

 Page 1/9

A DISTRIBUTED, SCALEABLE SIMPLEX METHOD

GAVRIEL YARMISH
Computer Information Science, Brooklyn College

2900 Bedford Ave Brooklyn NY 11210

and

RICHARD VAN SLYKE
 Computer Science, Polytechnic University

6 Metrotech Center Brooklyn NY 11201

ABSTRACT
We present a simple, scaleable, distributed simplex implementation for large linear programs. It is
designed for coarse grained computation, particularly, readily available networks of workstations.
Scalability is achieved by using the standard form of the simplex rather than the revised method.
Virtually all serious implementations are based on the revised method because it is much faster for
sparse LPs, which are most common. However, there are advantages to the standard method as
well. First, the standard method is effective for dense problems. Although dense problems are
uncommon in general, they occur frequently in some important applications such as wavelet
decomposition, digital filter design, text categorization, and image processing. Second, the
standard method can be easily and effectively extended to a coarse grained, distributed algorithm.
Such an implementation is presented here. The effectiveness of the approach is supported by
experiment and analysis.

Keywords: linear programming; standard simplex method; dense matrices; distributed computing;
parallel optimization

1. Introduction
We present a simple, scaleable, distributed simplex implementation for large linear
programs. It is designed for coarse grained computation, particularly readily available
networks of workstations. Scalability is achieved by using the standard form of the
simplex rather than the revised method.
Most research is focused on the revised method since it takes advantage of the sparsity
that is inherent in most linear programming applications. The revised method is also
advantageous for problems with a high aspect ratio; that is, for problems with many more
columns than rows. On the other hand, there are not many parallel or distributed
implementations of the revised method that scale well. Earlier work focused on more
complex, and more tightly coupled, networking structures. Hall and McKinnon [1997]
and Shu and Wu, [1993] worked on parallel revised methods. Thomadakis & Liu [1996]
worked on the standard method utilizing the MP-1 and MP-2 MasPar. Eckstein et al
[1995] showed in the context of the parallel connection machine CM-2 that the iteration
time for parallel revised tended to be significantly higher than for parallel tableau even
when the revised method is implemented very carefully. Stunkel [1988] found a way to
parallelize both the revised and standard methods so that both obtained a similar advantage in the
context of the parallel Intel iPSC hypercube.

 Page 2/9

The standard method can be easily and effectively extended to a coarse grained,
distributed algorithm. We look at distributed linear programming especially optimized for
loosely coupled workstations. Yarmish [2001] describes such a coarse grained distributed
simplex method, dpLP, in greater detail. This implementation was successful in solving
all LP problems in the Netlib repository.
It should also be noted that although dense problems are uncommon in general, they do
occur frequently in some important applications within linear programming [Eckstein et
al, 1995]. Included among those are wavelet decomposition, image processing [Chen et
al, 1998; Selesnick et al, 2004] and digital filter design [Hu & Rabiner, 1972; Steiglitz et
al, 1992; Gislason et al, 1993]. All these problem groups are well suited to the standard
simplex method. Moreover, when the standard simplex method is distributed aspect ratio
becomes less of an issue. We simply divide the extra columns among more processors.
Below we model the speedup and scalability achievable with our method. We then show
speedup from actual runs on 7 machines to validate the model.

2. General Scheme
We assume that the reader has basic familiarity with the simplex method.
The simplex method consists of three basic steps:
High-level serial algorithm

a. Column choice
b. Row choice
c. Pivot.

A relatively straightforward parallelization scheme within the standard simplex method
involves dividing up the columns amongst many processors. Instead of three basic steps
we would then have five basic steps:
High-level parallel algorithm

a. Column choice – each processor will “price out” its columns and choose a
locally best column (Computation).

b. Communication amongst the processors of the local best columns. All that is
sent is the pricing value (a number) of the processor’s best column. At the end
of this step each processor will know which processor is the “winner” and has
the global column choice (Communication).

c. Row choice by the winning column (Computation).
d. A broadcast of the winning processor’s winning column and choice of row

(Communication).
e. A simultaneous pivot by all processors on their columns (Computation).

3. Models and Analysis
Let p be the number of homogeneous processors.
Let m and n, respectively, refer to number of rows and columns of the linear program to

be solved.

 Page 3/9

Let mult and add refer to the time it takes to do one multiplication/division and one
addition/subtraction respectively by each processor.

Let s and g refer to the communication latency (startup time) and the throughput
(items/sec) respectively.

Using these terms, we may provide an expression for the amount of iteration time for
both the serial single-processor standard simplex algorithm and for our parallel scheme
for the standard simplex algorithm. Assume we are using the classical column choice rule
within the standard simplex method. The time per iteration of the serial algorithm is

=>

+

+

=

)(;*

)(;*

)(;*

pivotparallelmultnm

choicerowmultm

cecolumnchoiaddnTserial

multmmultmaddnT

serial
)(++= . Eq. 1

The time per iteration as a function of p can then be approximated by

=>

+

++

+

++

==

)(;

)();(

)(;*

)();(

)(;)(

pivotparallelmult
p

nm

pwinningbybroadcastcolumnmgs

pwinningofchoicerowmultm

ionCommunicatgsp

cecolumnchoiadd
p

n
pfTparallel

mult
p

nm
mgsmultmgspadd

p

n
pfTparallel ++++++==)(*)()(.

Each of the five terms of Tparallel corresponds to one of the 5 basic steps of the algorithm
given in Section 2. Combining terms yields

)(*)()*()(mgsmultmgspmultmadd
p

n
pf ++++++= . Eq. 2

We calculate the optimal number of processors to use for a given problem: take the
derivative of the timing function Tparallel with respect to p, set it to zero, and solve for the
optimum number of processors p*.

=>

=+++!= 0)()*()('
2

gsmultmadd
p

n
pf

 Page 4/9

=>

+

+
=

gs

multmaddn
p

)*(
*)(2

 Eq. 3

* * *
*

n add m n mult
p

s g

+
=

+
 Eq. 4

The time per iteration reaches a minimum at p* as can be seen from the second derivative which
is positive:

00)*(
2

)(''
3

>>+= pallformultmadd
p

n
pf

Next we calculate the optimal time per iteration (Topt) assuming use of the optimum
number of processors p*. First multiply both numerator and denominator of the first two
terms of equation 1 by p to yield

)(*
)()*(

)(
2

2
mgsmultm

p

gsp

p

multmaddpn
pf +++

+
+

+
=

.
Next substitute (p*)2 for p2 (equation 3) and p* for p (equation 4) to get the time per iteration
when using the optimal number of processors p*.

)(*
)(

))(*(

)*(

)*(
*)(mgsmultm

gsp

gsmultmaddn

gs

multmaddn

multmaddpn
pfTopt +++

+

++
+

!
"

#
$
%

&

+

+

+
==

 (substitute (p*)2)

)(*
)*(

)(mgsmultm
p

multmaddn
gsp +++

+
++= (substitute p*)

)(*)*()*(

)(*
)*(

)*(
)(

)*(

mgsmultmgsmultmaddngsmultmaddn

mgsmultm

gs

multmaddn

multmaddn
gs

gs

multmaddn

++++++++=

+++

!
!
"

#

$
$
%

&

+

+

+
++

+

+
=

)(*)*(2 mgsmultmgsmultmaddnTopt +++++=

=>
 Eq. 5

 Page 5/9

The speedup of the parallel scheme relative to the serial algorithm is

)(*)*(2

)(

mgsmultmgsmultmaddn

multmmultmaddn

T

T
Speedup

opt

serial

+++++

++
=

=

.

Figure 1 graphically demonstrates our timing model Tparallel (equation 2), the time per
iteration as a function of p, for a problem with m=1,000 rows, and n=5,000 columns. The
workstations and Ethernet used for the experiments had measurements:
mult = 1.24 E-7, add = 3.73 E-8, s = 2.10 E-3 and g = 1.76 E-6. These are the parameters
used for Tparallel depicted in figure 1.
From the graph, we see that addition of processors causes great initial speedup. As more
processors are added the amount of speedup begins to level off. The reason for this is the
balance of computation speed to communication speed. Initially for every additional
processor there is a very large computation savings and a very low communication cost.
As processors are added, the computation gain lessens while communication costs rise.
From the figure is it hard to determine precisely the optimum number of processors.
Using the formula for p* we determine that p*=17, and the optimal speedup relative to
serial processing is about 8.
As problems get larger the number of processors that may prove useful rises, as does the
speedup. For example, for m = 10,000, and n = 50,000, p* would be 172, and the speedup
relative to the serial processor would be 83.

TIME PER ITERATION vs NUMBER OF PROCESSORS

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Processors

Figure 1: Iteration Time vs. Number of Processors.

 Page 6/9

4. Experimental results
We have conducted experiments on many problems using our implementation of the
parallelized version of the standard simplex method. In particular we report on a problem
with the dimensions (1,000 x 5,000) used in our analysis of section 3. We used a lab that
had seven independent workstations connected by an Ethernet.

Verification of Model
In order to verify our model, developed in section 3, we ran numerous problems using
our implementation of the parallel simplex (dpLP). Figure 2 compares the time per
iteration with utilization of one processor, with utilization of two processors and so on,
through utilization of all seven processors. One can see how close is the actual timing to
that predicted by the model.

TIME PER ITERATION by NUMBER OF PROCESSORS

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Processors

Model
Experiment

Figure 2: Iteration Time: Model and using dpLP

Comparison with the revised simplex
As noted in the introduction, one of the main incentives for our focus on the standard
simplex method as opposed to the revised method is the ability to have a scaleable
parallel algorithm for the simplex method. We also know that the density of the Linear
Programming matrix is a major factor affecting the efficiency of the revised simplex
method, since the revised method is quite sensitive to density. Although problems with a

 Page 7/9

sparse matrix are more common, there do exist applications with dense matrices; several
are referenced in our introduction. We demonstrate the interaction of both factors,
parallelization and density, to provide an understanding of the advantages of our method.

In the second experiment in addition to timing our problem within the standard method,
we also timed the problem on MINOS, a well-known implementation of the revised
simplex. MINOS is commonly used in analysis due to the availability of its source code.

Table 1 shows the average running time per iteration for dpLP running the standard
simplex algorithm repeatedly as the number of processors used varies from 1 to 7.

Processors Parallel-dpLP
1 0.61328

2 0.31150

3 0.21724

4 0.15496

5 0.13114

6 0.10658

7 0.09128
Table 1: Time per Iteration (secs) vs. Number of Processors

Table 2 shows the time per iteration taken by MINOS as a function of density.
Performance for our standard implementation was unchanged with changes of density.

 Density Revised-MINOS
5% 0.04848

10% 0.08726

20% 0.16463

40% 0.29643

50% 0.38814

60% 0.48544

70% 0.57012

80% 0.64688

90% 0.70477

100% 0.79544
Table 2: Time per Iteration (secs) vs. Density for MINOS

Examination of these two tables reveals the effects of both the number of processors and
the density. For densities of 20%, 4 processors are enough to make the full tableau
standard method more efficient than the revised method. When we used 7 processors the

 Page 8/9

standard method outperformed the revised method at density slightly above 10%.
According to our model if we were to have 17 processors for this 1,000 x 5,000 size
problem, it should take about 0.0762 seconds per iteration, which would make the full
tableau method more efficient than the revised method for a density well below 10%.

Summary
In summary the original standard simplex method has two advantages over the revised
method.
1. It is possible to build a scaleable parallel version of the standard method whereas the

revised method is difficult to parallelize.
2. The standard method is not affected by problem density.
The combination of these two factors allows our parallel algorithm to be useful for a
significant number of applications.

Our model was both studied and implemented in the context of off-the-shelf independent
workstations. The advantage of that is that tightly-coupled Massively Parallel Processors
(MPP) are becoming less popular as off-the shelf small processors are becoming more
powerful. We have demonstrated that large problems can be solved using any
underutilized lab of workstations. These networks are extremely common.

We further have done an analysis showing the optimal number of processors
(workstations) that should be used. This analysis can be repeated for any network of
workstations to find the network-specific optimal.

We believe that as more people see the feasibility of solving dense problems on networks of
workstations the original tableau would be used in a more prominent fashion in the solving of
such problems.

 Page 9/9

 Acknowledgements

This paper has been supported in part by a grant from PSC-CUNY.

REFERENCES
Chen S.S., D.L. Donoho, and M.A. Saunders, Atomic Decomposition by Basis Pursuit,”
SIAM J. on Scientific Computing, 20, 1, pp. 33-61, 1998.
Eckstein, J., I. Boduroglu, L. Polymenakos, and D. Goldfarb, "Data-Parallel
Implementations of Dense Simplex Methods on the Connection Machine CM-2," ORSA
Journal on Computing, v. 7, n. 4, pp. 402-416, Fall 1995.
Gislason, Eyjolfur, et al, “Three Different Criteria for the Design of Two-Dimensional
Zero Phase FIR Digital Filters,” IEEE Trans. on Signal Processing, v. 41, n. 10, October,
1993.
Hall, J.A.J. and K.I.M. McKinnon, “ASYNPLEX an asynchronous parallel revised
simplex algorithm,” Technical Report MS95-050a Department of Mathematics
University of Edinburgh July 1997
Hu, J.V. and L.R. Rabiner, “Design techniques for two-dimensional digital filters,” IEEE
Trans. Audio Electroacoust., v. AU-20, pp. 249-257, Oct. 1972.
Selesnick Ivan W. Richard Van Slyke, and Onur G. Guleryuz, “Pixel Recovery via l1
Minimization in the Wavelet Domain,” IEEE International Conference on Image
Processing (ICIP) 2004, Singapore.
Steiglitz, Kenneth, Thomas W. Parks, and James F. Kaiser, “METEOR: A Constraint-
Based FIR Filter Design Program,” IEEE Trans. On Signal Proc., v. 40, n. 8, pp. 1901-
1901, August 1992.
Stunkel, Craig B., Linear Optimization via Message-Based Parallel Processing, ICPP:
International Conference on Parallel Processing, 1988, vol. III, pp. 264-271.
Thomadakis, Michael E., and Jyh-Charn Liu, “An Efficient Steepest-Edge Simplex
Algorithm for SIMD Computers,” Proc. Of the International Conference on Super-
Computing, ICS ’96, pp. 286-293, May 1996.
Shu, Wei, and Min-You Wu, “Sparse Implementation of Revised Simplex Algorithms on
Parallel Computers,” 6th SIAM Conference in Parallel Processing for Scientific
Computing, pp. 501-509, March 1993.
Yarmish, Gavriel, A Distributed Implementation of the Simplex Method, Ph.D.
dissertation, Polytechnic University, Brooklyn, NY, March, 2001.

