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Abstract

In the paper a primal-infeasible interior point algorithm is proposed for linearly constrained
convex programming. The starting point is any positive primal-infeasible dual-feasible point in
a large region. The method maintains positivity of the iterates which point satisfies primal-
infeasible dual-feasible point. At each iterates it requires to solve approximately a nonlinear
system. It is shown that, after polynomial iterations a sufficiently good approximation to the
optimal point is found, or there is no optimal point in a large nonnegative region.

Keywords: Linearly constrained convex programming; Primal-infeasible interior point al-
gorithm; Polynomial complexity

1. Introduction

In this paper we consider the linearly constrained convex programming problem:

minimize f(x)
subject to Ax = b, x ≥ 0 (1)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm, m ≤ n and f : Rn → R is a sufficiently smooth convex function.
The dual problem for (1) can be put in the form

maximize bT y − (xT∇f(x)− f(x))
subject to ∇f(x)− (AT y + s) = 0, s ≥ 0 (2)

We let Ω denote the feasible point set of dual-primal problem (1) and (2).

Ω = {(x, y, s) : Ax = b, (x, s) ≥ 0,∇f(x)−AT y − s = 0}

It is well-known that (x, y, s) ∈ Rn × Rm × Rn is an primal-dual optimal solution of (1) and
(2) if and only if the point (x, y, s) satisfies the following first-order optimality conditions (called
KKT-Condition) for (1) and (2).

AT y + s = ∇f(x)
Ax = b

(x, s) ≥ 0
xT s = 0
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If we relax the fourth condition of KKT-condition as follows

Xs− β1µe = 0

where µ ≥ 0 and β1 ∈ [0, 1] is a constant, then KKT-condition is called the perturbed. Clearly,
when µ → 0, then the point (x, y, s), which satisfies the perturbed KKT-condition, will converge to
an optimal point of problem (1) and (2).

In recent years various feasible interior point methods have been developed for solving convex
programming and nonlinear complementarity problems based on the idea of either reducing the
primal-dual complementarity gap xT s or reducing the value of some primal-dual potential functions,
to readers we here refer books Refs. 1 - 4, papers Refs. 5 - 8 and references of these books for convex
programming , Refs. 9 - 11 and references of these books for nonlinear complementarity problems.
Most of these methods have achieved globally linear convergence with polynomial complexity. In
the framework of infeasible-interior-point algorithms (cf. Refs. 12 - 14), it is also considered to solve
convex programming Refs. 15 and 16, nonlinear complementarity problems Refs. 17 and 18, these
algorithms also have properties of global convergence. But as far as the authors know, there is no
result of polynomial complexity. In this paper we are interested in a polynomial infeasible interior
point method for convex programming. The infeasible interior point method for problem (1) is more
intricate compared to the analysis of the infeasible interior point algorithm for linear programming
because of the nonlinear term of the convex object function for problem (1). Thus, based on the
interior point algorithms Ref. 5, to avoid the nonlinear term, here we present a primal-infeasible
dual-feasible interior point algorithm. The starting point requires any positive primal-infeasible dual-
feasible point at each iterate. It asks to find an approximate solution of a nonlinear system. And
under some conditions the paper analyzes the complexity, we prove that after polynomial iterations
we get an approximate optimal point, or show that there is no optimal point in a large given region.

Throughout the paper, the following notations are used. All vectors are column vectors. We fre-
quently use (x, y) as shorthand for the vector (xT , yT )T . Rm denotes the m-dimentional Euclidean
space. The set of all m × n matrices with real entries is denoted by Rm×n. The diagonal matrix
corresponding to a vector x is denoted by X, i.e., X = diag(x), and e = (1, 1, · · · , 1)T ∈ Rn We

also denote by ‖x‖1, ‖x‖2 and ‖x‖∞ the 1-, 2- and ∞-norm of x, that is to say, ‖x‖1 =
n∑

i=1

|xi|,

‖x‖2 = (
n∑

i=1

|xi|2) 1
2 and ‖x‖∞ = max

1≤i≤n
|xi|. The superscript T denotes transpose.

The rest of the paper is organized as follows. In Section 2, we describe the primal-infeasible
dual-feasible interior point algorithm for convex programming; Section 3 analyze the polynomial
convergence of our algorithm; At last section, we make some concluding remarks.

2. Algorithm

In this section, before we state our algorithm, several assumptions are introduced, and we also
give out a definition of a neighborhood set of the central path for the algorithm.

Assumption 1 Without loss of the generalization we let Rank(A) = m;
This assumption is quite standard for convex programming.

Assumption 2 f(x) is continuously differentiable and convex. ∇f(x) satisfies the Lipschitz
condition with the Lipschitz index L, i.e.,

‖∇f(x′)−∇f(x′′)‖ ≤ L‖x′ − x′′‖

where L > 0.
Under the Assumption 3, at Assumption 2 the Lipschitz condition is weaker than the twice con-
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tinuous differentiablity.

Assumption 3 We want to find an optimal point of convex programming, if it exists, in the
following region.

Φ = {(x, y, s) ∈ Rn ×Rm ×Rn|(x, s) ≥ 0, ‖(x, s)‖∞ ≤ ρ}
Note that Assumption 3 is a frequently used assumption for infeasible interior point methods to

obtain polynomial complexity bounds.

Assumption 4 Let Ω1 = {(x, y, s) : (x, s) > 0 and s = ∇f(x) − AT y}, we here suppose that
Ω1

⋂
Φ 6= ∅.

Obviously this assumption is also weaker than one which the feasible interior point set of problem
(1) and (2) is not empty.

The central path of problems (1) and (2) is defined as follows

S =
{

(x, y, s) : x > 0, s > 0, Ax− b = 0, AT y + s−∇f(x) = 0, Xs =
xT s

n
e

}

in primal-dual form.
Without considering the feasibility, we let a neighborhood set of the central path as follows.

N =
{

(x, y, s) >  : (x, s) > , ‖Xs− xT s

n
e‖ ≤ σ

xT s

n
, σ ∈ (, )

}
(3)

We note that for an infeasible interior point algorithm it always defines a neighborhood set of the
central path just like the set above.

From the aboving definition, we can easily get the following lemma.

Lemma 2.1 For (x, y, s) ∈ N , then

max{xisi} ≤ (1 + σ)
xT s

n

min{xisi} ≥ (1− σ)
xT s

n
.

The primal-dual affine scaling search direction (∆x, ∆y, ∆s) at a given infeasible interior point
(xk, yk, sk) ∈ Rn×Rm×Rn is computed by applying one step of Newton’s method to the perturbed
KKT-condition. Hence,





A∆x = −(Axk − b)
∇2f(xk)∆x−AT ∆y −∆s = −(∇f(xk)−AT yk − sk)

Xk∆s + Sk∆x = −(Xksk − β1
(xk)T sk

n )
(4)

According to the idea of the infeasible interior point algorithm Refs. 12 - 14, the search direction
of an infeasible interior point algorithm is the solution of the system above. But for convex problem
(1) and (2) because of the nonlinearity of f(x), the second equation of the system (4) will reduce to
difficulty when one analyzes the polynomial complexity of the primal-dual infeasible interior point
algorithm. Therefore, to avoid the difficulty, here we will consider the dual-feasible point, thus we
can cancel to solve the second equation of the system (4). That is, we consider take the solution of
the following system as the iterative direction at a point (xk, yk, sk) ∈ Rn ×Rm ×Rn

{
Xk[∇f(xk + αk∆x)−∇f(xk)− αkAT ∆y] + αkSk∆x = −αk(Xksk − β1µe)

A∆x = −(Axk − b)
(5)
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where αk and µ is some positive real numbers.
As is known, it is difficulty to find an exact solution of the nonlinear system above. Thus we

induce an inexact technic to the system. To remain the property

A(xk + αk∆x)− b = (1− αk)(Axk − b) (6)

it requires to solve the linear equation exactly, then the system can be rewritten in the form
{

Xk[∇f(xk + αk∆x)−∇f(xk)− αkAT ∆y] + αkSk∆x = −αk(Xksk − β1µe) + αkrk

A∆x = −(Axk − b)
(7)

where rk satisfies that ‖rk‖1 ≤ νµ and ν is some small positive constant. Obviously, it holds that
‖rk‖ ≤ νµ.

Now we state the primal-infeasible dual-feasible interior point algorithm as follows.
Algorithm 2.1

Step 0. Find an initial starting point (x0, y0, s0) in Ω1

⋂
Φ. We here put

ρ0 = min{x0
1, x

0
2, · · · , x0

n, s0
1, s

0
2, · · · , s0

n}.

Let 0 < ν ≤ 1/2 ≤ β1 < β2 ≤ 1, θ0 = 1 satisfying σβ1 > 2ν and β2 > β1 + ν. Set k = 0.
Step 1. If the point (xk, yk, sk) satisfies

‖Axk − b‖ ≤ εp and (xk)T sk ≤ ε (8)

then the algorithm is terminated.
Step 2. Compute αk as follows.

αk =
(

ρ0

ρ

)2 min{σβ1 − 2ν, β2 − β1 − ν/n}min
i

(xk
i sk

i )

2n(2 + τ)2
(
1 + (1 + L)n

1
2

)2

(xk)T sk

(9)

where

τ =
ρ‖(s0, x0)‖1

(x0)T s0

Step 3. Let µ =
(xk)T sk

n
, then find (∆x, ∆y) ∈ Rn ×Rm satisfying th equations (7).

Step 4. Set xk+1 := xk + αk∆x, yk+1 := yk + αk∆y, sk+1 := ∇f(xk +αk∆x)−AT (yk + αk∆y),
θk+1 := θk(1− αk) and k := k + 1, then go to step 1.

3. Convergence

In this section we will analyze the polynomial convergence of Algorithm 2.1. Firstly, before we
state the complexity result of algorithm 2.1, we will describe several lemmas. And throughout this
section we will denote D = (Xk)

1
2 (Sk)−

1
2 for a point (xk, sk) > 0

Lemma 3.1 Assume the problems (1) and (2) have an optimal point(x∗, y∗, s∗) ∈ Φ, and for
k ≥ 1 the point (xj , yj , sj) is generated by Algorithm 2.1 with j = 1, 2, · · · , k and satisfies

(xj , sj) > 0; (10)
(xj)T sj ≥ (1− α(j−1))(xj−1)T sj−1. (11)
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Then for k ≥ 1

‖(xk, sk)‖1 ≤ 2 + τ

θkρ0
(xk)T sk (12)

where τ is defined in Algorithm 2.1 depending on the starting point and the large region.
Proof. From Algorithm 2.1, we have

A(xk − θkx0 − (1− θk)x∗) = 0

And

(sk − θks0 − (1− θk)s∗) = (∇f(xk)−AT yk)− θk(∇f(x0)−AT y0)
−(1− θk)(∇f(x∗)−AT y∗)

Noting 0 < θk < 1, from the above equations and the fact that (ẋ − ẍ)T (∇f(ẋ) − ∇f(ẍ)) ≥ 0
we get

(xk − θkx0 − (1− θk)x∗)T (sk − θks0 − (1− θk)s∗)
= (xk − θkx0 − (1− θk)x∗)T (∇f(xk)− θk∇f(x0)− (1− θk)∇f(x∗))T

= [θk(xk − x0) + (1− θk)(xk − x∗)]T [θk(∇f(xk)−∇f(x0)) + (1− θk)(∇f(xk)−∇f(x∗))]
≥ θk(1− θk)(xk − x0)T (∇f(xk)−∇f(x∗)) + θk(1− θk)(xk − x∗)]T (∇f(xk)−∇f(x0))
= θk(1− θk)(xk − x∗ + x∗ − x0)T (∇f(xk)−∇f(x∗))

+ θk(1− θk)(xk − x0 + x0 − x∗)]T (∇f(xk)−∇f(x0))
≥ θk(1− θk)(x∗ − x0)T (∇f(x∗)−∇f(x0))
≥ 0

Therefore, (θkx0 + (1− θk)x∗− xk)T (θks0 + (1− θk)s∗− sk) ≥ 0 which imples that (θkx0 + (1−
θk)x∗)T sk +

(
xk

)T (θks0 + (1− θk)s∗) ≤ (θkx0 + (1− θk)x∗)T (θks0 + (1− θk)s∗) +
(
xk

)T
sk.

Thus, according to the definition of the starting point ()x0, y0, s0 of our algorithm, Assumption
3 and (10) we know

θkρ0‖(xk, sk)‖1 ≤ θk
[(

x0
)T

sk +
(
s0

)T
xk

]

≤ (θkx0 + (1− θk)x∗)T sk +
(
xk

)T
(θks0 + (1− θk)s∗)

≤ (θkx0 + (1− θk)x∗)T (θks0 + (1− θk)s∗) +
(
xk

)T
sk

= (θk(x0)T s0 + θk(1− θk)((x∗)T s0 + (s∗)T x0)) +
(
xk

)T
sk

≤ θk(1 + ζ)(x0)T s0 +
(
xk

)T
sk

where

ζ =
(x∗)T s0 + (s∗)T x0

(x0)T s0
> 1

We have by (11)
(xk)T sk ≥ (1− αk−1)(xk−1)T sk−1 ≥ θk(x0)T s0

And from Assumption 3 it follows that ζ ≤ τ . Thus we have

‖(xk, sk)‖1 ≤ 2 + τ

θkρ0
(xk)T sk

Heretofore we have completed the proof of this lemma.
2
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Lemma 3.2 Assume that problems (1) and (2) satisfy Assumption 1–3 stated in the section 2,
and the problems have an optimal point(x∗, y∗, s∗) ∈ Φ. Let the points (xj , yj , sj) with j = 1, 2, · · · , k
generated by Algorithm 2.1 and satisfying the relations (10) and (11). Then there are the following
estimates

‖D−1∆x‖ ≤
(

1 + (2 + τ)(1 + L)n
1
2

ρ

ρ0
+ β1 + ν/n

)
(xk)T sk

min
i

(xisi)
1
2
, (13)

‖D∆s(αk)‖ ≤ αk

(
1 + (2 + τ)(1 + L)n

1
2

ρ

ρ0
+ β1 + ν/n

)
(xk)T sk

min
i

(xisi)
1
2
, (14)

where ∆s(αk) = ∇f(xk + αk∆x)−∇f(xk)− αkAT ∆y.
Proof. In the proof, sometimes we will omit the superscript k of xk and sk.

Firstly, we consider the following equations: (∆x′, ∆s′) satisfies
(

A 0
S X

)(
∆x′

∆s′

)
=

(
0
p

)
(15)

Here ∆s′ = ∇f(x + ∆x′) −∇f(x) − AT ∆y′. Then by the convexity of f(x), (∆x′)T ∆s′ ≥ 0. And
we also have

D−1∆x′ + D∆s′ = (XS)−
1
2 p

here D = (X ′)1/2(S′)−1/2, thus we see that the following estimates are valid.

‖D−1∆x′‖ = ‖D(∆s′ −X−1p)‖ ≤ ‖(XS)−
1
2 p‖ (16)

‖D∆s′‖ = ‖D−1(∆x′ − S−1p)‖ ≤ ‖(XS)−
1
2 p‖ (17)

It follows from the proof of Lemma 3.1

A(∆x + θk(x0 − x∗)) = 0

Let ∆̂x = αk(∆x + θk(x0 − x∗)) and ∆̂s = ∇f(xk + ∆̂x)−∇f(xk)− αkAT ∆y where ∆y is the
solution of the system (7) at k−iteration of algorithm 2.1, then (∆̂x, ∆̂s) satisfies the system (15)
with

p = −αk(Xksk−β1µ
ke)+αkθkSk(x0−x∗)+Xk(∇f(xk+αk(∆x+θk(x0−x∗)))−∇f(xk+αk∆x))+αkrk

Now let (∆̂x1, ˆ∆s1),(∆̂x2, ˆ∆s2), (∆̂x3, ˆ∆s3) and (∆̂x4, ˆ∆s4) satisfying the system (15) when p
is −αk(Xksk − β1µ

ke), αkθkSk(x0 − x∗) , Xk(∇f(xk + αk(∆x + θk(x0 − x∗)))−∇f(xk + αk∆x))
and αkrk respectively. Then from (16) and (17) it follows that

‖αkD−1∆x‖ = ‖D−1(∆̂x1 + ∆̂x2 + ∆̂x3 + ∆̂x4 − αkθk(x0 − x∗))‖
≤ ‖D−1∆̂x1‖+ ‖D−1∆̂x3‖+ ‖D−1∆̂x4‖+ ‖D∆̂s2‖
≤ αk‖(XS)−

1
2 (Xs− β1µe)‖+ αk‖(XS)−

1
2 rk‖+ αkθk‖D(s0 − s∗)‖

+‖D−1[∇f(x + αk(∆x + θk(x0 − x∗)))−∇f(x + αk∆x)]‖
≤ αk‖(XS)−

1
2 (Xs− β1µe)‖+ αk‖(XS)−

1
2 rk‖+ αkθk‖D(s0 − s∗)‖+ αkθkL‖D−1‖ · ‖x∗ − x0‖

Using the Lipschitz condition of ∇f(x), Assumption 3 and (10) we have

‖D−1∆x‖ ≤ ‖(XS)−
1
2 ‖(1 + β1)xT s + ν‖(XS)−

1
2 ‖(xk)T sk/n + θk‖(XS)−

1
2 ‖ · ‖X‖ · ‖(s0 − s∗)‖
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+θkL‖(XS)−
1
2 ‖ · ‖S‖ · ‖(x0 − x∗)‖

≤ 1
min

i
(xisi)

1
2
(1 + β1 + ν/n)xT s + (1 + L)

1
min

i
(xisi)

1
2
θk (2 + τ)(xk)T sk

θkρ0
n

1
2 ρ

≤
(

1 + (2 + τ)(1 + L)n
1
2

ρ

ρ0
+ β1 + ν/n

)
(xk)T sk

min
i

(xisi)
1
2

where the second inequality follows from Lemma 3.1.
Similarly we can also get

‖D∆s(αk)‖ = ‖D(∆̂s1 + ∆̂s2 + ∆̂s3 + ∆̂s4 − [∇f(x + αk(∆x + θk(x− x0)))−∇f(x + αk∆x)])‖

≤ αk

(
1 + (2 + τ)(1 + L)n

1
2

ρ

ρ0
+ β1 + ν/n

)
(xk)T sk

min
i

(xisi)
1
2

2

Next lemma shows that the complementarity gap of primal-problem (1) and dual-problem (2)
does not decrease too much at every iteration, and the sequence (xk, sk), which is generated by
algorithm 2.1, is positive.

Lemma 3.3 Assume that problems(1) and (2) have an optimal point (x∗, y∗, s∗) satisfying
‖(x∗, s∗)‖∞ ≤ ρ, (xk+1, yk+1, sk+1) is generated at the (k + 1)−iteration of algorithm 2.1, then for
any k ≥ 0 and αk in form of (9) we have

(xk+1, sk+1) > 0, (18)
(xk+1)T sk+1 ≥ (1− αk)(xk)T sk. (19)

Before starting the proof, firstly we introduce two auxiliary functions as following

ϕ1(αk) =
n∑

i=1

|α
k∆xi

xk
i

|2,

ϕ2(αk) =
n∑

i=1

|∆si(αk)
sk

i

|2,

which will play an important role in the proof. Obviously, under the condition (xk, sk) > 0, if
ϕ1(αk) < 1 and ϕ2(αk) < 1 are valid, then we see that (xk+1, sk+1) = (xk +αk∆x, sk +∆s(αk)) > 0
must be satisfied. Moreover, under the same assumption, (xk, sk) > 0, we have

ϕ1(αk) =
n∑

i=1

|α
k∆xi

xk
i

|2 =
n∑

i=1

α2|Dii

xk
i

|2(D−1
ii ∆xi)2 ≤ α2 1

min
i
{xk

i sk
i }
‖D−1∆x‖2 (20)

And similarly we have

ϕ2(αk) ≤ 1
min

i
{xk

i sk
i }
‖D∆s(αk)‖2 (21)

Proof of Lemma 3.3. The proof will be by induction. Firstly, we consider the case: k = 0
It is obvious that (x0, s0) > 0. Then we have by the linear equation of (7)

A(∆x + (x0 − x∗)) = 0
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Under the assumption which problems(1) and (2) have an optimal point (x∗, y∗, s∗) satisfying
‖(x∗, s∗)‖∞ ≤ ρ, using similar analyzing method of Lemma 3.2, then we have

‖D−1∆x‖ ≤ ‖(X0S0)−
1
2 ‖(1 + β1)(x0)T s0 + ‖(X0S0)−

1
2 ‖ν(x0)T s0/n + θ0‖(X0S0)−

1
2 ‖ · ‖X0‖ · ‖(s0 − s∗)‖

+θ0L‖(X0S0)−
1
2 ‖ · ‖S0‖ · ‖(x0 − x∗)‖

≤ (1 + β1 + ν/n)
(x0)T s0

min
i

(x0
i s

0
i )1/2

+ (1 + L)
1

min
i

(x0
i s

0
i )1/2

(x0)T s0

ρ0
ρn1/2

≤
(

1 + β1 + ν/n +
ρ

ρ0
(1 + L)n1/2

)
(x0)T s0

min
i

(x0
i s

0
i )1/2

And similarly,

‖D∆s(α0)‖ ≤ α0

(
1 + β1 + ν/n +

ρ

ρ0
(1 + L)n1/2

)
(x0)T s0

min
i

(x0
i s

0
i )1/2

And by the fact that τ > 1, β1 + ν/n < β2 < 1, ν < 1, (9) with k = 0, (20) and (21) we easily
see that ϕ1(α0) < 1 and ϕ2(α0) < 1 hold.

That is to say, it is proved that

(x1, s1) = (x0 + α0∆x, s0 + ∆s(α0)) > 0

Furthermore, the inequality follows

(x1)T s1 = (x0 + α0∆x)T (s0 + ∆s(α0))
= (x0)T s0 + (α0(s0)T ∆x + (x0)T ∆s(α0)) + α0(∆x)T ∆s(α0)

= (x0)T s0 − α0(1− β1)(x0)T s0 + αk(
n∑

i=1

r0
i ) + α0(∆x)T ∆s(α0)

= (1− α0)(x0)T s0 + α0β1(x0)T s0 + αk(
n∑

i=1

r0
i ) + α0(∆x)T ∆s(α0)

≥ (1− α0)(x0)T s0 + α0(β1 − ν/n)(x0)T s0 − α0‖D−1∆x‖ · ‖D∆s(α0)‖

Then by the definition of α0, the estimates of ‖D−1∆x‖ and ‖D∆s(α0)‖ above, 0 < β1 < 1,
0 < σ < 1 and σβ1 − 2ν < β1 − ν/n < β2 < 1 we see that for α0 with the form of (9) the following
is satisfied

α0β1(x0)T s0 − α0‖D−1∆x‖ · ‖D∆s(α0)‖ ≥ 0

That is to say, we finish the proof of the case k = 0: (x1, s1) > 0 and (x1)T s1 ≥ (1− α0)(x0)T s0

Thus, we can assume that for any positive integer k the following is valid.

(xk, sk) > 0 (22)
(xk)T sk ≥ (1− α(k−1))(xk−1)T sk−1 (23)

For the case: k + 1. From hyperthesis of this lemma and (22) - (23) we see that Lemma 3.1 and
3.2 hold.
Thus, by Lemma 3.2, αk in form of (9) and (20) - (21) we easily obtain that ϕ1(αk) < 1 and
ϕ2(αk) < 1 hold, it follows that

(xk+1, sk+1) > 0 (24)
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In addition, we have

(xk+1)T sk+1 = (xk + αk∆x)T (sk + ∆s(αk))
= (xk)T sk + (αk(sk)T ∆x + (xk)T ∆s(αk)) + αk(∆x)T ∆s(αk)

= (xk)T sk − αk(1− β1)(xk)T sk + αk(
n∑

i=1

rk
i ) + αk(∆x)T ∆s(αk)

= (1− αk)(xk)T sk + αkβ1(xk)T sk + αk(
n∑

i=1

rk
i ) + αk(∆x)T ∆s(αk)

≥ (1− αk)(xk)T sk + αk(β1 − ν/n)(xk)T sk − αkν(xk)T sk/n + αk‖D−1∆x‖ · ‖D∆s(αk)‖
≥ (1− αk)(xk)T sk

+αk(β1 − ν

n
)(xk)T sk − (αk)2

(
1 + (2 + τ)(1 + L)n

1
2

ρ

ρ0
+ β1 +

ν

n

)2 ((xk)T sk)2

min
i

(xisi)

where the equation (7) implies the third equality, and the last inequality follows from Lemma 3.2.
Thus, by the definition (9) of αk and σβ1 − 2ν < β1 − ν/n, we see that

(β1 − ν

n
)(xk)T sk − αk

(
1 + (2 + τ)(1 + L)n

1
2

ρ

ρ0
+ β1 +

µ

n

)2 ((xk)T sk)2

min
i

(xisi)
> 0

is valid, therefore, (xk+1)T sk+1 ≥ (xk)T sk hold.
Hereunto, we have completed the proof of Lemma 3.3

2

From the proof above we note that, for k = 0, (∆x, ∆s(αk)) also satisfies (13) and (14).
In next lemma firstly we will show that the complementarity gap of problems (1) and (2) will

be reduced at each iteration of algorithm 2.1, and it is also shown that the sequence {(xk, yk, sk)}
is remained in the neighborhood N of the central path.

Lemma 3.4 Suppose that (xk+1, yk+1, sk+1) is generated by algorithm 2.1, (xk, sk) ∈ N . And
assume Lemma 3.1 - 3.3 hold. Then the following statements are satisfied

(xk+1)T sk+1 ≤ (1− αk(1− β2))(xk)T sk (25)
(xk+1, sk+1) ∈ N (26)

for

αk =
(

ρ0

ρ

)2 min{σβ1 − 2ν, β2 − β1 − ν/n}min
i

(xk
i sk

i )

2n(1 + (2 + τ)2
(
1 + L)n

1
2

)2

(xk)T sk

Proof. Firstly, we have by (7)

Xk+1sk+1 = (Xk + αk∆X)(sk + ∆s(αk))
= Xksk + (Xk∆s(αk) + αkSk∆x) + αk∆X∆s(αk)

= Xksk − αk(Xksk − β1
(xk)T sk

n
e) + αkrk + αk∆X∆s(αk) (27)

and

(xk+1)T sk+1 = (xk)T sk − αk(1− β1)(xk)T sk + αk(
n∑

i=1

rk
i ) + αk∆xT ∆s(αk) (28)

9



We here consider the inequality (25).

(1− αk(1− β2))(xk)T sk − (xk+1)T sk+1 = αk(β2 − β1)(xk)T sk − αk∆xT ∆s(αk)− αk(
n∑

i=1

rk
i )

≥ αk(β2 − β1)(xk)T sk − αk‖rk‖1 − αk‖D−1∆x‖ · ‖D∆s(αk)‖
≥ αk(β2 − β1 − ν/n)(xk)T sk

−(αk)2




(
1 + β1 + ν/n + (2 + τ)(1 + L)n

1
2

ρ

ρ0

)2 ((xk)T sk)2

min
i

xk
i sk

i




If the righthand of the last inequality above is not smaller than zero, i.e.,

αk ≤
(β2 − β1 − ν/n)min

i
xk

i sk
i

(
1 + β1 + ν/n + (2 + τ)(1 + L)n

1
2

ρ
ρ0

)2

(xk)T sk

(29)

then the inequality (25) must be valid.
Obviously, by (9) the inequality (29) is satisfied. The proof of (25) is end.

For the statement (26), from Lemma 3.3, we just need to prove the following inequality

‖Xk+1sk+1 − (xk+1)T sk+1

n
e‖ ≤ σ

(xk+1)T sk+1

n

Then, from (27) and (28), we obtain

‖Xk+1sk+1 − (xk+1)T sk+1

n
e‖ ≤ (1− αk)‖Xksk − (xk)T sk

n
e‖+ αk‖rk −

n∑
i=1

rk
i

n
e‖

+αk‖∆X∆s(αk)− ∆xT ∆s(αk)
n

e‖

By the fact that
∆xT ∆s(αk)

n
e and rk−

n∑
i=1

rk
i

n e are the orthogonal projections of ∆X∆s(αk) and

rk on the one dimensional subspace by e respectively, we deduce that

‖Xk+1sk+1 − (xk+1)T sk+1

n
e‖ ≤ (1− αk)σ

(xk)T sk

n
+ αk‖rk‖+ αk‖∆X∆s(αk)‖

Thus,

σ
(xk+1)T sk+1

n
− ‖Xk+1sk+1 − (xk+1)T sk+1

n
e‖

≥ σ
(xk+1)T sk+1

n
− ((1− αk)σ

(xk)T sk

n
+ αk‖rk‖+ αk‖∆X∆s(αk)‖)

≥ αkσβ1
(xk)T sk

n
− αk(‖rk‖+ |(

n∑

i=1

rk
i )/n|)− αk(‖∆X∆s(αk)‖+ |∆xT ∆s(αk)

n
|)

≥ αk(σβ1 − 2ν)
(xk)T sk

n
− 2αk‖D−1∆x‖ · ‖D∆s(αk)‖

≥ αk(σβ1 − 2ν)
(xk)T sk

n
− 2(αk)2

(
1 + β1 + ν/n + (2 + τ)(1 + L)n

1
2

ρ

ρ0

)2 ((xk)T sk)2

min
i

xk
i sk

i
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By (9), we see that the following inequality holds

(σβ1 − 2ν)
(xk)T sk

n
− 2αk

(
1 + β1 + ν/n + (2 + τ)(1 + L)n

1
2

ρ

ρ0

)2 ((xk)T sk)2

min
i

xk
i sk

i

≥ 0

Thus, it is valid that (xk+1, yk+1, sk+1) ∈ N .
We have gotten all of our desired results.

2

Theorem 3.1 Suppose the problems (1) and (2) has an optimal point in Φ and satisfy Assump-
tion 1-4. Let the starting point (x0, y0, s0) is also taken from the set N . Then Algorithm 2.1 will
terminate in at most

⌈
Ξ

− ln(1− α̃)

⌉
(30)

iterations, where

α̃ =
(

ρ0

ρ

)2 min{(σβ1 − 2ν), (β2 − β1 − ν/n)}(1− σ)

2(2 + τ)2 n2
(
1 + (1 + L)n

1
2

)2 (31)

Ξ = max
{

ln(x0)T s0

ε
,
ln ‖Ax0 − b‖

εp

}
(32)

and dξe denotes the smallest integer greater than or equal to ξ.
Proof. By Lemma 2.1, we deduce αk ≥ α̃.
From Lemma 3.4, we have

(xk+1)T sk+1 ≤ (1− αk(1− β2))(xk)T sk ≤ (1− α̃(1− β2))(xk)T sk

‖Axk+1 − b‖ = (1− αk)‖Axk − b‖ ≤ (1− α̃)‖Axk − b‖

Then easily we obtain the result of Theorem 3.1.

2

Througout the analysis above, it uses the optimal point (x∗, y∗, s∗) in the proof of Lemma 3.1 -
3.3. The proof of Lemma 3.4 and Theorem 3.1 just use the result of Lemma 3.1 - 3.3. So we now
give out a theorem with the detection of infeasibility.

Theorem 3.2 Suppose that one lets the following two criticals,
”Step 1′ If (xk, yk, sk) does not satisfy one of (12), (13) and (14), then terminated.”

in between Step 1 and Step 2, and
”Step 3′ If (∆xk,∆s(αk)) with αk does not satisfy one of (17) and (18), then

terminated.”
in between Step 3 and Step 4, of Algorithm 2.1. Let the starting point (x0, y0, s0) is also taken from
the set N . Then Algorithm 2.1 will terminate in at most

⌈
Ξ

− ln(1− α̃)

⌉
(33)

iterations.
And if it terminates by Step 1, (xk, yk, sk) is the ε-optimal solution of the primal-dual problem

(1) and (2); or else, it terminates by Step 1′ or Step 3′, there is no optimal (x∗, y∗, s∗)of the problems

11



(1) and (2) satisfying ‖(x∗, s∗)‖∞ ≤ ρ.

Obviously, according to the proof of Lemma 3.1 -3.3, if Algorithm 2.1 terminates by Step 1′ or
Step 3′, we can easily get the conclusion above by reduction to absurdity.

We note that, in Theorem 3.1 and 3.2, the complexities dependent no only on the the input data
of problems but on the starting point and the region where we want to find an optimal point.

4. Concluding Remark

In this section we come back to consider the approximate solution of the nonlinear system

Ψk(∆x, ∆y) := Xk(∇f(xk + αk∆x)−∇f(xk)− αkAT ∆y)− Sk∆x− αk(Xs− xT s

n
e) = 0(34)

A∆x = −(Axk − b) (35)

Easily, the Jacobi matrix of the system above is the form as
(

Qk αkAT

A 0

)

If we use Newton-like method to solve the nonlinear system, and we firstly put the starting point
satisfying A∆x = −(Axk − b), then we just need to solve the following linear system

Qk∆̂x− αkAT ∆̂y = −Ψk(∆x, ∆s) (36)
A∆̂x = 0 (37)

and let ∆̃x = ∆x + ∆̂x, ∆̃y = ∆y + ∆̂y. Thus we see that it, A∆̃x = −(Axk − b), will be satisfied
by all iterates with this method. Other iterative methods may also be used to solve the nonlinear
system (34) and (35).

Moreover, if we also induce the inexact technic to the linear equation in (7), then at each iter-
ative, the property (6) cannot be remained. Then the analysis in Section 3 cannot work. it is our
future work how to analysis our algorithm in the case. And for this case it has been considered for
linear programming, readers may find it in papers Refs. 19 and 20.
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