement
Algorithm 1 to solve this problem.

Let us first briefly study the Problem (28) and review some important
properties of the maximum eigenvalue function. The proofs of statements
given in this section and more comprehensive analysis can be found in Over-
ton [20] and Lewis and Overton [11].

It is well-known that that the maximum eigenvalue of a symmetric matrix
can be cast as a semidefinite programming problem. That is, if A € M",
then

AM(A) =max{AeV :trV =1,V € M},

and therefore A1 is a convex function of A. With this definition, the objective
function of Problem (28) reads

h(y) = max{F(y)e V :trV =1,V € M} },

where F(y) = Fy + > i%, viF;. Although F(y) is a differentiable matrix
function, he eigenvalues of F'(y) are not differentiable at points where they
have multiplicity greater than one. In minimizing the maximum eigenvalue
of an affine combination of symmetric matrices, it is often the case that the
minimum occurs where h(y) is nondifferentiable. In such cases, one can work
with the subdifferential set rather than the gradients. The subdifferential of
function h(y) using the Clarke generalized gradient of A;(F(y)) and a chain
rule can be derived as

Oh(y) ={veR? :v; = (QTF,Q) e V,trV =1,V € MY,

where Q € R"*? is a matrix whose orthonormal columns are the eigenvectors
corresponding to the maximum eigenvalue with multiplicity p. Observe that
if the maximum eigenvalue is unique (p = 1), then the subdifferential set
will reduce to a unique vector, which is the gradient of A;. In other words,
function h(y) is differentiable, if the multiplicity of A\; is one.
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Let § be a large positive number such that the optimal objective value
h* satisfies —0 < h* < §. Define

F={y=(g7) e R™":|lgll < B,|r] <}

The set F contains the feasible region of Problem (28) and the optimal
objective value h*, and of course, is bounded and convex. Now let y* =
(7%, 7°) € F be an initial query point. Let us evaluate the objective function
h at §°. There are two cases:

1. h is differentiable at ¢° (p = 1).
In this case matrix @) reduces to a column vector q. The set F can be
replaced by
D:={yeF:bly<d, v<min(6 h(7"))}

where b is a vector in ™!, with b; = ¢" Fyq, for i = 1,....m, by =
—1 and d = —¢' Fyq.

2. h is not differentiable at y° (p > 1). In this case
B"y < D, (29)

where BTy = E:’;"{l yiBi, B; = QTF,Q, for i = 1,....,m, By =
—1I,and D = —Q"TFyQ is a semidefinite inequality that contains the
optimal solution of Problem (28). Let

D={yeF: BTy <D, 7< min(é,h(go))}.

Clearly, in both cases D contains the optimal solution of Problem (28). Note
that Inequality 7 < min(§, h(¢°)) gives the best upper bound on the optimal
objective value in both cases.

We relax this p-dimensional semidefinite inequality by second-order cone
inequalities. Let us first show that how a semidefinite inequality is relaxed
into multiple second-order cone inequalities.

Observe that if A € Mﬁ_, then positive semidefiniteness of A can be
represented as a second-order cone inequality [10]. That is

("))

<Z Z)t(), if and only if a+0b6>
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The norm inequality is equivalent to

a+b
a—b | €85. (30)
2c

On the other hand, we know that every 2 x 2 principle submatrix of a positive

semidefinite matrix must be positive semidefinite. Therefore A € M"} can

. —1 . ..
be relaxed into % second-order cone inequalities.

Now consider the semidefinite inequality > ;v ypB*¥ < D, where By, D €
MP. Consider the 2 x 2 principle submatrix in locations ¢ and j, for ¢ < j.

One has . . .
D;; D, Bf B

- D Yk =0
(Dz-j Dj; kgl BY B,

( Di; — Y ypBE  Dij — S yi B > -0

or

Dij — Y kB Djj — Ekafj
In view of (30), the above inequality is equivalent to

Dii + Djj — X yr(Bf + BY))
Dji — Djj — X ye(BE — Bf;) | € Ss. (31)
2D;j — 23y B

Now let d¥ = (D + Dj;; Dii " Djj;k2Di];c) andkBg‘Z')CkE R™<3 be a matrix
whose kth row is defined via (Bj; + Bj;, Bi; — Bj;,2B;;). Then (31) reads
dipe = (Bshe) 'y € Ss,

for all 4 < j. Therefore the semidefinite inequality (29) can be relaxed into
@ second-order cone inequalities, and the set of localization be enlarged
via
D={yeF:Bly=<sd, and 7 <min(3,h(7°))}

where B = (Bl B2 Bp), dsoc = (dl;dQ; ...;dp), and § = 83 X 83 X ... X 83
composed of p blocks, where p = @ and Bj’s and dj’s are as defined
above.

Notice that one can generate far more SOCCs from a single SDC than
just those coming from pairs of eigenvectors from a particular eigenbasis.
This can be done by multiplying an appropriate p X 2 matrix U by the

semidefinite cut to give UL (D — BTy)U and requiring this 2 x 2 matrix to
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be positive semidefinite. Different U’s would give different combinations of
eigenvectors. Unfortunately, it is not clear which are the useful U’s. The
procedure described above can be regarded as putting one 1 in each column
of U.

We implement Algorithm 1 with the set of localization D. Depending on
which one of the above cases occurs, a single linear cut or a set of multiple
second-order cone cuts will be added to D and the upper bound is updated.
Therefore at the kth iteration the set of localization has the following struc-

ture:
Dk — {y c %m—l—l . (Ak)Ty jS Ck, (Ak)Ty < Ck,T < Hk},

where A¥ contains n**® = 2 + Y% | p; blocks of SOCCs, A* ¢ R(m+1)xn'e
contains n!¢ linear cuts, and A% = min(#*~', h(7*~1)), the best upper bound.

The set DF is a compact convex set that is described by linear and
second-order cone inequalities. The upper bound cut 7 < # is a linear cut
and could be incorporated into the linear inequalities, however, we prefer
to study this cut separately. This is because adding the subdifferential cuts
(LC and SOCC) causes the analytic center to get close to the upper bound
cut. As the algorithm proceeds, the distance between the analytic center
and the upper bound cut vanishes. In order to avoid this phenomenon, we
use a weighted analytic center as the query point, and the weight, which is
equal to the total number of cuts n*°¢ + n!¢, is placed on the upper bound
cut.

6 Computational experience and conclusions

In this section we illustrate some preliminary computational results of Algo-
rithm 1 when implemented on Problem (28). The data for the test problems
are randomly generated from normal distributions with different means and
standard deviations. We use the following stopping criterion to terminate
the algorithm:
ok — 7
ok
This criterion utilizes the analytic property of weighted analytic centers.
That is since the weight on the upper bound cut is equal to the dimension
of the current subgradient cut, 7 approaches the upper bound only when
the localization set DF is small enough.
As mentioned earlier, each call to the oracle returns either a linear cut
or a p-dimensional semidefinite cut, where the SDC can be relaxed into

< 5.0x 1073,
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Table 1: m = 100, n = 50, d = 6%

ratio | calls | LC | SDC | SOCC | dim(cut) h* CPU (sec)
22 0 22 - 198 9.3903 675
.b00 | 49 0 - 49 1980 9.3790 899
63 0 - 63 530 9.3940 269
261 | 227 | 34 - 318 9.3804 2845
005 | 249 | 205 - 44 347 9.4032 122
241 | 194 - 47 330 9.3862 114

multiple SOCCs. We illustrate the performance of our algorithm with the
full relaxation (22 SOCCs) and with a partial relaxation (p SOCCs), and
compare the results with SDC. The partial relaxation is chosen by randomly
selecting a subset of the SOCCs. We can’t sort the SOCCs based on viola-
tion, because all of the potential SOCCs given by pairs of eigenvectors have
the same violation.

The tables are structured such that each table represents numerical re-
sults of implementing ACCSM on a randomly generated problem of size m,
dimension n and density d. In determining the multiplicity of the maximum
eigenvalue, we look at a ratio between the two maximum eigenvalues \; and
A2, namely )‘1/\;1/\2 If this ratio is close to zero, the semidefinite cut is more
powerful than a linear cut; if the ratio is close to one, the cheaper linear
cut is almost as powerful as the semidefinite cut. A threshold for this ratio
is represented in the first column. When this threshold is small (typically
0.005 or less), the oracle returns more LC than SDC. We use various thresh-
olds to show the performance of ACCSM when dealing with different types
of cuts.

Each segment of the table has three rows. The first row represent the
result of the algorithm when the SDC is used. The second and third rows
show the data when the SDC is relaxed into @ and p SOCCs respectively.
For each problem set we look at the number of calls to the oracle, the number
of LCs, SDCs and blocks of SOCCs returned by the oracle. The column
under “dim(cut)” represent the sum of the number of linear cuts and the
dimensions of the SDC or SOCC. We report the upper bound h(y*) of the
optimal value h* and the cpu time in seconds in the last two columns.

We use a MATLAB code and run our algorithm on a 1.60 GHz PC
computer with 384 MB of RAM. We note that our intention here is only to
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Table 2: m = 100, n = 100, d = 6%

ratio | calls | LC | SDC | SOCC | dim(cut) h* CPU (sec)
92 17 75 - 297 16.110 2442
.050 | 118 | 14 - 104 960 16.117 457
116 | 13 - 103 387 16.127 265
248 | 201 | 47 - 330 16.110 1583
005 | 241 | 144 - 57 385 16.116 220
242 | 190 - 52 302 16.113 206
Table 3: m = 100, n = 100, d = 99%
ratio | calls | LC | SDC | SOCC | dim(cut) h* CPU (sec)
34 26 8 - 72 69.660 278
.b00 | 38 27 - 11 150 69.626 56
32 22 - 10 45 69.938 17
32 32 0 - 32 69.578 8
.005 31 30 - 1 32 69.643 9
31 30 - 1 32 69.643 9
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Table 4: m = 100, n = 300, d = 6%

ratio | calls | LC | SDC | SOCC | dim(cut) h* CPU (sec)
41 0 41 - 410 30.594 5054
.500 97 0 - 97 4322 30.582 4809
119 0 - 119 1064 30.596 1906
230 | 158 72 - 363 30.586 8339
.005 | 251 | 172 - 79 415 30.590 1335
245 | 153 - 92 323 30.584 1292
Table 5: m = 100, n = 300, d = 99%
ratio | calls | LC | SDC | SOCC | dim(cut) h* CPU (sec)
160 1 159 - 1522 39.879 32160
.500 29 8 - 21 165 40.361 127
27 5 - 22 64 40.411 74
250 | 250 0 - 250 39.960 409
.005 21 20 - 1 22 40.412 34
21 20 - 1 22 40.412 34

explore the computational advantage of SOCCs over SDCs and not to show
the ability of ACCSM. This is why we test only moderate size problems
rather than large problems. For the latter a computer code in a lower level
language such as C*t+ would be more appropriate.

A common observation is that when “ratio” is large, using the original
SDC requires less calls to the oracle than using the SOCC relaxation. On
the other hand, although using the second-order cone relaxation increases
the number of calls to the oracle, the cpu time is significantly improved.
This is because semidefinite cuts are stronger than second-order cone cuts
but a lot more expensive.

It appears that using a partial relaxation (p SOCC) on SDC has a com-
putational advantage over the full relaxation. This relaxation provides a
balance between the strength and the price of the cuts. Applying the full
relaxation requires adding too many cuts simultaneously. This necessitates
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Table 6: m = 500, n = 50, d = 99%

ratio | calls | LC | SDC | SOCC | dim(cut) h* CPU (sec)

28 5 23 - 7 7.0673 1170
500 | 35 6 - 29 191 7.0679 474

37 |7 - 30 83 7.0681 224

42 | 42 0 - 42 7.0898 24
005 | 40 | 39 - 1 41 7.0659 97

40 | 39 - 1 41 7.0659 97

more Newton steps to recover centrality (see Theorem 5), and therefore es-
calates the cpu time. Surprisingly, using the full relaxation does not reduce
the number of calls to the oracle.
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