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ABSTRACT 
We present a simple, scaleable, distributed simplex implementation for large linear programs. It is 
designed for coarse grained computation, particularly, readily available networks of workstations. 
Scalability is achieved by using the standard form of the simplex rather than the revised method. 
Virtually all serious implementations are based on the revised method because it is much faster for 
sparse LPs, which are most common. However, there are advantages to the standard method as 
well. First, the standard method is effective for dense problems. Although dense problems are 
uncommon in general, they occur frequently in some important applications such as wavelet 
decomposition, digital filter design, text categorization, and image processing. Second, the 
standard method can be easily and effectively extended to a coarse grained, distributed algorithm. 
Such an implementation is presented here. The effectiveness of the approach is supported by 
experiment and analysis. 
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1. Introduction 
We present a simple, scaleable, distributed simplex implementation for large linear 
programs. It is designed for coarse grained computation, particularly readily available 
networks of workstations. Scalability is achieved by using the standard form of the 
simplex rather than the revised method.  
Most research is focused on the revised method since it takes advantage of the sparsity 
that is inherent in most linear programming applications. The revised method is also 
advantageous for problems with a high aspect ratio; that is, for problems with many more 
columns than rows. On the other hand, there are not many parallel or distributed 
implementations of the revised method that scale well.  Earlier work focused on more 
complex, and more tightly coupled, networking structures. Hall and McKinnon [1997] 
and Shu and Wu, [1993] worked on parallel revised methods. Thomadakis & Liu [1996] 
worked on the standard method utilizing the MP-1 and MP-2 MasPar. Eckstein et al 
[1995] showed in the context of the parallel connection machine CM-2 that the iteration 
time for parallel revised tended to be significantly higher than for parallel tableau even 
when the revised method is implemented very carefully. Stunkel [1988] found a way to 
parallelize both the revised and standard methods so that both obtained a similar advantage in the 
context of the parallel Intel iPSC hypercube.  
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The standard method can be easily and effectively extended to a coarse grained, 
distributed algorithm. We look at distributed linear programming especially optimized for 
loosely coupled workstations. Yarmish [2001] describes such a coarse grained distributed 
simplex method, dpLP, in greater detail. This implementation was successful in solving 
all LP problems in the Netlib repository. 
It should also be noted that although dense problems are uncommon in general, they do 
occur frequently in some important applications within linear programming [Eckstein et 
al, 1995]. Included among those are wavelet decomposition, image processing [Chen et 
al, 1998; Selesnick et al, 2004] and digital filter design [Hu & Rabiner, 1972; Steiglitz et 
al, 1992; Gislason et al, 1993]. All these problem groups are well suited to the standard 
simplex method. Moreover, when the standard simplex method is distributed aspect ratio 
becomes less of an issue. We simply divide the extra columns among more processors. 
Below we model the speedup and scalability achievable with our method. We then show 
speedup from actual runs on 7 machines to validate the model.  
 
2. General Scheme 
We assume that the reader has basic familiarity with the simplex method. 
The simplex method consists of three basic steps:  
High-level serial algorithm 

a. Column choice  
b. Row choice  
c. Pivot.  

A relatively straightforward parallelization scheme within the standard simplex method 
involves dividing up the columns amongst many processors.  Instead of three basic steps 
we would then have five basic steps:  
High-level parallel algorithm 

a. Column choice – each processor will “price out” its columns and choose a 
locally best column (Computation).  

b. Communication amongst the processors of the local best columns. All that is 
sent is the pricing value (a number) of the processor’s best column. At the end 
of this step each processor will know which processor is the “winner” and has 
the global column choice (Communication).  

c. Row choice by the winning column (Computation).  
d. A broadcast of the winning processor’s winning column and choice of row 

(Communication).  
e. A simultaneous pivot by all processors on their columns (Computation).  

 
3. Models and Analysis 
Let p be the number of homogeneous processors.  
Let m and n, respectively, refer to number of rows and columns of the linear program to 

be solved.  
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Let mult and add refer to the time it takes to do one multiplication/division and one 
addition/subtraction respectively by each processor.  

Let s and g refer to the communication latency (startup time) and the throughput 
(items/sec) respectively.  

Using these terms, we may provide an expression for the amount of iteration time for 
both the serial single-processor standard simplex algorithm and for our parallel scheme 
for the standard simplex algorithm. Assume we are using the classical column choice rule 
within the standard simplex method. The time per iteration of the serial algorithm is 
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The time per iteration as a function of p can then be approximated by 
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Each of the five terms of Tparallel corresponds to one of the 5 basic steps of the algorithm 
given in Section 2. Combining terms yields 
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We calculate the optimal number of processors to use for a given problem: take the 
derivative of the timing function Tparallel with respect to p, set it to zero, and solve for the 
optimum number of processors p*. 
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The time per iteration reaches a minimum at p* as can be seen from the second derivative which 
is positive: 
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Next we calculate the optimal time per iteration (Topt) assuming use of the optimum 
number of processors p*. First multiply both numerator and denominator of the first two 
terms of equation 1 by p to yield 
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Next substitute (p*)2 for p2 (equation 3) and p* for p (equation 4) to get the time per iteration 
when using the optimal number of processors p*. 
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The speedup of the parallel scheme relative to the serial algorithm is 
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Figure 1 graphically demonstrates our timing model Tparallel (equation 2), the time per 
iteration as a function of p, for a problem with m=1,000 rows, and n=5,000 columns. The 
workstations and Ethernet used for the experiments had measurements: 
mult = 1.24 E-7, add = 3.73 E-8, s = 2.10 E-3 and g = 1.76 E-6. These are the parameters 
used for Tparallel depicted in figure 1. 
From the graph, we see that addition of processors causes great initial speedup. As more 
processors are added the amount of speedup begins to level off. The reason for this is the 
balance of computation speed to communication speed. Initially for every additional 
processor there is a very large computation savings and a very low communication cost. 
As processors are added, the computation gain lessens while communication costs rise.  
From the figure is it hard to determine precisely the optimum number of processors. 
Using the formula for p* we determine that p*=17, and the optimal speedup relative to 
serial processing is about 8.   
As problems get larger the number of processors that may prove useful rises, as does the 
speedup. For example, for m = 10,000, and n = 50,000, p* would be 172, and the speedup 
relative to the serial processor would be 83. 
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Figure 1: Iteration Time vs. Number of Processors. 
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4. Experimental results 
We have conducted experiments on many problems using our implementation of the 
parallelized version of the standard simplex method. In particular we report on a problem 
with the dimensions (1,000 x 5,000) used in our analysis of section 3. We used a lab that 
had seven independent workstations connected by an Ethernet.  
 
Verification of Model 
In order to verify our model, developed in section 3, we ran numerous problems using 
our implementation of the parallel simplex (dpLP). Figure 2 compares the time per 
iteration with utilization of one processor, with utilization of two processors and so on, 
through utilization of all seven processors. One can see how close is the actual timing to 
that predicted by the model. 
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Figure 2: Iteration Time: Model and using dpLP 

 
 
Comparison with the revised simplex 
As noted in the introduction, one of the main incentives for our focus on the standard 
simplex method as opposed to the revised method is the ability to have a scaleable 
parallel algorithm for the simplex method. We also know that the density of the Linear 
Programming matrix is a major factor affecting the efficiency of the revised simplex 
method, since the revised method is quite sensitive to density. Although problems with a 
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sparse matrix are more common, there do exist applications with dense matrices; several 
are referenced in our introduction. We demonstrate the interaction of both factors, 
parallelization and density, to provide an understanding of the advantages of our method. 
 
In the second experiment in addition to timing our problem within the standard method, 
we also timed the problem on MINOS, a well-known implementation of the revised 
simplex. MINOS is commonly used in analysis due to the availability of its source code.  
 
Table 1 shows the average running time per iteration for dpLP running the standard 
simplex algorithm repeatedly as the number of processors used varies from 1 to 7. 
 

Processors Parallel-dpLP 
1 0.61328 

2 0.31150 

3 0.21724 

4 0.15496 

5 0.13114 

6 0.10658 

7 0.09128 
Table 1: Time per Iteration (secs) vs. Number of Processors 

 
Table 2 shows the time per iteration taken by MINOS as a function of density. 
Performance for our standard implementation was unchanged with changes of density. 
 

 Density Revised-MINOS 
5% 0.04848 

10% 0.08726 

20% 0.16463 

40% 0.29643 

50% 0.38814 

60% 0.48544 

70% 0.57012 

80% 0.64688 

90% 0.70477 

100% 0.79544 
Table 2: Time per Iteration (secs) vs. Density for MINOS 

 
Examination of these two tables reveals the effects of both the number of processors and 
the density. For densities of 20%, 4 processors are enough to make the full tableau 
standard method more efficient than the revised method. When we used 7 processors the 
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standard method outperformed the revised method at density slightly above 10%. 
According to our model if we were to have 17 processors for this 1,000 x 5,000 size 
problem, it should take about 0.0762 seconds per iteration, which would make the full 
tableau method more efficient than the revised method for a density well below 10%.  
 
Summary 
In summary the original standard simplex method has two advantages over the revised 
method.  
1. It is possible to build a scaleable parallel version of the standard method whereas the 

revised method is difficult to parallelize.  
2. The standard method is not affected by problem density. 
The combination of these two factors allows our parallel algorithm to be useful for a 
significant number of applications. 
 
Our model was both studied and implemented in the context of off-the-shelf independent 
workstations. The advantage of that is that tightly-coupled Massively Parallel Processors 
(MPP) are becoming less popular as off-the shelf small processors are becoming more 
powerful. We have demonstrated that large problems can be solved using any 
underutilized lab of workstations. These networks are extremely common. 
 
We further have done an analysis showing the optimal number of processors 
(workstations) that should be used. This analysis can be repeated for any network of 
workstations to find the network-specific optimal. 
 
We believe that as more people see the feasibility of solving dense problems on networks of 
workstations the original tableau would be used in a more prominent fashion in the solving of 
such problems. 
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