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Abstract

We consider optimization problems related to the prevention of large-scale cascading black-
outs in power transmission networks subject to multiple scenarios of externally caused damage.
We present computation with networks with up to 600 nodes and 827 edges, and many thousands
of damage scenarios.
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1 Motivation

During the last decade, several large-scale failures of national power transmission networks took
place. The most recent were the blackouts of the U.S. Northeast and Eastern Canada [17] of August
2003, and the September 2003 blackout that affected Italy [19]. In addition, Brazil experienced
large blackouts in 1999 (see [15]).

These blackouts affected large numbers of people over wide geographical areas, with substantial
economic impact. Had the event lasted more than a few days, the human cost would have been
quite large.

The issue of how to prevent – or at least make less likely – catastrophic blackouts in a large
network is complex, involving engineering, economic and even political issues. However, a reading
of any of the recent studies (we recommend [17] for an excellent in-depth analysis) makes it clear
that, at the core of the problem, there are significant combinatorial difficulties that need to be
addressed.

In this paper we present two different models and algorithmic tools to address this problem.

1.1 A brief overview of transmission networks

For general background on power networks we refer the reader to [2]. Broadly speaking, a power
grid is made up of three components: generation, transmission and distribution. At one end of
the grid there are the generators (power units) that produce power at relatively high voltage.
At the other end is consumption, primarily in metropolitan areas. There, power is conveyed at
fairly low voltages by means of (relatively) simple sub-networks known as distribution networks.
Between generation and consumption lies the transmission network, whose purpose it to convey
power from one to the other. Transmission networks operate at fairly high voltages (for efficiently);
both generators and distribution networks are connected to transmission networks by means of
transformers.

For a number of economic and political reasons, modern transmission networks are large and
complex, spanning great distances and conveying power from many generators to many metropoli-
tan areas located far away. The recent blackout events were due to failures of transmission networks.
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The reader familiar with e.g. telecommunication networks may expect that one can control how
power flows in a network. In fact, this is actually not true – power flows according to the laws of
physics and one can only indirectly influence this flow.

Power flows are usually studied using the so-called AC flow model. (For convenience we will
usually use the standard node, edge graph-theoretic terminology, although we will sometimes use
the term “line” to refer to an edge). In this model, the voltage at a node k of the network is
represented by a complex number, Uk ejθk , where j =

√
−1 and θk is the angle at k. The power

flowing from k to q along the (undirected) edge {k, q} depends on known parameters gkq, bkq, bsh
kq

and is expressed as pkq + jqkq, where

pkq = U2
k gkq − Uk Uq gkq cos θkq − Uk Uq bkq sin θkq (1)

qkq = −U2
k (bkq + bsh

kq) + Uk Uq bkq cos θkq − Uk Uq gkq sin θkq (2)

θkq
.
= θk − θq. (3)

The quantity pkq is called the active power flow, qkq is the reactive power flow. Both quantities
have concrete physical interpretations, and can take negative values. Note that this model permits
that e.g. pqk 6= −pkq. At a node k of the network, the net power injected into the network at k is
(approximately) given by the complex number Pk + jQk, where

Pk =
∑

kq

pkq (net active power leaving k) (4)

Qk =
∑

kq

qkq (net reactive power leaving k). (5)

These are standard network flow conservation constraints – we stress that in both of them there is
a term for each edge incident with node k. If k is a generator node, then Pk ≥ 0; in general at a
generator node there will be a constraint of the form

Pmin
k ≤ Pk ≤ P max

k (6)

and similar bounds for the reactive power at k. If k is a load (demand) node, Pk < 0; at any point
in time this represents the negative of the demand at k. If k is neither a generator nor a demand
node, then Pk = Qk = 0. For a more thorough treatment, see [19].

The model given by constraints (1)-(5) provides a fairly accurate approximation of the steady-
state behavior of a power grid. Nevertheless, it suffers from two shortcomings: first, it can be
expensive to solve, and second, the system may have multiple solutions (the solution set may be
discrete; less frequently, the system may even be infeasible). Partly in order to remedy the second
difficulty, the most popular approaches to computing AC power flows rely on iterative methods,
which require an initial “guess” of the solution. Such a guess is relatively easy to arrive at when one
is familiar with the network being solved but not so if the network is in an unusual configuration;
an incorrect guess can lead to convergence to the “wrong” solution. Human input in this loop is
frequently used.

In order to bypass these shortcomings, primarily the speed issue, a linear model is frequently
used. This is the so-called DC flow model, which relies on some estimations, primarily that θkq ≈ 0
for each edge {k, q} and Uk ≈ 1 for any node k. The (approximate) active power constraint (1)
becomes

xkq pkq − θk + θq = 0 for all {k, q}. (7)

where xkq
.
= − 1

bkq
is the series reactance (reactance for short in this paper – it is perhaps unfortunate

that the x notation is standard in denoting this parameter). Note that because of (7), we have
pqk = −pkq for each edge {k, q}, in other words the two equations (7) corresponding to {k, q} are
equivalent. (Alternatively, we can view the network as directed, and use a negative flow value
to indicate flow in the direction of the reversed edge. In Section 2 we will use the directed edge
notation because it is more convenient in the context of the linearized power flow model, whereas
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in Section 3 we will use the undirected edge notation). The system made up of equations (7),
together with (4), (6) and a fixed value Pk < 0 at each demand node k constitutes the DC power
flow model. For completeness, we state the following result:

Lemma 1.1 Suppose we have a connected network with node set V . Then for each choice of values
Pk (for each k ∈ V ) with

∑

k Pk = 0, the system made up of all equations (4) and (7) has a unique
solution in the variables pkq.

It remains a matter for research precisely when the DC flow model provides a good approxima-
tion for the AC model. A more salient question is when the DC model provides an approximation
that is good enough from the point of view of network design. In any case, the DC model is vastly
popular in the electric power literature, being the model of choice any time that many power flow
computations are needed.

When analyzing a power network, there is an additional, critical, operational requirement. For
each edge k, q there is a “capacity” ukq, representing a thermal limit. In the DC flow model,
we should have pkq ≤ |ukq|. This (or the appropriate statement in the AC flow model) is not a
constraint that enters into the solution procedure – the power flow values are determined by the
physics of the network, whereas the capacity constraint is simply a desirable outcome. Should
an edge exceed its capacity, then eventually it will burn up (how long this takes depends on the
overload) but normally protection equipment will disconnect the edge when the failure point is
approached. We stress that a small overload is tolerable and that the protection equipment will
not act immediately in such a case. Note: we will use the term “capacity” because of its familiar
interpretation in optimization.

1.2 How large-scale blackouts occur

A cascade in a power grid begins with an externally caused event, such as a fire, or lightning, or even
repair work, that causes a power line or lines to be disabled. From a graph-theoretic standpoint, we
now have a new network, and the physics of the situation will determine the resulting power flows,
which take hold immediately (or more precisely, at the speed of light) and may be quite different
from the initial flows.

The new power flows may exceed the capacities of some edges. Thus, after some time (possibly
minutes) unless appropriate action is taken the more severely overloaded edges will be turned off.

From a graph-theoretic standpoint, this is no different from the initial external event: now we
have an even smaller network, with new power flows, which may (again) exceed the capacities of
some edges.

Essentially, at this point we have a cycle. In an unlucky situation, this cycle may gather speed
and ’snowball’ or ’cascade’ catastrophically. This can cause a large fraction of the demand to
become unserviceable, and in an extreme situation may damage generators. In order to avoid
this, the cascade is terminated as soon as it is deemed unrecoverable, and usually this is done by
disconnecting much of the demands. This is a blackout. Recovery is, as turning the network ’back
on’ will simply cause the cascade to resume.

A number of points are useful here. First, the transient effects that occur when the network
moves from one set of power flows to the next are not considered to be the cause of edge failures
during a cascade. Rather, it is the thermal (edge overload) effects that are responsible, and these
take effect over periods of minutes (as opposed to the transient effects, which last for fractions of
a second).

Second, in a large power grid, external events that disable some power lines are not uncommon,
yet seldom cause a cascade. Nevertheless, the probability that a given line will be disabled by some
event (lightning, etc.) is quite small. And the probability that a cascade will occur is extremely
small (large-scale blackouts are very rare!). For this reason, in this paper we will take a “worst-case”
approach. We will expand on this later.

The prevalent view in the power community is that, once a “cascade” has started, it would be
impossible to run a centralized algorithm to attempt to control the cascade (too much information
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changing too quickly). Whether this is strictly true or not, it clearly makes sense to try to react
sooner than later, and to try to design networks so that catastrophic cascades are less likely to
occur to begin with. This is the approach followed here.

1.3 This paper

In this paper we consider two optimization models to address the following generic question: given a
network, how do we protect it at minimum cost so as to make it (more likely to) survive a potential
cascade? In specifying such a model, we need to make three elements concrete: (a) the externally
caused damage that may trigger a cascade, (b) how we invest in the network, and (c) what we
mean by “survive”.

(a) We will assume that we are given a list of contingencies, or scenarios. Each scenario σ consists
of a set of edges S(σ) of the network: were scenario σ to be realized, all edges in S(σ) are
disabled. We will further take a worst-case approach: when we protect the network we want
it to survive every scenario. We further comment on this below.

(b) There are many possible (and reasonable) models on how to invest on a network in order to
make it more resilient. For example, we might add edges (in particular, parallel edges). Or,
we might upgrade an edge {k, q}, at a cost, in order to change its parameter xkq (see eq.
(7). Or, by investing on any given edge, we might make it immune from the type of external
damage being considered.

For the sake of conciseness, we consider one particular model in this paper. We will assume
that the capacity of any edge {k, q} can be increased from ukq to a higher value unew

kq by
paying a certain cost wkq (possibly +∞).

Even though we consider this particular model, many of our algorithmic techniques can be
adapted to other models, in particular those described above.

There remains to specify when we say that a network has survived in a scenario.
In the first model we consider, we insist that, for each scenario σ, the flows pσ in the residual

network – the network obtained by deleting the set S(σ)– satisfy the capacity constraints. That
is to say, for each {k, q} /∈ S(σ) we have pσ

kq ≤ |ûkq| , where ûkq = unew
kq if {k, q} was upgraded,

and ûkq = ukq otherwise. A complete mixed-integer programming formulation, using the DC flow
model, is given in Section 2.

This is a fairly conservative model (it requires each potential cascade to be immediately stopped).
On the positive side, this model admits a traditional mixed-integer programming formulation, and
we are able to solve problems on networks with several hundred edges and with thousands of
scenarios in practicable time.

The second model we consider, studied in Section 3, is more flexible, and takes into account the
dynamics of the evolution of a cascade. We model the cascade as proceeding in discrete “rounds,”
building on the models in [12], [8]; this formalizes the ideas in Section 1.2. In each round, a new set
of edges is removed from the network. Instead of asking that each cascade be stopped immediately,
we allow multiple rounds of edge removals to occur – essentially, we just ask that the cascade
“eventually” stop. We also allow a small fraction of the overall demand to be “lost” (for example,
when nodes become disconnected from one another). As in the first model, we want to upgrade a
minimum-cost set of edges so as to ensure that the network survives every scenario. A more precise
definition of this model will be given in Section 3.

The algorithm we develop for this problem does not require the DC flow model – any flow model
can be handled. For the sake of expediency, all experiments in this paper use the DC flow model.
Extending our experiments to AC flow models will be a venue for future research.

1.3.1 Scenario generation and the adversarial problem

In this paper we focus on optimization problems while assuming that a set of scenarios of ’interest’
have been previously generated as an input to our algorithms.
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An alternative approach would be to employ stochastic programming. This is attractive be-
cause stochastic programming techniques are able to efficiently handle optimization problems with
large numbers of scenarios. In order to use stochastic programming scenarios would be assigned
probabilities; and other changes to the model would be needed as well: we would likely need to
model a ’cost’ of each scenario using a linear function, and the multi-round problem in 3 might
need to be collapsed into one or two rounds. The output of a stochastic programming algorithm
would be a tight confidence interval for the expected total cost (cost of investments plus scenario
cost).

A fundamental difficulty with the stochastic programming approach is precisely how we would
model the scenario probabilities, especially since if the model were accurate the set of scenarios that
correspond to blackouts should have extremely small measure. A possible approach involves the
concept of importance sampling [14]. This methodology still does require a fairly precise model of the
scenario probabilities, particularly those of the “interesting” scenarios, which might be problematic.
A probabilistic model of cascades is given in [13].

In general, a criticism that can be leveled at an approach based on assigning probabilities to
scenarios is that we end up protecting against what appear to be the more likely events, according
to a possibly idiosyncratic probabilistic model, while remaining exposed to other, possibly just
as significant, events. From the point of view of genuine robustness, a worst-case approach may
be better. Of course, when we have an astronomically large number of scenarios the worst-case
approach becomes impractical. Consequently, one would need to limit the set of scenarios to some
manageable collection (e.g. all subsets with at most 5 edges). It is true that by doing this we are
also remaining exposed to events outside the scope of the model, but at least there is an explicit
understanding of what we are protecting against. One possible future research venue would be to
use a sophisticated probabilistic model to generate a list of (say) the 10, 000 most likely scenarios;
and then handle these scenarios in a worst-case fashion using the techniques of this paper. This
does not mitigate the issues described above, but simply provides a reasonable way of generating
interesting scenarios. It may also be possible that stochastic programming could be adapted to
work together with the algorithms we develop in this paper, as a sampling heuristic.

There is a third, alternative approach to the problem, which is interesting on its own. This
is the adversarial outlook. Given a fixed network, what is the minimum number of edges that an
adversary has to delete in order for a catastrophic cascade to occur? There are many variants to
this question, including some where the adversary is deleting edges one at a time, and some that
allow for reaction, i.e. gaming. The adversarial problem would systematically discover weaknesses
of the network, and could be used to generate interesting scenarios both for the worst-case approach
we use here and for the stochastic programming approach. It can be shown that the adversarial
problem is NP-hard, and (using the DC flow model) it can be formulated as a (large) mixed-integer
program.

1.4 Prior work

In [18], a network reinforcement problem is considered, where as above there is a fixed set of
scenarios and in each scenario a subset of edges is deleted. The objective is to add to the network
a minimum-cost set of power lines (edges), so that in each scenario the power flow in every edge is
within its capacity. This is similar to the model we study in Section 2. Using the DC flow model,
[18] formulates this problem as a mixed-integer program, with explicit flow and angle variables
for each scenario, and 0/1 variables to model edge additions. The model is then solved using
commercial mixed-integer programming software. Some heuristics are discussed to handle large
cases – the explicit formulation will probably become difficult to use when the network is large and,
especially, when the number of scenarios is large. Also see [15].

Several interesting models for and analyses of cascading failures are presented in [8], [11], [12],
[13] and other publications by the same group of authors. These models provide a step-by-step,
recipe for simulating cascades. We will expand on this in Section 3.

In [9], a network design problem without failure scenarios is studied. We are given a network
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and a set of candidate edges C that can be added to the network, each at a certain cost. In
addition, for each demand node k we have a penalty rk; this is the per-unit cost of demand not
met at k. The problem is to find a set of candidate edges so that the total cost (cost of adding
edges plus cost of unmet demand) is minimized. If C has been appropriately chosen and if the
penalties are large enough, then in the optimal solution all demand will be met. [9] models the
problem as a mixed-integer program with 0/1 variables corresponding to the edge additions. The
problem is tackled using Benders’ decomposition; the “slave” subproblem is that of finding a set of
power flows, in a fixed network, that minimizes the cost of unmet demand. [9] also discusses using
Gomory cuts in the master problem. A problem on 46 nodes, 66 edges and 237 candidate edges
(some parallel) is solved in a few hours of CPU time.

2 The first model

In this section we present the first approach to the problem. Given a network, we want to decide
on which lines we need to increase capacity in order to guarantee that in each scenario σ of a given
family, all flows are within bounds (capacities) after removing the edges of the set S(σ) from the
network.

We will first describe a natural MIP formulation of the problem (see also [18] and [9]). This
formulation can be quite large and impractical when the number of scenarios is large. For this
reason we present a (compact) projected formulation and an algorithm for solving the problem via
this projected formulation.

Our problem can be formally stated as follows. We are given a directed graph G(V,E) representing
the network and a set Σ of scenarios. As discussed in Section 1.1, the nodes of the graph are
partitioned into three classes: nodes corresponding to power plants (generators, supply nodes),
nodes corresponding to loads (demand nodes), and transmission nodes. Let D ⊆ V be the set of
the demand nodes and let O ⊆ V be the set or the supply nodes. For every node i ∈ D, there is a
demand Di > 0 for power and for every node j ∈ O there is a minimum and a maximum amount
of power P min

j , P max
j > 0 that can be provided by that power plant. In the rest of the section we

assume that P min
j = 0.

The edges of the graph represent the transmission lines. For every edge (i, j) ∈ E we are given
a value xij representing the physical parameter (reactance) of the line, and a capacity value uij

which is the maximum amount of power that can safely use the line without burning it. We are
also given capacity expansion costs wij. The capacity cannot be added in arbitrary continuous
amounts: it is only possible, by paying the cost wij , to add to uij a block of capacity cij obtaining
a total capacity of

unew
ij = uij + cij (8)

for the edge.

For every scenario σ ∈ Σ a list S(σ) of edges is given: this list consists of the edges which are
supposed to fail and are disabled in that scenario. We restrict our attention to the case of edge
failures, but both the models and the algorithms we describe can be easily extended to the case
of node failures, node and edge failures, also when quality of service criteria are given and the
demands Di are scenario-dependent.

2.1 The Natural Formulation

Using the DC power flow model, the state of the system in each fault scenario σ can be completely
described by the values of the angles at the nodes and by the power flows on the edges. They are
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related to each other by linear equations. Let pσ
ij be the power flowing on edge (i, j) ∈ E and let

θσ
i be the angle at node i ∈ V , both in scenario σ. The equations describing the behavior of the

network are (7) and (4), restated for scenario σ. A natural MIP formulation of the problem is the
following:

CAP: min
∑

(i,j)∈E

wijyij

s.t. θσ
i − θσ

j = xijp
σ
ij (i, j) ∈ E − S(σ), σ ∈ Σ (9)

∑

(i,j)∈δ+(i)

pσ
ij −

∑

(j,i)∈δ−(i)

pσ
ji =











P σ
i i ∈ O
−Di i ∈ D
0 i ∈ V − (D ∪O)

σ ∈ Σ (10)

0 ≤ P σ
i ≤ P max

i ∀ i ∈ O, σ ∈ Σ (11)

−(uij + cijyij) ≤ pσ
ij ≤ uij + cijyij (i, j) ∈ E − S(σ), σ ∈ Σ (12)

y ∈ {0, 1}|E|

In this formulation, the yij are the decision variables: if yij = 1 the capacity on edge (i, j) is
uij + cij , otherwise the edge has its original capacity uij . Corresponding to scenario σ, the pσ

are the power flows and the θσ are the angles. Both powers and angles are free variables. As
previously explained, a negative value of pσ

ij means that the power is flowing on edge (i, j) from j
to i. Constraints (9) correspond to (7), constraints (10) are flow balance constraints corresponding
to (4) (and δ+(i) denotes the set of edges leaving node i; similarly with δ−(i)). For each generator
node i and scenario σ, variable P σ

i indicates the output generated by i, bounded by constraints
(11). Constraints (12) are variable upper and lower bound constraints for the flows.

This formulation is very similar to that of a standard capacitated network flow problem [1]. How-
ever, constraints (9) introduce a significant complexity . These constraints highlight the fact that
in power networks we cannot completely control (or predict) how power flows in the network.

2.1.1 Some examples

In this section we present three examples that show how constraints (9) heavily affect the structure
of the problem and make optimization difficult.

In the first example we show how constraints (9) can cut-off solutions which would otherwise
have been feasible (for the standard flow problem). Consider the network of figure 1. It has three
loads 1 (demand 5), 6 (demand 50) and 7 (demand 50). Nodes 2 and 3 are the generators, with
Pmax

2 = 75 and P max
3 = 35. The labels on the edges are the original capacities. Suppose xij = 1

for all edges (i, j).
Suppose we want to check whether the network is feasible using the given capacities, that is, if it is
possible to route all the demands using the existing capacities. Suppose we ignore constraints (9)
– then the problem reduces to a standard network flow problem. A feasible solution exists and it
is the following:

p21 = 5, p31 = 5, p24 = 70, p35 = 30, p45 = 20, p46 = 50, p57 = 50.

Let’s now add constraints (9) back to the problem. Because of the edge capacity constraints, the
only feasible way to serve node 1 is to set p21 = p31 = 5, which completely uses up the capacity of
(2, 1) and (3, 1), and thus only those flows with destination 5 can use either of those edges. Fur-
thermore, after serving node 5, the combined (residual) supply of nodes 2 and 3 equals 100 which
is also the combined demand of nodes 6 and 7 – as a result, p35 = 30 and p24 = 70. Further, since
x21 = x31 = 1, constraints (9) impose that θ2 = θ3. But now the fact that p24 > p35 implies that
θ4 < θ5, and so p54 > 0, and finally p57 < 30 < 50: therefore node 7 cannot be served completely
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Figure 1: an infeasible network

and the problem is infeasible.

In the second example we see how the introduction of a new edge can have a negative impact
on the network due to constraints (9). Consider now the network in figure 2. It has two loads,
nodes 4 (demand 20) and 5 (demand 10) and one generator, node 1, with P max

1 = 30. The labels
on the edges are the original capacities. Let xij = 1 for all the edges.

1

3

10

4 5

2

20

20 10

20 10

30

Figure 2: a feasible network

A flow that satisfies all constraints (including (9)) is:

p12 = 20, p13 = 10, p24 = 20, p35 = 10.

Suppose now to add the new edge (2, 3), with capacity 30 and x23 = 1 (figure 3). In a standard
network flow problem, the presence of a new edge would have no effect. However, constraints (9)
have a remarkable effect: adding the new edge renders the problem infeasible, as we will argue.
Because of the capacity constraints, in order to serve node 4 we need to have flow p12 = 20, and
to serve node 5 we need p13 = 10. Since x12 = x13 and p12 > p13, then by (9) we have that θ3 > θ2

and therefore p32 > 0. But then by flow conservation we have that p35 < 10, in other words the
demand at 5 is not fully served. This example may be viewed as an analogue of “Braess’ law” [10].

The previous two examples highlighted how constraint (9) adds significant complexity to the
problem. In the third example we show how constraints (9) impact our optimization problem CAP

8



1

3

10

4 5

2

20

20 10

20 10

30

30

Figure 3: an infeasible network again

by preventing the use a simple notion of dominance between scenarios.
One difficulty associated with CAP is the potentially large number of scenarios to consider. In

particular, given a vector y ∈ {0, 1}|E|, simply checking feasibility of y requires solving |Σ| linear
programs. Thus, ideally we would have a simple dominance criterion: given scenarios τ and ρ, if τ
“dominates” ρ then we only need to check scenario τ . Ideally, such a dominance criterion should
not depend on the particular vector y being checked; a “natural” candidate for such a dominance
definition would be to say that τ dominates ρ if S(ρ) ⊆ S(τ).

However, this particular criterion is not valid. Consider the network of figure 4. It has two
loads: node 2, with demand 20, and node 3, with demand 10. There are two generators: node 1
and node 4 with P max

1 = P max
4 = 30. The original capacities are the labels on the edges in the

figure. Let xij = 1 for all the edges and let cij = uij . Suppose we have two scenarios: σ1, with
S(σ1) = {(2, 3), (2, 4), (3, 4)}, and σ2 with S(σ2) = {(2, 4), (3, 4)}.

The vector y with y13 = 1 and yij = 0 for all (i, j) 6= (1, 3) is feasible for scenario σ1: by
increasing the capacity on edge (1, 3) from u13 = 5 to unew

13 = u13 + c13 = 10, it is possible to serve
node 3 from node 1. We can also serve node 2 from node 1 and it can be checked that this solution
satisfies constraints (9). On the other hand, there are no feasible solutions for scenario σ2. To see
that this is the case, consider the network in scenario σ2, and write p12 = 20 + f (possibly f < 0).
Then p23 = f , and therefore p13 = 10−f . Since unew

13 = 10, it follows that f ≥ 0. Therefore θ2 ≥ θ3

(by (9)), and as a result 20 + f ≤ 10− f , from which we get f ≤ −5 < 0, a contradiction.

1

32

4

20 5

100 100

20 10

30

100

100

30

Figure 4: an example with scenarios
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2.2 The Projected Formulation

The natural formulation described above has | Σ | (| E | + | V | + | O |) variables and
| Σ | (3 | E | + | V | +2 | O |) constraints and it can become unwieldy for large instances,
i.e. instances involving large networks or a large number of scenarios. In this section we present
a projected formulation which only has | E | variables at the cost of potentially a large number of
constraints. We use linear programming duality to generate valid inequalities for the projection of
the natural formulation to the space of the y variables. Thus, we are essentially using a Benders’
decomposition algorithm [6] (properly stated, we are only using the “infeasible subproblem” case
of Benders). Similar algorithms have been used in the context of network design in telecommuni-
cations, see [7], [4], [3] and references therein.

Let σ be a scenario and let ȳ be a possibly fractional capacity assignment vector. Consider the
following linear program:

FEAS(ȳ, σ): µ∗ .
= max µ (13)

(fσ
ij) θσ

i − θσ
j = xijp

σ
ij (i, j) ∈ E − S(σ)

(zσ
i )

∑

(i,j)∈δ+(i)

pσ
ij −

∑

(j,i)∈δ−(i)

pσ
ji =











P σ
i i ∈ O
−µDi i ∈ D
0 i ∈ V − (D ∪O)

(rσ
ij) 0 ≤ P σ

i ≤ P max
i ∈ O

(vσ
ij) pσ

ij ≤ uij + cij ȳij (i, j) ∈ E − S(σ)

(tσij) pσ
ij ≥ −(uij + cij ȳij) (i, j) ∈ E − S(σ)

In this formulation, µ is the fraction of the demand that can be served according to the capacities
fixed by ȳ; we have also indicated the dual variable names next to each corresponding constraint.
It is easy to see that if µ∗ < 1 then ȳ is not a feasible capacity assignment vector for scenario σ,
and that if µ∗ > 1, then by appropriately scaling the optimal solution we obtain a feasible solution
with µ = 1.

Using linear programming duality, the necessary and sufficient condition µ∗ ≥ 1 becomes the
constraint

∑

(i,j)∈E−S(σ)

(uij + cijyij)(v
σ
ij + tσij) +

∑

i∈O

Pmax
i rσ

i ≥ 1, (14)

for every vector (fσ, zσ , rσ, vσ, tσ) feasible for the dual of FEAS(ȳ, σ). If we solve FEAS(ȳ, σ), and

µ∗ < 1, then the optimal dual variables can be used to generate a violated inequality (14).

Note that if a dual solution has f σ
ij = 0, then we are essentially ignoring constraints (9) in the

primal problem, in which case the primal problem reduces to a standard single-commodity capaci-
tated network design problem. For such problems, necessary and sufficient conditions for feasibility
are known: these are given by the well-known cut inequalities ([3], [4], [7]). Thus, separation over
inequalities (14) includes separation over the cut inequalities.

Using inequalities (14), we can write a projected formulation for problem CAP:

min
∑

(i,j)∈E

wijyij

s.t. constraints (14) for all σ ∈ Σ

y ∈ {0, 1}|E|
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2.3 The Solution Method

We propose two different approaches to solve the problem via the projected formulation: a Branch
& Cut approach and a heuristic approach. In the next two sections we describe the two approaches
and finally we discuss computational results.

2.3.1 The Branch & Cut Approach

The projected formulation (15) has an exponential number of constraints; we solve it via Branch
& Cut. We use a working formulation Ay ≥ b which initially consists of the bounds 0 ≤ yij ≤ 1;
at each iteration we solve the linear program min{wT y : Ay ≥ b} with solution ȳ. Next we solve
FEAS(ȳ, σ) to detect a violated inequality (14) for some σ ∈ Σ, if such an inequality is found then we
add it to Ay ≥ b. If not, and ȳ is integral, then we are done, and if ȳ is fractional, then we branch.
The inequalities (14) are post-processed in two ways: first, by scaling and rounding procedure
for numerical stability and second, by running a heuristic to find violated cover inequalities, i.e.
inequalities of the form

∑

C yij ≥ 1, and generalizations, and “rank-2” inequalities
∑

C yij ≥ 2.

Procedure 2.1 BRANCH & CUT ALGORITHM

Initialize: Ay ≥ b consists of the bounds 0 ≤ yij ≤ 1 for all (i, j).

1. Let ȳ be the solution to the problem min{wT y : Ay ≥ b}.

2. If, for some scenario σ, the solution to FEAS(ȳ, σ) satisfies µ∗ < 1, then
2.1. Let βT y ≥ β0 be the corresponding cut (14) violated by ȳ,
2.2. Scale and round βT y ≥ β0 obtaining γT y ≥ γ0, which is added to Ay ≥ b,
2.3. Attempt to find a violated cover or rank-2 inequality ρT y ≥ ρ0,

which is also added to Ay ≥ b.
2.4. Go to 1.

3. Otherwise, if ȳ is integral, EXIT (ȳ is optimal for CAP).
If not, branch, and continue the procedure at each node of the
Branch & Cut tree.

The algorithm enumerates scenarios in round-robin fashion, e.g. in a fixed cyclical order, and in
Step 2 we select as the first scenario to check at the current iteration the scenario which produced
µ∗ < 1 in the previous iteration.

Our scaling and rounding is as follows: we divide all the coefficients and the right-hand-side of
a constraint by the smallest positive coefficient, and then round up to the nearest integer.

The final ingredient in the Branch & Cut algorithm is the separation of cover inequalities
[NW88]. Given an inequality γT y ≥ γ0, we first complement variables as necessary so as to
obtain nonnegative left-hand side coefficients. To simplify notation, let us still write the resulting
constraint γT y ≥ γ0. We next use a simple knapsack heuristic to find a (violated) cover

∑

(i,j)∈C

yij ≥ 1, (15)

(i.e.,
∑

(i,j)/∈C γij < γ0 and
∑

(i,j)∈C ȳij < 1). In addition, if

γ̂ = max
(i,j)∈C

γij ,

and, for some (k, q) /∈ C
∑

(i,j)/∈C

γij − γkq + γ̂ < γ0,

11



then

∑

(i,j)∈C∪(kq)

yij ≥ 2, (16)

is valid and implies (15). (16) is our “rank-2” inequality. The separation of these inequalities carries
essentially zero computational cost.

2.3.2 Heuristics

We have developed two simple heuristics for problem CAP. The first one is a rounding heuristic
that is periodically run during the course of the Branch & Cut search algorithm.

First heuristic The first heuristic uses a parameter, τ . When running the heuristic, we use the
current (fractional) solution that has been computed by the Branch & Cut algorithm, ȳ. Then we
construct the 0/1 vector ŷ as follows: ŷij = 1 iff ȳij > τ . Next, we check ŷ against each scenario σ.
If ŷ is not feasible for σ then the (valid) constraint

∑

(i,j)∈F 0

yij ≥ 1

is added to the formulation, where F 0 = {(i, j) : ŷij = 0}. And if ŷ is feasible for every scenario
σ, then we have computed a new upper bound for the overall problem CAP.

The heuristic is expensive because of the need to check every scenario, and consequently it
is run only sporadically. In our implementation, we set τ = 0.2. We note that the value of the
heuristic lies not just in computing upper bounds, but in the valid inequalities that it discovers.

Stand-alone heuristic. On large problems the pure Branch & Cut approach can prove time
consuming. For this reason we have developed a stand-alone heuristic that allows us to generate
good solutions in a reasonable amount of time and appears effective.

Because of constraint (9), we have found it difficult to produce effective heuristics that are
purely combinatorial. Our heuristic builds a solution vector y by sequentially solving each problem
CAP restricted to each scenario. Formally, let σ ∈ Σ and a let F be a subset of E. Denote
by P (σ, F ) problem CAP, restricted to scenario σ and where in addition we fix yij = 1 for all
(i, j) ∈ F .

Procedure 2.2 STAND-ALONE HEURISTIC

Initialize: F = ∅
For σ ∈ Σ do

if P (σ, F ) is not feasible then
exit : the problem is not feasible

else let ȳ be the solution of P (σ, F ), and set F = F ∪ {(i, j) : ȳij = 1}
Output: the solution y having yij = 1 for (i, j) ∈ F and yij = 0 for (i, j) ∈ E − F

The single-scenario problems solved by the heuristic are handled using the Branch & Cut ma-
chinery described above. On extremely large problem instances this heuristic could prove effective,
for example by running it repeatedly using different orderings of the scenarios. An alternative
would be to combine it with a pruning algorithm such as the one we will describe in Section 3.2.

12



2.4 Computational Results

In this section we report on the computational experience with th e Branch & Cut algorithm and
with the stand-alone heuristic approach. The computations reported in this section were performed
on a machine having a 1.6GHz Pentium M processor and 512MB RAM. We used Cplex 9 [16] as
the LP solver and for the Branch & Cut framework.

The test bed is organized as follows. We use three networks: net1, net2 and net3. Networks
net1 and net2, both with 300 nodes and 409 edges, are copies of one of the IEEE “test” cases
(available from [20]) simplified and modified to suit the purposes of this paper (in particular, we
added capacities). In in net1 we used costs equal to 1 for all the edges, while in net2 we used
randomly generated costs. Network net3 is made up of two identical copies A and B of net1, plus
a matching between a random subset of the nodes in A and their copies in B, with large capacities.
Costs are set to 1 for all the edges. Finally, in all the tests we set cij = uij (c.f. (8)) for all the
edges, that is to say when we invest on an edge we double its capacity.

In table 1 we summarize the network data: | V | is the number of nodes, | D | is the number of
loads, | O | is the number of generators, | E | is the number of edges. Table 2 describes the scenario
families we used in our tests: | Σ | is the number of scenarios in the set while | S(σ) | is the number
of edges which fails in each scenario σ ∈ Σ. We constructed these scenario sets by starting with a
random (large) list (for example, the list of all pairs) and post-processing the list to remove trivial
cases.

problem | V | | D | | O | | E |
net1− net2 300 172 49 409

net3 600 344 98 827

Table 1: Size of the networks

Σ | Σ | | S(σ) |
S2 2312 2

S5 181 2− 11

S7 355 2− 11

T1 105 1

T2 5444 2

T3 2398 3

T4 7947 1− 3

Table 2: size of the scenario families

To measure the effectiveness of our Branch & Cut algorithm, we compared it against Cplex (used
to solve the “natural” formulation given in section 2.1). It is clear the natural formulation will
prove unusable if the number of scenarios is very large (the linear program will be huge). Thus,
two questions are of interest:

(a) on problems with relatively small number of scenarios, how efficient is the Branch & Cut
algorithm?

(b) on problems with many scenarios where the natural formulation is simply too large, does the
Branch & Cut algorithm still prove effective?

Table 3 summarizes our results. Our algorithm solves all the instances in less than 1 hour, except
for the last instance, where a gap of 11% remains after one hour. On the other hand, within 1 hour
of CPU time, Cplex can only solve three problems instances: net1 S5, net2 S5 and net1 S7. On
instances net2 S7 and net3 T1 it produces an upper and lower bounds with gaps of 14% and 13.5%
respectively. On all the other instances it is not even able to solve the LP-relaxation, denoted by
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problem B&C time Cplex time

net1 S2 276 secs. —

net1 S5 35 secs. 647 secs.

net1 S7 38 secs. 1568 secs.

net2 S2 237 secs. —

net2 S5 30 secs. 593 secs.

net2 S7 79 secs. gap = 14%

net3 T1 40 secs. gap = 13.5%

net3 T2 1762 secs. —

net3 T3 2954 secs. —

net3 T4 gap = 11% —

Table 3: results for the Branch & Cut approach

“−”.

In Table 4 we compare our stand-alone heuristic to our Branch & Cut approach and to Cplex. It
turns out that the heuristic is very effective. In the table, opt is the value of the optimum computed
by the Branch & Cut algorithm, B&C time is the Branch & Cut runtime, heur UB is the value
of the solution found by the stand-alone heuristic procedure, heur time is the time used by the
heuristic, cpx UB is the value of the first feasible solution found by Cplex, and cpx time is the
time required by Cplex to find this solution. Cplex was used with default settings, but with the
“mip-emphasis” parameter set to “feasibility,” and with a time limit of 1 hour.

problem opt B&C time heur UB heur time cpx UB cpx time

net1 S2 28 276 secs. 31 21 secs. — 1 hour

net1 S5 22 35 secs. 26 3 secs. 23 45 secs.

net1 S7 30 38 secs. 36 5 secs. 36 237 secs.

net2 S2 1393.67 237 secs. 1471.2 21 secs. — 1 hour

net2 S5 1006.9 30 secs. 1126.96 3 secs. 1154.8 47 secs.

net2 S7 1766.61 79 secs. 1980.9 6 secs. 1987.2 232 secs.

net3 T1 46 40 secs. 52 5 secs. 54 147 secs.

net3 T2 116 1762 secs. 126 129 secs. — 1 hour

net3 T3 78 2954 secs. 87 65 secs. — 1 hour

net3 T4 LB=116.67 1 hour 131 185 secs. — 1 hour

Table 4: results for the heuristic approach

Finally, Table 5 describes the behavior of the algorithm on the different runs.
Figures 5 and 6 show how running time is affected by the size of the scenario family. Note that

many of these problem instances cannot be handled by Cplex.

3 The second model

In this section we present our second optimization model. As in the last section, we invest to
reinforce a network by increasing capacities (line limits) of selected edges. The model in this
section considers the dynamics of a cascade, and assumes that no action is taken during the course
of a cascade. In other words, we seek a reinforcement plan that can passively “ride out” cascades
produced by a given set of scenarios.

The starting point for our work is the “fast dynamics” model for a cascade introduced in [8],
[12]. In the model given next, G is the initial network and S is the subset of edges to be removed
in some scenario.
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problem B&C nodes cuts added sep. time

net1 S2 12 152 262 secs.

net1 S5 11 118 32 secs.

net1 S7 5 152 35 secs.

net2 S2 8 128 211 secs.

net2 S5 9 134 27 secs.

net2 S7 14 234 71 secs.

net3 T1 12 202 37 secs.

net3 T2 10 788 1641 secs.

net3 T3 39 892 2759 secs.

net3 T4 18 813 3590 secs.

Table 5: Statistcs for the Branch & Cut approach

Figure 5: statistics for net1

Procedure 3.1 GENERIC CASCADE MODEL

Input: a network G and a subset of edges S
Initialize: G0 = G, S1 = S
For r = 1, 2, . . . do

(comment: simulate round r of the cascade)
1. Set Gr = Gr−1 − Sr.
2. Set pr = vector of power flows in Gr.
3. Set Sr+1 = set of edges to be removed in round r + 1.

Here, each round is meant to represent a span of time lasting a few minutes or less. The quicker
the rounds, the finer the granularity of the model, although the computational complexity of the
simulation (and our particular optimization model) will grow.

In order to make this model formal, we need to make precise how Steps 2 and 3 are implemented.
This will be done below. For the purposes of this paper, we need to extend this model to specify
what we mean when we say that a network has “survived” a scenario. The first ingredient in our
extension is that a small amount of lost demand may be tolerable. More precisely, as a cascade
evolves it may be the case, for example, that some demand nodes become isolated from generators;
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Figure 6: statistics for net3

and this may be acceptable if their demand is not large. The other ingredient is that a cascade
that progresses very slowly, i.e., it requires many rounds, may not be viewed as catastrophic.

Notation 3.2 In what follows, by a “network” we will mean a graph-theoretic network, with de-
mands, bounds (6) on generator nodes, capacities ukq and parameters xkq on the edges.

Definition 3.3 Let G be a network and S be a subset of edges of G. Let 0 ≤ µ ≤ 1, and let R ≥ 1
be an integer. We say that G is (R,µ)-survivable w.r.t. S, if after R rounds of the cascade the
fraction of the total demand still being served is at least µ.

Here, “protecting” could mean increasing the capacity of the edge to a higher value, changing
the physical parameters of the edge, duplicating the edge, etc. We will use the terms “protecting”
and “reinforcing” interchangeably. Even though in this paper we consider one specific definition of
protection, most of our techniques extend directly to the others. We will simply say “survivable”
when R and µ are clear from the context.

Notation 3.4 Let G be a network with m edges, and let y ∈ {0, 1}m. We denote by G(y) the
network obtained by protecting those edges e with ye = 1.

Now suppose we have a network G with m edges. For each edge e, let we, the cost of protecting
e, be given. Let R ≥ 1 and 0 ≤ µ ≤ 1 be given. Finally, suppose we have a family of scenarios Σ.
As before, for each σ ∈ Σ we denote by S(σ) the set of edges removed in σ. The main problem we
consider is:

Problem 3.5 Find y ∈ {0, 1}m of minimum cost, such that G(y) is (R,µ)-survivable w.r.t. S(σ),
for each σ ∈ Σ.

3.0.1 Making Step 3 explicit

Now we return to the task of making more explicit the generic cascade model 3.1. First we will
consider how Step 3 is carried out. The starting point for this is the notion of overload: if edge
{k, q} has capacity ukq and carries flow pkq, then its overload is |pkq|/ukq. If the overload is very
large, the edge will quickly fail (and will be quickly turned off by automatic equipment). If the
overload is greater than 1, but not very large, the edge can operate at the overload for some time,
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but will eventually be turned off as well. These simple rules, which are implemented in practice,
are motivated by thermal considerations.

In [8] the following model is proposed. Let the overload of edge {k, q} be ρqk > 1. Then edge
{k, q} is removed with probability H(ρqk), where H : (1,+∞) → (0, 1] is a monotonely increasing
function. Using this model, the generic cascade model becomes a probabilistic process. A possible
disadvantage of this approach is the need to choose a specific function H. For the sake of simplicity,
in this paper we use a deterministic model given in the next section. This model should provide
the same qualitative behavior, e.g. the more overloaded an edge is, the sooner it should be removed
from the network.

Our model relies on one additional parameter, 0 ≤ α ≤ 1. For each round r, our model will
maintain an additional vector sr ∈ Rm

+ . Furthermore, as an input to the model, there will be an
initial power flow vector p0 – these are the power flows before the scenario is realized. We set
s0
kq = |p0

kq| for all {k, q}, and at each round r (r = 1, 2, . . .), we perform the following update:

sr
kq = α|pr

kq|+ (1− α)sr−1
kq , for each edge e. (17)

Then, edge {k, q} is removed in round r if sr
kq > ukq. Thus, essentially, if α < 1 an edge has to

remain overloaded for several rounds in order to be removed. If the overload, at a certain round, is
very high, the edge might be removed immediately. The system has “memory”, which is precisely
what happens in the real-life setting from a thermal standpoint.

3.0.2 Making Step 2 explicit

Next, we consider how to implement Step 2 of the generic cascade model 3.1. In general, there
may be multiple solutions to the power flow equations, i.e., pr is not uniquely defined. Suppose
that for some r > 1, Sr = ∅, i.e. Gr = Gr−1. Then it is reasonable to insist that pr = pr−1. If
Sr 6= ∅, however, then the network changes and some rule must be employed to choose the power
flows. One possibility is to ask that that the amount of power produced by each generator (see
eqs. (4 and (5)) remains constant. This rule will in general produce (trivially) infeasible problems.
Moreover, the rule is overly constraining – in practice, generators can adjust their output (subject
to e.g. (6)) according to demands, and without much centralized control. In addition, we should
allow for some of the demand to be lost (this might be required, for example, if Gr is disconnected).
Finally, we want our model to assume a minimum amount of centralized control – essentially, we
want to assume that it is the physics that determine the new power flows.

One idea would be to pick pr so as to minimize ||pr − pr−1||2, subject to some constraints, i.e.,
pick a “minimum energy change”. For computational expediency, we pick a linearized model. This
is where we use the DC flow model (in fact, it is our only use of the DC flow model).

In order to motivate our approach, consider the following simple example. Suppose we have
a network with three generators: these are nodes 1, 2 and 3, with P min

i = 0 and P max
i = 20 for

1 ≤ i ≤ 3. Suppose that nodes 4 − 7 are demand nodes, with demands (respectively) 8, 15, 14
and 5. Suppose that after a round of failures, the network has split into three components: one
containing nodes 1, 2, 4, 5 and 6, one containing node 3 (and no demand nodes) and one containing
node 7 (and no generator nodes). Thus, the demand from node 7 is lost. However, in the first
component we have a total supply of 40 units and a total demand of 37. It is not unreasonable to
expect that all 37 units of demand will be served – each node will continue demanding the same
amount over a short span of time (the alternative, so-called “load shedding” approach, is viewed as
undesirable). In general, if a component has total supply Ω and total demand Γ, then the demand
served in this component will be min{P,Γ}. By Lemma 1.1, we know that for each fixed choice of
Ω1 and Ω2 with Ω1 +Ω2 = 37 there will be a unique set of power flows that meet the demand. But
how do we pick Ω1 and Ω2? The choice that we make is that for which the new power flow vector
is closest to the old one, in a precise sense made clear next.

The approach that we follow is as follows. Let D be the set of demand nodes; for k ∈ D let D0
k

denote the demand at k at the start of the cascade. For r ≥ 1, let

Cr = the set of connected components of Gr. (18)
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For each K ∈ Cr, let

ΩK =
∑

{P max
k : k ∈ K, k a generator} (19)

ΓK =
∑

{D0
k : k ∈ K ∩ D} (total demand in K) (20)

µk = min{ΩK ,ΓK} (21)

Our model stipulates that the total amount of demand served in component K equals µk. Due
to the lower limits P min

k on the generators this may be infeasible (see below). But otherwise, by
Lemma 1.1 there is a feasible flow vector that delivers a total demand of µk in component K.
Finally, let µr denote the faction of all demand still being served at the end of round r, i.e.

µr =

∑

K∈Cr µk
∑

k∈D D0
k

. (22)

Our approach solves a linear program which uses a variable θr
k for each node k (the angle at k) and

variables pr
kq for each arc {k, q}:

min
∑

k

|θr
k − θr−1

k | (23)

s.t. xkq pr
kq − θr

k + θr
q = 0 ∀{k, q} /∈

r
⋃

i=0

Si (24)

pr
kq = 0 ∀{k, q} ∈

r
⋃

i=0

Si (25)

Pmin
k ≤

∑

kq

pr
kq ≤ P max

k ∀ generator node k (generator limit) (26)

∑

kq

pr
qk − Dr

k = 0 ∀ k ∈ D (27)

0 ≤ Dr
k ≤ D0

k ∀ k ∈ D (28)

∑

k∈D

Dr
k ≥ µr

∑

k∈D

D0
k (29)

∑

kq

pr
kq = 0 ∀ non-generator, non-demand node k (30)

Here, the quantities θr−1
k are constants (determined in the previous round). Constraints (24)-(25)

describe the operational constraints of the network – recall that S i is the set of edges removed in
round i. Constraint (29) is used to imply that precisely a fraction µr of the demands is served (if
we remove this constraint we might have a feasible solution with

∑

k∈D Dr
k < µr ∑

k∈D D0
k). If, for

a certain component K ∈ Cr, we have

∑

{P min
k : k ∈ K, k a generator} > ΓK

the linear program is infeasible, precisely because of constraint (29).
Thus, the new linear program will pick a new power flow whose corresponding angle vector is

closest (in the L1-metric sense) to the old one. Roughly speaking, we mean to model a smallest
possible change in the configuration of the network that still delivers the right amount of demands.
To some degree, this models a minimum amount of operator control over the network. We stress,
however, that what we have described is simply one of many “reasonable” ways of implementing
Step 2 of the generic cascade model 3.1 (another one is given in [8]). We have, in fact, implemented
other models, without drastic qualitative impact on the overall optimization problem (3.5).
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3.0.3 Putting the model together

Now we can provide our complete cascade model.

Procedure 3.6 EXTENDED CASCADE MODEL

Inputs: a network G and a subset of edges S,
a (feasible) power flow vector p and angle vector θ,
parameters: integer R ≥ 1, 0 ≤ α ≤ 1, 0 ≤ µ ≤ 1.

Initialize: G0 = G, S1 = S, p0 = p, s0 = |p| (componentwise) and θ0 = θ.
For r = 1, 2, . . . do

(comment: simulate round r of the cascade)
0. If r > 1, set Sr = {{k, q} : sr−1

kq > ukq}.
1. Set Gr = Gr−1 − Sr

1a. Determine µr using (18)-(22).
1b. If µr < µ, STOP: G is not survivable w.r.t. S.
1c. Otherwise, if r = R, STOP: G is survivable w.r.t. S.

2. Let pr, θr be solution to the L.P. (23)-(30).
3. Determine sr from pr and sr−1 using equation (17).

Two critical parameters in this model are α, used in equation (17) to set the vectors sr, and R,
the number of rounds. Using larger values for R allows us to model shorter round-to-round times,
i.e. a we model the cascade with smaller time granularity. Using larger values for α makes the
evolution of the network more abrupt. Hence, the richer models will be those with larger values
for α and larger values for R.

Below we will describe an algorithm for solving Problem 3.5 using the extended cascade model.

3.0.4 Why the problem is difficult

Clearly, when we have many scenarios the problem will be computational challenging: verifying
that a vector y is feasible entails solving, in the worst case, R linear programs for each scenario.

However, there is a much more significant difficulty which impacts the combinatorial aspect of
the problem. Consider the network in Figure 7. Here we have one generator (node 0, with 18 units
of capacity) and two demand nodes (nodes 3 and 5, with 9 units of demand each). We have one
scenario; in this scenario edge {0, 4} is removed. We have α = 1.0 (c.f. (17)), that is, there is no
“memory”; R = 2 and µ = 0.6. Suppose that when we protect an edge we double its capacity.

Consider first the vector y1 with y1
02 = 1 and y1

kq = 0 for all other {k, q} (i.e., we reinforce {0, 2}
only). Then, in the first round, {0, 1} and {0, 5} are removed: because x02 is large, most of the 18
units of demand flow on {0, 1} and {0, 5}, in equal amounts (in fact, p1

01 = p1
05 ≈ 8.97). However,

in the second round no edges are removed: all demand flows on {0, 2} and is evenly split on the
paths 0, 2, 1, 3 and 0, 2, 5, 4. Thus, y1 is feasible.

On the other hand, consider now the vector y2 with y2
01 = y2

02 = 1 and y2
kq = 0 for all other

{k, q}. Then, in the first round, again we have that p1
01 = p1

05 ≈ 8.97 – but now only {0, 5} is
removed.

In the second round, we will have that p2
01 ≈ 17.794, p2

13 ≈ 17.765 and p2
34 ≈ 8.765. Thus,

{0, 1}, {1, 3} and {3, 4} are removed; consequently node 3 becomes isolated and we lose 50% of the
demand. So y2 is infeasible.

In summary: we can make an infeasible vector y, feasible, by unprotecting an edge (that is
protected under y). This non-monotonicity is similar to what is given in the examples in Section
2.1.1; it arises in many forms and in all reasonable versions of the extended cascade model. Further,
it significantly impacts the search for effective cutting-planes in our algorithm.
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Figure 7: A pathological case

3.1 A cutting-plane algorithm

Let Φ ⊆ {0, 1}m be the set of 0/1 vectors y such that G(y) is (R,µ)-survivable w.r.t. S(σ), for each
σ ∈ Σ. Our problem can simply be stated as: min{wT y : y ∈ conv(Φ)}.

For this problem we propose a classical cutting-plane algorithm. This algorithm works with
the vector of 0/1-variables y; at any iteration we will have a working formulation Ay ≥ b, initially
empty. At each iteration the algorithm solves a simpler optimization problem to determine a certain
0/1 vector y, if this vector y is feasible then we are done, and otherwise we find an inequality that
separates y from conv(Φ).

Procedure 3.7 CUTTING-PLANE ALGORITHM

Initialize: L = 0.
1. Let y∗ ∈ {0, 1}m be the solution to the problem min{wT y : Ay ≥ b}.
2. If y∗ ∈ Φ, then STOP: y∗ is optimal.
3. Otherwise, let βT y ≥ β0 be an inequality valid for Φ which is violated by y∗.
4. Add βT y ≥ β0 to Ay ≥ b, update L← wT y∗, and go to 1.

At any point of the procedure, L is a lower bound on the optimal cost. The feasibility check in step
2 is implemented using the extended cascade model 3.6. Clearly, Step 3 is critical. In addition,
we should add as an additional step the periodic execution of heuristics: each run of a heuristic
would produce a 0/1 vector y; if y ∈ Φ then we can update an upper bound U on the value of the
problem, and otherwise we can add a valid inequality as in Step 3. Finally, we may need to modify
step 2 in case the optimization problem in that step becomes too difficult. We take up these issues
below.
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3.1.1 A combinatorial inequality

Suppose a vector y∗ ∈ {0, 1}m is such that G(y∗) is not survivable w.r.t. some scenario σ. Let
Ik = {edges e : y∗e = k}, k = 0, 1. Then the trivial inequality

∑

e∈I0

ye +
∑

e∈I1

(1− ye) ≥ 1, (31)

is valid and certainly cuts off y∗. Of course, this inequality is also trivially weak. Next we present
a combinatorial inequality that is stronger. To describe the precise form of this inequality, we will
consider the specific model of “protection” mentioned above, namely: protecting an edge {k, q}
means increasing its capacity from ukq to a strictly higher value unew

kq . The inequality discussed
below can easily be adapted to other models of protection.

To motivate the inequality, we consider a simple example. Figures 8 and 9 show in outline
the evolution of a cascade as per the extended cascade model. In the example, all demands and
generator capacities have been scaled so that the total demand and the total generator capacity
are both equal to 1.0. Further we assume that µ = 0.75, i.e., we want to satisfy at least 75% of
the demand. The sets I0 and I1 are not shown. Round 1 is not shown, but it is assumed that the
removal of initial set F 1 = S(σ) did not disconnect the network.

Figure 8 shows an outline of the network at the start of round 2. Here, the edges labeled 1-7
(shown in red) are the set F 2, i.e. the set of edges removed at the start of round 2. Thus, during
round 2 we have five components (labeled K1 − K5). Using the notation of equations (18)-(22)
and using the shorthand µi = µKi

, we have that µ1 = 0.5, µ2 = 0.3, and µk = 0 for 3 ≤ k ≤ 5
(these quantities shown towards the bottom of each component in Figure 8). Thus, µ2 = 0.8, i.e.
we satisfy 80% of the demand, and we go to the third round.

demand = .5

supply = .6

.5

2

demand = .4

supply = .3

.3

3

0

1

demand = .1
supply= 0

4

0

demand = 0
supply = .1

K1

K2

K3

K4

K5

    

demand = 0
supply = 0

0
5

7

6

Figure 8: Round 2

Figure 9 shows that six additional edges (labeled 8-13) are removed at the start of round 3, and
we now have ten components, labeled K6 −K15 (The outlines of the round 2 components are also
shown). The supply of component 6 is .1, its demand is .2, and so µ6 = .1; the supply of component
7 is .5, its demand is .3, so µ7 = .3; the supply of component 8 is .29, its demand is .2, so µ8 = .2; and
the supply of component 9 is .01, its demand is .2, so µ9 = .01. For all other round 3 components
either the demand or supply is zero. In this case we have that µ3 = .1 + .3 + .2 + .01 = .61 which
is less than the desired value, 0.75, and so the network has not survived the cascade.
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Figure 9: Round 3

In order to drive our example, in the following analysis we assume that y∗
e = 0 for 1 ≤ e ≤ 11.

With this assumption, the inequality

11
∑

e=1

ye +
∑

e∈I1

(1− ye) ≥ 1, (32)

is valid (and violated by y∗) and is an improvement over (31). To see that (32) is valid, suppose
that for some 0/1 vector y the left-hand side of (32) equals zero. Then, by construction of the
cascade model, during round 1 the power flows in G(y) will be the same as in G(y∗). Since ye = y∗e
for 1 ≤ e ≤ 7, and for e ∈ I1, the sets F1 will also be the same in G(y) as in G(y∗), i.e. edges 1− 7
are removed at the start of round 2. So during round 2 we will have exactly the same components
in G(y) as in G(y∗) – not just vertex-wise, but edge-wise as well, because of the second term in
the left-hand side of (32). Thus, the power flows in each of those components will be the same in
G(y) as in G(y∗), and by a similar argument as before edges 8− 11 will be removed at the start of
round 3; the network fails at that point proving that y is infeasible.

But we can do more: we claim that

7
∑

e=1

ye + y11 + y12 + y13 +
∑

e∈I1

(1− ye) ≥ 1, (33)

is valid. The reason for this is that if the left-hand side of (33) were equal to zero, then after round
2 we would still have that the same components K6,K7,K8,K9, and, in the best case, three other
components, all of which have either 0 demand or 0 supply; altogether the value of µ2 would still
equal .61.

Inequality (33) can itself be improved. We claim that

y1 + y2 + y3 + y6 + y11 + y12 + y13 +
∑

e∈I1

(1− ye) ≥ 1, (34)
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is valid. If the left-hand side of (34) were equal to zero, then after during round 2 we would have
component K1, component K2, and in the best case just one more component with supply and
demand equal to .1. Then during round 3 we would again have components K6,K7,K8,K9, plus
one or more components, and now µ2 ≤ .61 + .1 < .75.

Next we describe the general version of inequality (34). The inequality will strengthen (31) by
eliminating some of the summands in the first term as we did in the example. In order to describe
the inequality we need a few definitions.

We consider a 0/1 vector y∗ such that G(y∗) does not survive some scenario σ; and the cascade
ends in step 2b of the extended cascade model 3.6 during round r̂. Again we use the notation from
(18)-(22) and from the extended cascade model:

• Gr is the remaining network at the start of round r (1 ≤ r ≤ r̂),

• for each component K ∈ Cr, ΩK is the total capacity of the generators in K, ΓK is the total
demand within K, and µk = min{ΓK ,ΩK},

• for each round r, µr is the fraction of the demand still being served at the end of the round,

• for each round r, F r is the set of edges removed at the start of round r.

When referring to a specific vector y ∈ {0, 1}m, we will use the notation Gr(y), µr(y),Fr(y), etc.

Assumption: Without loss of generality, in the remainder of this section we assume that the
demands have been scaled so that their sum is 1, i.e., so that µr =

∑

K∈Cr µk for each round r.

If K is a component during any of the rounds, V (K) will denote the set of nodes in K.

Definition 3.8 Let Π be a partition of the components of Gr̂(y∗). A component K of Gr(y∗)
(1 ≤ r ≤ r̂) shatters Π if V (K) intersects at least two classes of Π, e.g. V (K) ∩ V (K ′) 6= ∅ and
V (K) ∩ V (K ′′) 6= ∅ for some components K ′, K ′′ of Gr̂(y∗) which are in different classes of Π.

Consider the example provided above, and let Π be the partition

{ {K6} , {K7} , {K8} , {K9}, {K10,K11,K12,K13,K14,K15} }.

Components K1 and K2 of G2(y∗) shatter this partition; not so for components K3 −K5 (which
are contained in the last class of Π).

Notation 3.9 Given a partition Π of the components of Gr̂(y∗), for 1 ≤ r ≤ r̂ we denote by Zr

the subset of edges {k, q} ∈ F r(y∗), such that either

(i) at least one of k and q are in a component of Gr(y∗) that shatters Π, or

(ii) k and q are in different classes of Π, i.e. there are components K, Q of G r̂(y∗) in different
classes of Π with k ∈ K and q ∈ Q.

Notation 3.10 If K and Q are graphs, K ⊆ Q means inclusion in the vertex and edge sense.

In the above example, and using the same partition as before, we have that edges 11 − 13 are in
Z3 according to the second criterion; edges 1 − 3 are in Z 2 (either criterion) and edge 6 is in Z2

according to the first criterion.

Our inequality is:

r̂
∑

r=2





∑

e∈I0∩Zr

ye



 +
∑

e∈I1

(1− ye) ≥ 1. (35)
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Theorem 3.11 Let Π be a partition of the components of Gr̂(y∗), and assume that

∑

J∈Π

min







∑

K∈J

ΓK ,
∑

K∈J

ΩK







< µ. (36)

Then (35) is a valid inequality.

[comment: each J is a class of Π, i.e., a set of components of Gr̂(y∗)].

Proof. Let y be a 0/1 vector that violates (35), i.e., the left-hand side of (35) is zero. We claim
that G(y) does not survive scenario σ. To do so we will prove by induction on r (1 ≤ r ≤ r̂) that
for each component K of Gr(y), either (a) or (b) hold:

(a) K is a component of Gr(y∗). Further, for each edge e ∈ K, pr
e(y

∗) = pr
e(y) and sr

e(y
∗) = sr

e(y)
and for each node v ∈ K, θr

v(y
∗) = θr

v(y) .

(b) for some class J of Π, V (K) ⊆ ⋃

J∈J V (J).

Applying this statement for r = r̂ implies that no component of Gr̂(y) can intersect more than one
class of Π, and thus G(y) has a value of µr̂ which is at most that of G(y∗), which by assumption is
less than the desired target of µ, proving the claim.

Now we prove the inductive statement. For r = 1, by construction of the extended cascade model
3.6 we have that all components, power flows, etc. in G1(y) and G1(y∗) are identical, and (a) applies.

Suppose we have proved the inductive statement for r and now we wish to do so for r + 1. Note
that every component of Gr+1(y) is contained in some component of Gr(y). Hence, it suffices to
consider some arbitrary component Q of Gr(y) and show that every component K of Gr+1(y) with
K ⊆ Q satisfies either (a) or (b). If Q satisfies (b) we are done, so in what follows we assume that
Q satisfies (a).

Claim: If component K of Gr+1(y∗) with K ⊆ Q shatters Π, then K is also a component of Gr+1(y)
(and therefore is covered by case (a)).
Below we will prove the claim. Further, we will also prove that all other components of Gr+1(y)
are covered by case (b). This will complete the proof of the inductive step.
Proof of the claim. Let K ⊂ Q be a component of Gr+1(y∗) such that K shatters Π. By the
inductive assumption, the vector sr restricted to Q is the same in Gr(y) and Gr(y∗). We wish to
show that any edge e ∈ Q with at least one endpoint in K satisfies e ∈ Gr+1(y) if and only if
e ∈ Gr+1(y∗) (this will show that K is a component of Gr+1(y)). Since e ∈ Q then sr

e(y
∗) = sr

e(y)
by the inductive assumption. So if sr

e(y) ≤ ue then e is both in Gr(y∗) and Gr(y). If umax
e < sr

e(y)
then e is neither in Gr(y∗) nor in Gr(y). Finally, if ue < sr

e(y) ≤ umax
e , then e ∈ F r+1(y∗) precisely

when y∗e = 0 – but in that case e ∈ I0 ∩ Zr, and since y violates (35) then ye = 0 as well, and so
e ∈ Fr+1(y) also. This proves the claim.

Next, consider a consider a component K of Gr+1(y) which is not one of of those produced in the
previous paragraph. We claim that there is a unique class J of Π such that V (K)∩⋃

J∈J V (J) 6= ∅.
For otherwise, there is an edge e ∈ Gr+1(y) with both ends in K, and one end in one class of Π
and the other end, in a different class. We must have e ∈ F r+1(y∗), or else both ends of e are
in the same component of Gr+1(y∗), and this component would shatter Π, a contradiction since
we assume that K was not handled by the claim. So sr(y∗) > ue and therefore e ∈ Zr+1 (second
criterion in the definition of Zr+1).

If y∗e = 1, then umax
e < sr(y∗) = sr(y), but then e /∈ Gr+1(y), a contradiction. So y∗

e = 0, and so
e ∈ I0∩Zr+1, and hence again ye = 0 (y violates (35)) and thus e /∈ Gr+1(y), a contradiction. This
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concludes the proof.

Below we will discuss how to separate over the inequalities (35). But first we discuss some
simple means for further tightening the inequality as post-processing.

First improvement. The second sum in the left-hand side of (35) makes the inequality “weak”
because in general it contains many terms. Suppose we have an edge e with y∗

e = 1, and further
e ∈ Fr for some r. In other words, sr(y∗) > umax

e . In such a case it would be tempting to remove
the term (1 − ye) from (35) – after all, “it does not matter” whether we protect e or not. This
argument is flawed, because there may exist an earlier round t < r such that st(y∗) > ue – had set
y∗e = 0, then e would have been removed at round t + 1, thereby potentially changing the cascade.
This is the “Braess’ law” effect. The rule that we can apply is: for each edge e, define

t = te = min{h : 1 ≤ h ≤ r̂ − 1, sh
e (y∗) > ue}. (37)

If y∗e = 1, and either t = r̂ − 1 or st(y∗) > umax
e , then we can remove the term (1 − ye) from (35).

There are other conditions under which the term can be removed – these involve combinatorial
criteria similar to those that yield (35) as an improvement of (31), but will be omitted for brevity.

Second improvement. Consider now an edge e such that ye appears in the first sum in the
left-hand side (35), for some round r. So y∗

e = 0 and r is the smallest t with st
e(y

∗) > ue. If in
addition sr

e(y
∗) > umax

e then we can eliminate the term ye from the sum.

In summary, after applying all these improvements, the final inequality that we obtain has the
general structure

∑

e∈A0
ye +

∑

e∈A1
(1− ye) ≥ 1 for appropriate sets A0, A1.

3.1.2 Separating inequality (35).

Let y∗ be a 0/1 vector such that G(y∗) is not survivable w.r.t. some scenario σ. We wish to choose
an inequality (35) that is violated by y∗. Such an inequality can always be found (we can choose
Π to be the partition with one class per component in the last round) but we wish in addition to
make the left-hand side of (35) as sparse as possible.

In this task, we are helped by the fact that a typical cascade exhibits what might be termed
“random graph” behavior. By this we mean that the number of components remains relatively small
until the last round or two, when it can become large. And in the last round, most components
will have few nodes (often single nodes) and only a few components (often one or two) are large.
Table 6 shows a typical evolution.

Round r |Fr| Components Demand served
(%)

1 2 1 100.0

2 8 3 100.0

3 17 8 87.66

4 20 16 82.72

Table 6: A typical evolution

Table 3.1.2 shows the structure of the components at round 4 of the cascade in Table 6.

Here, “size” refers to the number of nodes in each component, Γk, Ωk and µk are as defined
before: the demand within component k, the supply within k, and the demand actually satisfied
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component k size Γk Ωk µk = min{Γk, Ωk}

1 238 0.7508 0.6887 0.6887

2 27 0.1921 0.0940 0.0940

3 11 0.0229 0.0547 0.0229

4 6 0.0015 0.0024 0.0015

5 5 0.0135 0.0629 0.0135

6 3 0.0067 0.0097 0.0067

7 1 0 0 0

8 1 0 0 0

9 1 0.0082 0 0

10 1 0.0027 0 0

11 1 0 0 0

12 1 0.0017 0 0

13 1 0 0 0

14 1 0 0.0555 0

15 1 0 0.0589 0

16 1 0 0.0391 0

Table 7: Components in round 4 of Table 6

withint k. Here all demands and supplies have been scaled by the sum of the demands (total supply
≈ 1.066).

The following heuristic exploits this structure. Suppose the cascade ends (with failure) at round r̂.

1. Let K1,K2, . . . , ,KN denote the number of components of Gr̂(y∗). Without loss of generality,
assume that they are numbered so that µ1 ≥ µ2 ≥ . . . ≥ µN .

2. Form a partition of the form

Π = { {K1} , {K2} , . . . , {Kn} , {Kn+1,Kn+2, . . . ,KN} }.

The parameter n is chosen smallest such that

∑

J∈Π

min







∑

K∈J

ΓK ,
∑

K∈J

ΩK







< µ (38)

holds. Note that this is exactly the condition in Theorem 3.11; the choice of n = N by
assumption satisfies the condition (i.e. at round r̂ the network failed).

3. For t = r̂ − 1, r̂ − 2, . . . , 2, consider the set of edges e with y∗
e = 0 that are removed during

round t. If any such edge has one end in one class of Π and the other end in another class,
then attempt to merge the two classes into one. The attempt is successful when the quantity
in (38) remains smaller than µ.

Step 3 of this procedure attempts to reduce the number of terms in the first summand in (35). A
similar step can be applied to the second summand, but again we will skip its description for brevity.

In our implementation, this is the only separation algorithm that we employ – so the default
version of our cutting-plane algorithm 3.7 generates a single cut. An open question is whether it
would be helpful to run multiple separation heuristics and incorporate several cuts at once. In the
following section we will show how upper bound heuristics for the overall optimization problem
(3.5) can be used to generate further cuts.
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3.2 Upper bound heuristics

The basic cutting-plane algorithm 3.7 described in Section 3.1, equipped with the inequalities
described in the previous section, can solve nontrivial problems. In order to handle more complex
problems, and to speed up the algorithm, upper bound heuristics prove useful. These heuristics
are used and are described below.

The common approach that we use with our heuristics is the following. Each heuristic H is an
algorithm that outputs some 0/1 vector, which might or might not be feasible. Suppose that at
some iteration of the cutting-plane algorithm we interrupt the algorithm, and run H, obtaining the
vector ŷ. Then

H.1 If G(ŷ) survives every scenario σ then we obtain a valid upper bound on the optimization
problem (3.5).

H.2 Otherwise, we obtain a cut, using the techniques from Section 3.1.1.

Step H.1 can be expensive if G(ŷ) survives many scenarios. For that reason we cannot run the
heuristics very frequently. Also, obtaining tight upper bounds can in principle help the cutting-
plane algorithm terminate sooner (with an approximate answer). But, in our experience, this has
not been reliable. Instead, it is H.2 that proves most useful. Here, the heuristic “samples” the
space of all solutions in an “interesting” region, and thus the cut added in H.2 proves significant.
This observation is in line with folklore observations that have been made primarily in the context
of Benders’ decomposition algorithms.

The final component in our use of heuristics a pruning algorithm, which assumes that the costs
wij are nonnegative. Given a feasible 0/1 vector ŷ we pick any edge {k, q} with ŷkq = 1. We
temporarily set ŷkq = 0. If ŷ is feasible we make ŷkq = 0 permanent; otherwise we find a cut (35)
and we make ŷkq = 1 permanent. We then continue with some other edge.

The pruning algorithm is run with a time limit; each time a cheaper feasible solution is found
the run-time clock is reset to zero.

Next we describe the three heuristics we have implemented.

First heuristic. Suppose we have carried out Step 1 of the basic cutting-plane algorithm to
obtain the vector y∗ ∈ {0, 1}m which solves the (current) problem min{wT x : Ay ≥ b}, and that
furthermore G(y∗) does not survive some scenario σ. Our first heuristic chooses the 0/1 vector ŷ
as follows: ŷe = 1 if either y∗e = 1 or if e ∈ F2(y∗).

The rationale for this heuristic is that (usually, but not always) G(ŷ) survives scenario σ. How-
ever, if G(ŷ) does not survive some other scenario σ ′ then the cut added in H.2 exposes some of
the relationship between scenarios σ and σ ′.

“Score” heuristic. As the cutting-plane algorithm runs, the extended cascade model will be
repeatedly run. If some edge e frequently appears in sets F r, this indicates that e is “important”.
We could in this way assign a “score” to each edge, and use some criterion to select a subset of
edges with high score.

The particular heuristic we use is as follows. Initially all edges are given a score of 0. Each
time we run the extended cascade model, for each edge e that belongs to some set F r we increase
the score of e by 1/(t2e), where te is defined as in (37) (so edges that “fail” earlier are given more
importance). This rules sets the scores.

The score heuristic operates by solving the 0/1 integer program min{−πT y : Ay ≥ b}, where
Ay ≥ b is the current formulation in the cutting-plane algorithm. The solution to this problem is
the vector ŷ that is input to H.1 and H.2 above.

“Deep cut” heuristic. This heuristic attempts to find a 0/1 vector that is “far” from the working
formulation Ay ≥ b without being expensive. More precisely, suppose the working formulation has

27



constraints
∑

e ai,e ye ≥ bi, 1 ≤ i ≤ H. Recall that we is the cost of protecting edge e. The deep
cut heuristic outputs the vector ŷ which solves the mixed-integer program:

max z

s.t.
∑

e

ai,e ye − z ≥ bi 1 ≤ i ≤ H,

∑

e

we ye + Uz ≤ 2U

y ∈ {0, 1}m, z ≥ 0

Here, U is a large number. The optimal value of z indicates a “distance” from the solution ŷ to all
the constraints, but also to the hyperplane of points with cost U . To set U in our implementation,
we used the following rule. Let L be the current lower bound for our optimization problem (3.5).
Then set U = 10L.

3.3 Implementation details and computational tests

Our implementation follows closely the algorithmic ideas described above. One adjustment concerns
the optimization problems solved in the score heuristic, the deep heuristic and also in Step 1 of our
cutting-plane algorithm 3.7. These are 0/1 integer programs (mixed in the deep heuristic). In our
computational experience, these were fairly easy to solve using a commercial mixed-integer solver
until the later iterations of the cutting-plane algorithm, where the working formulation Ay ≥ b
may contain thousands of rows.

In our implementation, each of the mixed-integer solvers is tackled with a time limit (50 seconds)
– if the time limit is exceeded then we instead solve the continuous relaxation and then round each
variable ye to 1 with probability equal to the value of ye.

The computational tests described here were carried out on a machine with a 1.8 GHz Xeon
processor, with a 1 MB cache and 2 GB of RAM. We used networks net1 and net2 and the scenario
families described in Section 2.4.

Figure shows a typical evolution of our algorithm on a hard problem instance. In this figure we
plot the lower and upper bounds produced by the algorithm on a problem with α = 0.5, µ = 0.8
and R = 12 rounds, and using random costs. This value of α is relatively small, which means that a
cascade will evolve rather slowly. The impact of the relatively large choice for R is that it may take
many rounds for our extended cascade model (3.6) to terminate; thus (a) each cascade simulation
requires the solution of “many” (up to 12) linear programs, and (b) the structure of each a cascade
is “complex”, possibly rendering our cutting planes less effective.

In this run, the optimal cost equals 280.82 and is computed at iteration 4200 of the cutting
plane algorithm (3.7) – the vector y∗ computed in Step 1 of that iteration proves feasible. An upper
bound of 313.73 is computed by our first heuristic at iteration 200; after that all attempts to im-
prove the upper bound fail – the optimum solution is the last 0/1 vector computed in Step 1 of our
cutting-plane algorithm (3.7). Even though our heuristics fail to improve upon the upper bound,
part of their benefit lies in the cuts produced when running the heuristics. The total running time
in this case approached 20 hours.

In Table 8 we examine the behavior of the algorithm as we change the parameter R (number
of rounds) while keeping everything else fixed. Here the network is net2, α = 0.5 and µ = 0.8. In
all these runs, the scenario set is that of all singletons.
In this table, the column headed ’support’ indicates the number of edges protected in the optimal
solution, and ’cost’ is the cost of the optimal solution (recall that problem net2 has random costs).
Note the growth in running time, in particular that for the case of 12 rounds – here, nearly 64, 000
seconds are expended solving the 0/1 problems in Step 1 of Algorithm 3.7. Using 12 rounds allows
a fair amount of complexity to emerge in a typical cascade.

In Table 9 we study network net1 (i.e., unit costs) under various values of α while keeping all
other parameters fixed. For these instances we are using the scenario family S7 described in Section
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Figure 10: Evolution of bounds (final lower bound is proved optimal)

R iterations cuts time (secs.) support cost

4 80 81 221 3 139.19

6 853 885 2172 4 216.95

8 1296 1332 2938 5 221.36

10 1988 2024 8494 7 246.32

12 4200 4258 71857 7 280.82

Table 8: Algorithm behavior as a function of maximum number of rounds

2.4, consisting of 355 scenarios of cardinality between 2 and 11. In all these runs, we assume that
we have 5 rounds. The column headed ’BB time’ indicates the total time spent solving the 0/1
problems in Step 1 of Algorithm 3.7. This table confirms that the larger the value of α, the more
complex the problems become.

In Table 10 shows how the parameter settings indirectly affect the complexity of the problem
by altering the structure of the cascade simulations. On this single run we used network net3, the
scenario family was that of all singletons, α = 0.2 but on the other hand we used 20 rounds. Hence
the cascades should evolve relatively slowly but the large number of rounds might allow complexity
to emerge.

Here, ’ave. rounds’ stands for the average number of rounds until a cascade ends in Step 1b or
1c of Model (3.6) (averaged over all the cascade simulation cascades performed during the optimiza-

α iterations cuts time (secs.) BB time

0.2 9 10 391 1

0.5 53 71 1528 800

0.8 2546 2769 31014 13600

0.9 3455 3782 71905 39590

Table 9: Algorithm behavior as a function of α
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ave. rounds max min

11.43 20 2

ave. outages max min

51.53 90 4

Table 10: Cascade statistics

tion), ’max’ refers to the maximum and ’min’ to the minimum number of rounds experienced in
any cascade; ’ave. outages’ refers to the average number of edges removed from the network during
a cascade, and ’max’ and ’min’ are correspondingly defined. Note that even though α is relatively
small, the large average number of rounds to termination indicates a fairly complex problem – its
solution required 37099 seconds of which nearly half were spent simulating cascades.

4 The real-time problem

The two models we have studied in this paper are essentially static – their aim is to reinforce of a
network so that in the event of some edge outages the network is better able to avoid a blackout.

In the real-time version of the problem we would seek to take action to stop a cascade from be-
coming catastrophic. One well-known but not always popular technique is that of “load-shedding”
whereby demand is reduced in small amounts. At a lower level, individual power lines are equipped
with equipment to turn them off if damage will result from overloads – this equipment operates
automatically.

Two issues make the real-time problem difficult. First, it has been debated whether real-time
information can be centralized, or if only distributed algorithms could be used. Second, the “Braess’
Law” feature we have discussed above creates some unique combinatorial issues – even if all the
information were available in a real-time basis the problem remains complex.

Nevertheless, a concrete problem that could be tackled from a real-time perspective is that of
selectively turning off power lines (i.e., “sacrificing” part of the network) in order to arrest a
cascade. Formally, we have:

Problem 4.1 Given a network G, with weights on the edges, find a minimum-weight set Ê of edges
such that in G− Ê all flows are within bounds.

There are multiple versions of this problem, for example allowing some demand loss. However, we
state without proof the following result:

Theorem 4.2 Problem 4.1 is NP-hard.

We take this result as theoretical confirmation that the real-time problem is difficult. In future
research we plan to report on results regarding the real-time problem, in particular in connection
with the adversarial and gaming versions described in Section 1.3.1.
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