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Abstract

Different stationarity and regularity concepts for extended real-valued functions on
metric spaces are considered in the paper. The properties are characterized in terms
of certain local constants. A classification scheme for stationarity/regularity constants
and corresponding concepts is proposed. The relations between different constants are
established.
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1 Introduction

The papers considers different stationarity and regularity concepts for extended real-valued
functions on metric spaces.

All the properties are characterized in terms of certain local constants. A function is
said to be stationary at a point (in some sense) if the corresponding constant is zero (a
critical point). Otherwise the function is said to be regular at this point (in the same
sense) and the constant provides a quantitative estimate of regularity.

All the variety of constants and corresponding stationary/regularity concepts can be
classified in the following way. Firstly, there are “inf” constants and concepts (character-
izing a function from below and appropriate for minimization problems) and “sup” ones
(characterizing a function from above and appropriate for maximization problems). One
can also consider “combined” concepts. Combined stationary means that either an “inf”
or a “sup” stationary condition is satisfied, while combined regularity corresponds to the
case when both “inf” and “sup” regularity conditions hold true.

Secondly, there are “basic” constants (defined at a point) and “strict” or “fuzzy” ones
(accumulating information about the function properties at nearby points). The latter
constants lead to weak stationary and strong regularity concepts.

Thirdly, there are “primal” and “dual” constants (defined in terms of primal and
dual space elements respectively) and corresponding stationary/regularity concepts. Dual
constants can be defined when the primal space is a normed linear space.

For Fréchet differentiable or convex functions all stationary/regularity concepts reduce
to traditional ones.

The definitions of the constants, the relations between them and the corresponding
stationary and regularity concepts developed in the current paper are very similar to
those for multifunctions and collections of sets (see [12, 13, 14]). Actually it is another
application of the same variational approach which was used earlier for characterizing
other types of objects. This confirms the assertion formulated by Jonathan M. Borwein
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and Qiji J. Zhu: “an important feature of the new variational techniques is that they can
handle nonsmooth functions, sets and multifunctions equally well” [1].

The paper is organized as follows. The basic primal constants characterizing local
properties of a function from below and corresponding inf-stationarity (inf-θ-stationarity)
and inf-regularity (inf-θ-regularity) concepts are introduced and investigated in Section 2.
Section 3 is devoted to the strict primal inf-type constants and weak inf-stationarity and
strong inf-regularity concepts. It is proved that in the case of a lower semicontinuous
function on a complete metric space two different basic constants produce the same strict
constant. Sup-type as well as combined constants (both basic and strict) and correspond-
ing stationarity and regularity concepts are considered in Section 4. Sections 5 and 6 are
devoted to primal constants for Fréchet differentiable and convex functions respectively.
Dual (subdifferential) stationarity and regularity conditions (in the case of a normed linear
space) are formulated in Section 7 in terms of Fréchet subdifferentials and strict δ-sub-
differentials. In the case of an Asplund space these conditions appear to be equivalent to
the corresponding strict primal conditions.

Mainly standard for variational analysis notations (see the books [1, 16, 18]) are used
throughout the paper. A closed ball of radios ρ centered at x in a metric space is denoted
by Bρ(x). We write Bρ if x = 0, and simply B if x = 0 and ρ = 1.

2 Inf-Stationarity and Inf-Regularity

Let ϕ be a function defined on a metric space X with values in an extended real line
R̄ = R ∪ {±∞}. It is assumed to be finite at some point x◦ ∈ X.

For ρ > 0 define the constant

θρ[ϕ](x◦) = inf
x∈Bρ(x◦)

ϕ(x)− ϕ(x◦). (1)

This constant as well as the behavior of the function ρ → θρ[ϕ](x◦) near 0 can be used
for characterizing local properties of ϕ near x◦.

Proposition 1. (i) θρ[ϕ](x◦) ≤ 0 for all ρ > 0;

(ii) ρ → θρ[ϕ](x◦) is nonincreasing on R+.

Proposition 2. ϕ attains at x◦ a

(i) global minimum if and only if θρ[ϕ](x◦) = 0 for all ρ > 0;

(ii) local minimum if and only if θρ[ϕ](x◦) = 0 for some ρ > 0.

Proposition 3. ϕ is lower semicontinuous at x◦ if and only if limρ→+0 θρ[ϕ](x◦) = 0.

The next step is to “differentiate” the function ρ → θρ[ϕ](x◦) at 0 (from the right).
Define

θ[ϕ](x◦) = lim sup
ρ→+0

θρ[ϕ](x◦)
ρ

. (2)

This is also a nonpositive constant. The case θ[ϕ](x◦) = 0 corresponds to a kind of
stationary behavior of ϕ near x◦.

Definition 1. ϕ is

(i) inf-θ-stationary at x◦ if θ[ϕ](x◦) = 0;

(ii) inf-θ-regular at x◦ if θ[ϕ](x◦) < 0.
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Remark 1. The purpose of the “inf” prefix in Definition 1 is to emphasize that minimiza-
tion problems are addressed here1. Contrary to the classical case stationarity-regularity
properties of nondifferentiable functions “from below” and “from above” can be essentially
different.

Another derivative-like constant that can be used for characterizing stationarity-regula-
rity properties of ϕ at x◦ can be defined in the following way:

τ [ϕ](x◦) = lim inf
x→x◦

[ϕ(x)− ϕ(x◦)]−
d(x, x◦)

. (3)

The notation [α]− = min(α, 0) is used here. Similar to (2) the constant (3) is nonnegative.

Definition 2. ϕ is

(i) inf-stationary at x◦ if τ [ϕ](x◦) = 0;

(ii) inf-regular at x◦ if τ [ϕ](x◦) < 0.

The relations between (2) and (3) are given by the next proposition.

Proposition 4. The following assertions hold true:

(i) τ [ϕ](x◦) ≤ θ[ϕ](x◦);

(ii) if θρ[ϕ](x◦) = 0 for some ρ > 0 then τ [ϕ](x◦) = θ[ϕ](x◦) = 0.

Proof. (i) Let ρ > 0 be arbitrary. Then

θρ[ϕ](x◦)
ρ

= inf
x∈Bρ(x◦)

ϕ(x)− ϕ(x◦)
ρ

= inf
x∈Bρ(x◦)

[ϕ(x)− ϕ(x◦)]−
ρ

=

inf
x∈Bρ(x◦)\{x◦}

[ϕ(x)− ϕ(x◦)]−
ρ

≥ inf
x∈Bρ(x◦)\{x◦}

[ϕ(x)− ϕ(x◦)]−
d(x, x◦)

.

The assertion follows now from (2) and (3).
(ii) If θρ[ϕ](x◦) = 0 for some ρ > 0 then by definition (1) ϕ(x) ≥ ϕ(x◦) for all

x ∈ Bρ(x◦) and it follows from (3) that τ [ϕ](x◦) = 0.

Thus, using (3) instead of (2) leads to a stronger concept of stationarity and corre-
spondingly to a weaker concept of regularity.

Corollary 4.1. The following assertions hold true:

(i) If ϕ is inf-stationary at x◦ then it is inf-θ-stationary at x◦;

(ii) If ϕ is inf-θ-regular at x◦ then it is inf-regular at x◦;

(iii) If ϕ attains a local minimum at x◦ then it is both inf-stationary and inf-θ-stationary
at x◦.

Inequality (i) in Proposition 4 can be strict even for functions from R to R.

Example 1. Take ϕ(x) = −|x|, if |x| = 1/2n, n = 1, 2, . . ., and ϕ(x) = 0 otherwise.
Obviously τ [ϕ](0) = −1. At the same time, for any ρ ∈ Ξn = {ρ : 1/2n ≤ ρ < 1/2n−1}
one has θρ[ϕ](0) = −1/2n and

sup
ρ∈Ξn

θρ[ϕ](0)
ρ

=
−1/2n

1/2n−1
= −1

2
.

Thus, θ[ϕ](0) = −1/2.
1The terminology was suggested by V. F. Demianov (personal communication).
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It is possible to modify the above example to make θ[ϕ](0) equal zero.

Example 2. Take ϕ(x) = −|x|, if |x| = 1/nn, n = 1, 2, . . ., and ϕ(x) = 0 otherwise. One
still has τ [ϕ](0) = −1 while θ[ϕ](0) = 0.

Thus, in the above example ϕ is inf-regular at 0 while being inf-θ-stationary at this
point.

It is possible to modify the example further to make ϕ continuous and even differen-
tiable near 0 (but not strictly differentiable!) while keeping the inequality (i) in Proposi-
tion 4 strict.

Remark 2. τ [ϕ](x◦) coincides up to a sign with the slope |∇ϕ|(x◦) of ϕ at x◦ [3] (see also
[7]).

3 Weak Inf-Stationarity and Strong Inf-Regularity

Definitions (2) and (3) can be modified further by allowing x◦ in their right-hand sides
to vary near a given point. In that way we arrive at two more nonpositive derivative-like
constants:

θ̂[ϕ](x◦) = lim sup
x

ϕ
→x◦

ρ→+0

inf
u∈Bρ(x)

ϕ(u)− ϕ(x)
ρ

, (4)

τ̂ [ϕ](x◦) = lim sup
x

ϕ
→x◦

ρ→+0

inf
u∈Bρ(x)\{x}

[ϕ(u)− ϕ(x)]−
d(u, x)

. (5)

Notation x
ϕ→ x◦ here means that x → x◦ with ϕ(x) → ϕ(x◦). Due to variations of x (4)

and (5) gain some properties of a strict derivative. They are used below for defining some
more stationarity and regularity concepts.

Definition 3. ϕ is

(i) weakly inf-θ-stationary at x◦ if θ̂[ϕ](x◦) = 0;

(ii) strongly inf-θ-regular at x◦ if θ̂[ϕ](x◦) < 0;

(iii) weakly inf-stationary at x◦ if τ̂ [ϕ](x◦) = 0;

(iv) strongly inf-regular at x◦ if τ̂ [ϕ](x◦) < 0.

The next proposition summarizes some interrelations between the constants above.

Theorem 1. The following assertions hold true:

(i) θ̂[ϕ](x◦) ≥ lim sup
x

ϕ→x◦

θ[ϕ](x),

(ii) τ̂ [ϕ](x◦) = lim sup
x

ϕ→x◦

τ [ϕ](x);

(iii) τ̂ [ϕ](x◦) ≤ θ̂[ϕ](x◦);

(iv) If X is complete and ϕ is lower semicontinuous near x◦, then τ̂ [ϕ](x◦) = θ̂[ϕ](x◦).

Proof. (i) By the definition of the lower limit one can write

θ̂[ϕ](x◦) = lim
δ→+0

sup
x∈Bδ(x◦)

|ϕ(x)−ϕ(x)|≤δ
0<ρ≤δ

θρ[ϕ](x)
ρ

= lim
δ→+0

sup
x∈Bδ(x◦)

|ϕ(x)−ϕ(x)|≤δ

sup
0<ρ≤δ

θρ[ϕ](x)
ρ

. (6)
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The legality of the replacement of the “double” supremum in the above formula by two
separate ones is quite obvious. For any x ∈ X and any 0 < δ′ ≤ δ one has

sup
0<ρ≤δ

θρ[ϕ](x)
ρ

≥ sup
0<ρ≤δ′

θρ[ϕ](x)
ρ

.

Consequently,

sup
0<ρ≤δ

θρ[ϕ](x)
ρ

≥ lim
δ′→+0

sup
0<ρ≤δ′

θρ[ϕ](x)
ρ

= lim sup
ρ→+0

θρ[ϕ](x)
ρ

= θ[ϕ](x). (7)

The assertion follows from (6) and (7).
(ii) In a similar way

τ̂ [ϕ](x◦) = lim
δ→+0

sup
x∈Bδ(x◦)

|ϕ(x)−ϕ(x)|≤δ

sup
0<ρ≤δ

inf
u∈Bρ(x)\{x}

[ϕ(u)− ϕ(x)]−
d(u, x)

=

lim sup
x

ϕ→x◦

lim
ρ→+0

inf
u∈Bρ(x)\{x}

[ϕ(u)− ϕ(x)]−
d(u, x)

= lim sup
x

ϕ→x◦

τ [ϕ](x).

(iii) follows from (i) and (ii) due to part (i) of Proposition 4.
(iv) Let X be complete and ϕ be lower semicontinuous near x◦. Due to (iii) we need

to show the opposite inequality2. Denote α = −θ̂[ϕ](x◦) ≥ 0 and take arbitrary ε > 0.
Then it follows from (4) that there exists an x′ ∈ Bε/2(x◦) with |ϕ(x′)−ϕ(x◦)| ≤ ε/2 and
a ρ > 0, satisfying ρ ≤ (ε/2) min(1, (α + ε/2)−1), such that

ϕ(u)− ϕ(x′) ≥ −(α + ε/2)ρ

for any u ∈ Bρ(x′). Without loss of generality we can assume that ϕ is lower semicontin-
uous on Bρ(x′) and apply Ekeland variational principle [4]. Take some ρ′ satisfying

ρ
α + ε/2
α + ε

≤ ρ′ < ρ.

Then there exists an x ∈ Bρ′(x′) such that ϕ(x) ≤ ϕ(x′) and

ϕ(u)− ϕ(x) + (α + ε/2)(ρ/ρ′)d(u, x) ≥ 0

for all u near x. Thus,

τ [ϕ](x) ≥ −(α + ε/2)(ρ/ρ′) ≥ −(α + ε),

while x ∈ Bρ′(x′) ⊂ Bε(x◦) since d(x′, x◦) ≤ ε/2 and ρ′ < ρ ≤ ε/2. At the same time

ϕ(x)− ϕ(x◦) ≤ ϕ(x′)− ϕ(x◦) ≤ ε/2,

ϕ(x)− ϕ(x◦) = ϕ(x)− ϕ(x′) + ϕ(x′)− ϕ(x◦) ≥ −(α + ε/2)ρ− ε/2 ≥ −ε.

Consequently, |ϕ(x) − ϕ(x◦)| ≤ ε. Since ε is arbitrary, taking into account (ii), one can
conclude that τ̂ [ϕ](x◦) ≥ −α = θ̂[ϕ](x◦).

Parts (i) and (ii) of Theorem 1 imply the inequalities

θ[ϕ](x◦) ≤ θ̂[ϕ](x◦), τ [ϕ](x◦) ≤ τ̂ [ϕ](x◦),

and they can be strict.
2The proof follows the original idea suggested by Bernd Kummer for the case θ̂[ϕ](x◦) = 0 (personal

communication).
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Example 3. Take the function ϕ from Example 1. Evidently, ϕ attains a local minimum
at xn = 1/2n for any n = 1, 2, . . .. Due to Proposition 2 θρ[ϕ](xn) = 0 for some ρ > 0,
and it follows from Proposition 4 that τ [ϕ](xn) = θ[ϕ](xn) = 0. Consequently, τ̂ [ϕ](0) =
θ̂[ϕ](0) = 0. Recall that τ [ϕ](0) = −1 and θ[ϕ](0) = −1/2.

Inequalities (i) and (iii) in Theorem 1 can be strict too.

Example 4. Define the function ϕ : R → R in the following way: ϕ(x) = x if x ≤ 0,
ϕ(x) = x − 1/n if 1/n < x ≤ 1/(n − 1), n = 2, 3, . . ., ϕ(x) = x − 1/2 if x > 1/2. It is
easy to see that θ[ϕ](x) = τ [ϕ](x) = −1 for any x ∈ R. Then τ̂ [ϕ](0) = −1. On the other
hand, take xn = 1/n+1/n2, ρn = 1/n, n = 1, 2, . . .. Then ϕ(xn) = 1/n2 and consequently
θρn [ϕ](xn) ≥ −1/n2. It follows immediately that θ̂[ϕ](0) = 0.

Remark 3. Note that due to part (iv) of Theorem 1 in the case of a lower semicontinu-
ous function on a complete metric space two different constants (2) and (3) produce (in
accordance with (4) and (5)) the same “strict” constant.

Corollary 1.1. The following assertions hold true:

(i) If ϕ is inf-θ-stationary (inf-stationary) at x◦ then it is weakly inf-θ-stationary (weakly
inf-stationary) at x◦;

(ii) If ϕ is strongly inf-θ-regular (strongly inf-regular) at x◦ then it is inf-θ-regular (inf-
regular) at x◦;

(iii) If ϕ is weakly inf-stationary at x◦ then it is weakly inf-θ-stationary at x◦;

(iv) If ϕ is strongly inf-θ-regular at x◦ then it is strongly inf-regular at x◦.

Let, additionally, X be complete and ϕ be lower semicontinuous near x◦. Then

(v) ϕ is weakly inf-stationary at x◦ if and only if it is weakly inf-θ-stationary at x◦;

(vi) ϕ is strongly inf-θ-regular at x◦ if and only if it is strongly inf-regular at x◦.

The next “fuzzy” characterization of weak inf-stationarity can be convenient for ap-
plications. It follows directly from definition (5).

Proposition 5. ϕ is weakly inf-stationary at x◦ if and only if for any ε > 0 there exists
an x ∈ Bε(x◦) such that |ϕ(x)− ϕ(x◦)| ≤ ε and ϕ(u) + εd(u, x) ≥ ϕ(x) for all u near x.

Remark 4. A point x satisfying ϕ(u) + εd(u, x) ≥ ϕ(x) for all u near x is referred to in
[15] (see also [8]) as a local Ekeland point of ϕ (with factor ε). If all the conditions in
Proposition 5 are satisfied then x◦ is said to be a stationary point of ϕ with respect to
minimization [15]. Thus, stationarity with respect to minimization is equivalent to weak
inf-stationarity and, in case of a lower semicontinuous function on a complete metric space,
also to weak inf-θ-stationarity.

4 Other Types of Stationarity and Regularity

Similarly to (1)–(5) corresponding “maximization” constants can be defined. To do this
one has to replace “inf”, “lim inf” and [·]− in (1), (3) by “sup”, “lim sup” and [·]+ respec-
tively, and “lim sup” in (2), (4), (5) by “lim inf”. The resulting constants appear to be
nonnegative. They are related to (1)–(5) by the following equalities:

θ+
ρ [ϕ](x◦) = −θρ[−ϕ](x◦), θ+[ϕ](x◦) = −θ[−ϕ](x◦), τ+[ϕ](x◦) = −τ [−ϕ](x◦),

θ̂+[ϕ](x◦) = −θ̂[−ϕ](x◦), τ̂+[ϕ](x◦) = −τ̂ [−ϕ](x◦)

and lead to similar sup-stationarity and sup-regularity concepts.
Of course, for a function ϕ the set of sup-stationary (sup-regular) points is different in

general from that of inf-stationary (inf-regular) points.
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Example 5. Take the function ϕ from Example 1. One has τ [ϕ](0) < θ[ϕ](0) < 0. Thus, ϕ
is both inf-regular and inf-θ-regular at 0. At the same time 0 is a point of maximum and
τ+[ϕ](0) = θ+[ϕ](0) = 0. Consequently, ϕ is both sup-stationarity and sup-θ-stationarity
at 0.

The “combined” concepts can also be of interest. It is natural to say that a function
is stationary (in some sense) at a point if it is either inf-stationary or sup-stationary at
this point. On the contrary, the regularity property for a function is satisfied when this
function is both inf-regular and sup-regular at the point.

Definition 4. ϕ is

(i) θ-stationary at x◦ if max(θ[ϕ](x◦), θ[−ϕ](x◦)) = 0;

(ii) θ-regular at x◦ if max(θ[ϕ](x◦), θ[−ϕ](x◦)) < 0.

(iii) stationary at x◦ if max(τ [ϕ](x◦), τ [−ϕ](x◦)) = 0;

(iv) regular at x◦ if max(τ [ϕ](x◦), τ [−ϕ](x◦)) < 0;

(v) weakly θ-stationary at x◦ if max(θ̂[ϕ](x◦), θ̂[−ϕ](x◦)) = 0;

(vi) strongly θ-regular at x◦ if max(θ̂[ϕ](x◦), θ̂[−ϕ](x◦)) < 0;

(vii) weakly stationary at x◦ if max(τ̂ [ϕ](x◦), τ̂ [−ϕ](x◦)) = 0;

(viii) strongly regular at x◦ if max(τ̂ [ϕ](x◦), τ̂ [−ϕ](x◦)) < 0.

The relations between the concepts from Definition 4 are very similar to those formu-
lated in Sections 2 and 3. In particular, strong regularity and strong θ-regularity coincide
if X is complete and ϕ is continuous near x◦.

Strong inf-regularity can be interpreted in the following way: all points in a neighbor-
hood of a given point have “descent sequences”, and the rate of descent is uniform. In
contrast to that, strong regularity is equivalent to the existence of both descent and ascent
sequences with the uniformity property.

Proposition 6. (i) ϕ is strongly inf-regular at x◦ if and only if there exists an α > 0
and a δ > 0 such that for any x ∈ Bδ(x◦) with |ϕ(x)−ϕ(x◦)| ≤ δ and any ρ ∈ (0, δ]
one can find u ∈ Bρ(x) such that ϕ(u)− ϕ(x) < −αd(u, x).

(ii) ϕ is strongly regular at x◦ if and only if there exists an α > 0 and a δ > 0 such
that for any x ∈ Bδ(x◦) with |ϕ(x) − ϕ(x◦)| ≤ δ and any ρ ∈ (0, δ] one can find
u′, u′′ ∈ Bρ(x) such that ϕ(u′)− ϕ(x) < −αd(u′, x) and ϕ(u′′)− ϕ(x) > αd(u′′, x).

5 Differentiable Functions

The constants and corresponding stationarity/regularity concepts defined in the preceding
sections take quite a traditional form when the function is assumed differentiable or convex
(see Section 6). Fortunately, the number of different constants and concepts reduces
significantly.

We will assume in the rest of the paper that X is a normed linear space with the
distance induced by the norm.

Theorem 2. If ϕ is Fréchet differentiable at x◦ with the derivative ∇ϕ(x◦) then

θ[ϕ](x◦) = τ [ϕ](x◦) = −θ+[ϕ](x◦) = −τ+[ϕ](x◦) = −‖∇ϕ(x◦)‖ .

If, additionally, the derivative is strict then

θ̂[ϕ](x◦) = τ̂ [ϕ](x◦) = −θ̂+[ϕ](x◦) = −τ̂+[ϕ](x◦) = −‖∇ϕ(x◦)‖ .
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Recall that ϕ is called strictly differentiable [2, 18] at x◦ (with the derivative ∇ϕ(x◦))
if

lim
x→x◦, u→x◦

ϕ(u)− ϕ(x)− 〈∇ϕ(x◦), u− x〉
‖u− x‖

= 0.

Clearly this condition is stronger than traditional Fréchet differentiability. Thus, condi-
tion ∇ϕ(x◦) 6= 0 does not guarantee strong regularity in the sense of Definition 3 (or
Definition 4) unless ϕ is strictly differentiable at x◦.

Example 6. Take ϕ(x) = x + x2 sin(1/x), if x 6= 0, and ϕ(0) = 0. This function is
everywhere Fréchet differentiable and ∇ϕ(0) = 1. Thus, ϕ is regular at zero. At the same
time τ̂ [ϕ](0) = τ̂+[ϕ](0) = 0: there exists a sequence xk → 0 such that ∇ϕ(xk) → 0,
and the assertion follows from Theorem1, part (ii). Consequently, ϕ is both weakly inf-
stationary and weakly sup-stationary at zero.

Proof of Theorem 2. Take arbitrary ε > 0. It follows from the definition of the Fréchet
derivative that there exists a δ > 0 such that

|ϕ(x)− ϕ(x◦)− 〈∇ϕ(x◦), x− x◦〉| ≤ ε ‖x− x◦‖ (8)

for any x ∈ Bδ(x◦). If 0 < ρ ≤ δ then∣∣∣∣ inf
x∈Bρ(x◦)\{x◦}

ϕ(x)− ϕ(x◦)
‖x− x◦‖

− inf
x∈Bρ(x◦)\{x◦}

〈∇ϕ(x◦), x− x◦〉
‖x− x◦‖

∣∣∣∣ ≤ ε.

It is easy to see that

inf
x∈Bρ(x◦)\{x◦}

〈∇ϕ(x◦), x− x◦〉
‖x− x◦‖

= −‖∇ϕ(x◦)‖

and
inf

x∈Bρ(x◦)\{x◦}

ϕ(x)− ϕ(x◦)
‖x− x◦‖

= inf
x∈Bρ(x◦)\{x◦}

[ϕ(x)− ϕ(x◦)]−
‖x− x◦‖

→ τ [ϕ](x◦)

as ρ → +0. The equality in the last expression follows from the next simple observation: if
ϕ(x) > ϕ(x◦) for all x ∈ Bρ(x◦)\{x◦} (this is the only case when the [·]− operation could
make a difference) then x◦ is a point of local minimum, ∇ϕ(x◦) = 0 and consequently

inf
x∈Bρ(x◦)\{x◦}

ϕ(x)− ϕ(x◦)
‖x− x◦‖

= 0.

Thus, |τ [ϕ](x◦) + ‖∇ϕ(x◦)‖| ≤ ε. Taking into account that ε is an arbitrary positive
number one can conclude that

τ [ϕ](x◦) = −‖∇ϕ(x◦)‖

and
τ+[ϕ](x◦) = −τ [−ϕ](x◦) = ‖∇ϕ(x◦)‖ .

Similarly, it follows from (8) that

|ϕ(x)− ϕ(x◦)− 〈∇ϕ(x◦), x− x◦〉| ≤ ερ

for any x ∈ Bρ(x◦) and consequently

|θρ[ϕ](x◦) + ‖∇ϕ(x◦)‖ ρ| =
∣∣∣∣ inf
x∈Bρ(x◦)

(ϕ(x)− ϕ(x◦))− inf
x∈Bρ(x◦)

〈∇ϕ(x◦), x− x◦〉
∣∣∣∣ ≤ ερ

and
|θ[ϕ](x◦) + ‖∇ϕ(x◦)‖| ≤ ε.
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This implies
θ[ϕ](x◦) = −‖∇ϕ(x◦)‖

and
θ+[ϕ](x◦) = −θ[−ϕ](x◦) = ‖∇ϕ(x◦)‖ .

Let ϕ be strictly differentiable at x◦. In this case instead of (8) one has a stronger
condition: there exists a δ > 0 such that

|ϕ(u)− ϕ(x)− 〈∇ϕ(x◦), u− x〉| ≤ ε ‖u− x‖ (9)

for any x, u ∈ Bδ(x◦). Take arbitrary x ∈ Bδ/2(x◦) and ρ ∈ (0, δ/2]. Then (9) holds true
for any u ∈ Bρ(x). As above, this leads to the estimates∣∣∣∣ inf

u∈Bρ(x)\{x}

[ϕ(u)− ϕ(x)]−
d(u, x)

+ ‖∇ϕ(x◦)‖
∣∣∣∣ ≤ ε,∣∣∣∣ inf

u∈Bρ(x)

ϕ(u)− ϕ(x)
ρ

+ ‖∇ϕ(x◦)‖
∣∣∣∣ ≤ ε

valid for any x ∈ Bδ/2(x◦). Consequently,

|τ̂ [ϕ](x◦) + ‖∇ϕ(x◦)‖| ≤ ε,
∣∣∣θ̂[ϕ](x◦) + ‖∇ϕ(x◦)‖

∣∣∣ ≤ ε

and
θ̂[ϕ](x◦) = τ̂ [ϕ](x◦) = −‖∇ϕ(x◦)‖ .

The equalities
θ̂+[ϕ](x◦) = τ̂+[ϕ](x◦) = ‖∇ϕ(x◦)‖

follow immediately.

Corollary 2.1. If ϕ is Fréchet differentiable at x◦ with the derivative ∇ϕ(x◦) then the
following conditions are equivalent.

(i) ϕ is inf-θ-stationary at x◦;

(ii) ϕ is inf-stationary at x◦;

(iii) ϕ is θ-stationary at x◦;

(iv) ϕ is stationary at x◦;

(v) ∇ϕ(x◦) = 0.

If, additionally, the derivative is strict then the above conditions are also equivalent to the
following ones.

(vi) ϕ is weakly inf-θ-stationary at x◦;

(vii) ϕ is weakly inf-stationary at x◦;

(viii) ϕ is weakly θ-stationary at x◦;

(ix) ϕ is weakly stationary at x◦.

Remark 5. Stationary and weak stationary in the above corollary can be replaced with
regularity and strong regularity respectively if one replaces the equality in (v) with the
inequality ∇ϕ(x◦) 6= 0.
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6 Convex Functions

In the convex case, as one could expect, all versions of inf-stationarity coincide and appear
to be equivalent to just (local and global) minimality.

Theorem 3. Let ϕ be convex.

(i) If θρ[ϕ](x◦) < 0 for some ρ > 0 then θρ[ϕ](x◦) < 0 for all ρ > 0.

(ii) The functions ρ → θρ[ϕ](x◦)/ρ, ρ → θ+
ρ [ϕ](x◦)/ρ are nondecreasing on R+\{0}.

(iii) The following equalities hold true:

θ̂[ϕ](x◦) = τ̂ [ϕ](x◦) = θ[ϕ](x◦) = τ [ϕ](x◦) = inf
ρ>0

θρ[ϕ](x◦)
ρ

= inf
x 6=x◦

[ϕ(x)− ϕ(x◦)]−
‖x− x◦‖

,

θ+[ϕ](x◦) = τ+[ϕ](x◦) = inf
ρ>0

θ+
ρ [ϕ](x◦)

ρ
= inf

ρ>0
sup

‖x−x◦‖=ρ

[ϕ(x)− ϕ(x◦)]+
ρ

.

(iv) τ [ϕ](x◦) + τ+[ϕ](x◦) ≥ 0.

(v) τ̂ [ϕ](x◦) + τ̂+[ϕ](x◦) ≥ 0.

(vi) If τ [ϕ](x◦) + τ+[ϕ](x◦) = 0 and {xk} ⊂ X is a sequence defining τ [ϕ](x◦), i.e.
xk → 0 and

τ [ϕ](x◦) = lim
k→∞

ϕ(x◦ + xk)− ϕ(x◦)
‖xk‖

(10)

then {−xk} is a sequence defining τ+[ϕ](x◦):

τ+[ϕ](x◦) = lim
k→∞

ϕ(x◦ − xk)− ϕ(x◦)
‖xk‖

. (11)

Proof. We need the following elementary property of a convex function:

ϕ(x′)− ϕ(x◦) ≤ t(ϕ(x)− ϕ(x◦)), (12)

where x, x′ ∈ X, 0 ≤ t ≤ 1 and x′ = x◦ + t(x− x◦).
Let 0 < ρ′ ≤ ρ, t = ρ′/ρ. Evidently x ∈ Bρ(x◦) if and only if x′ ∈ Bρ′(x◦). It follows

from (12) and (1) that θρ′ [ϕ](x◦) ≤ tθρ[ϕ](x◦) and θ+
ρ′ [ϕ](x◦) ≤ tθ+

ρ [ϕ](x◦). In other words,

θρ′ [ϕ](x◦)/ρ′ ≤ θρ[ϕ](x◦)/ρ, θ+
ρ′ [ϕ](x◦)/ρ′ ≤ θ+

ρ [ϕ](x◦)/ρ,

which proves (ii). If θρ[ϕ](x◦) < 0 for some ρ > 0 then the first of the above inequalities
guarantees that θρ′ [ϕ](x◦) < 0 for all positive ρ′ ≤ ρ. Certainly in this case one also has
θρ′ [ϕ](x◦) < 0 for all ρ′ > ρ since the function ρ → θρ[ϕ](x◦) is nonincreasing. This proves
(i).

(iii) Due to (ii), the representations of θ[ϕ](x◦) and θ+[ϕ](x◦) can be simplified:

θ[ϕ](x◦) = inf
ρ>0

θρ[ϕ](x◦)
ρ

, θ+[ϕ](x◦) = inf
ρ>0

θ+
ρ [ϕ](x◦)

ρ
. (13)

Similarly, it follows from (12) that

ϕ(x′)− ϕ(x◦)
‖x′ − x◦‖

≤ ϕ(x)− ϕ(x◦)
‖x− x◦‖
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if x 6= x◦ and x′ 6= x◦, which yields the representations

τ [ϕ](x◦) = inf
x 6=x◦

[ϕ(x)− ϕ(x◦)]−
‖x− x◦‖

, (14)

τ+[ϕ](x◦) = inf
ρ>0

sup
‖x−x◦‖=ρ

[ϕ(x)− ϕ(x◦)]+
ρ

. (15)

Let us show that θ[ϕ](x◦) = τ [ϕ](x◦). Due to inequality (i) in Proposition 4 we only
need to prove that θ[ϕ](x◦) ≤ τ [ϕ](x◦). From (13) and (1) one has

θ[ϕ](x◦) ≤ θρ[ϕ](x◦)
ρ

≤ ϕ(x)− ϕ(x◦)
ρ

for any ρ > 0 and any x ∈ Bρ(x◦). In particular, for any x 6= x◦ and ρ = ‖x− x◦‖ one
gets the inequality

θ[ϕ](x◦) ≤ ϕ(x)− ϕ(x◦)
‖x− x◦‖

and consequently

θ[ϕ](x◦) ≤ [ϕ(x)− ϕ(x◦)]−
‖x− x◦‖

since θ[ϕ](x◦) ≤ 0. The desired inequality follows from (14).
The proof of the equality θ+[ϕ](x◦) = τ+[ϕ](x◦) is straightforward. Proposition 4,

(i) implies the inequality θ+[ϕ](x◦) ≤ τ+[ϕ](x◦). The opposite inequality τ+[ϕ](x◦) ≤
θ+[ϕ](x◦) follows from (15) and the definition of θ+[ϕ](x◦).

θ[ϕ](x◦) = τ [ϕ](x◦) and θ+[ϕ](x◦) = τ+[ϕ](x◦) imply the equalities θ̂[ϕ](x◦) = τ̂ [ϕ](x◦)
and θ̂+[ϕ](x◦) = τ̂+[ϕ](x◦) by definitions (4) and(5).

Due to parts (ii) and (iii) of Theorem 1 one has

θ[ϕ](x◦) = τ [ϕ](x◦) ≤ τ̂ [ϕ](x◦) ≤ θ̂[ϕ](x◦).

To complete the proof of (iii) we only need to show that θ̂[ϕ](x◦) ≤ θ[ϕ](x◦). If θ[ϕ](x◦) = 0
the assertion is trivial. Let θ[ϕ](x◦) < α < 0. It is sufficient to show that θ̂[ϕ](x◦) ≤ α.
Take arbitrary β ∈ (θ[ϕ](x◦), α). Then it follows from (2) that there exists a δ > 0 such
that θδ[ϕ](x◦) < βδ, and consequently ϕ(u) − ϕ(x◦) < βδ for some u ∈ Bδ(x◦). Denote
δ1 = (α − β)δ and take arbitrary x ∈ Bδ1(x

◦) such that |ϕ(x) − ϕ(x◦)| ≤ δ1. Then
ϕ(u)− ϕ(x) < αδ, u ∈ Bδ2(x), where δ2 = (1 + α− β)δ, and consequently

inf
u∈Bδ2

(x)

ϕ(u)− ϕ(x)
δ2

<
α

1 + α− β
.

Due to (ii) the last inequality implies that

inf
u∈Bρ(x)

ϕ(u)− ϕ(x)
ρ

<
α

1 + α− β

for all positive ρ ≤ δ2 and all x ∈ Bδ1(x
◦) such that |ϕ(x) − ϕ(x◦)| ≤ δ1. Consequently,

θ̂[ϕ](x◦) ≤ α/(1 + α − β). Since β can be taken arbitrarily close to α one can conclude
that θ̂[ϕ](x◦) ≤ α.

(iv) If τ [ϕ](x◦) = 0 the inequality holds trivially. Assume that τ [ϕ](x◦) < 0 and chose
a (defining) sequence xk → 0 such that (10) holds true. Then

(ϕ(x◦ + xk) + ϕ(x◦ − xk))/2 ≥ ϕ(x◦) (16)
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due to convexity of ϕ. Evidently,

τ+[ϕ](x◦) ≥ lim sup
k→∞

ϕ(x◦ − xk)− ϕ(x◦)
‖xk‖

. (17)

On the other hand, taking into account (16), one has

lim inf
k→∞

ϕ(x◦ − xk)− ϕ(x◦)
‖xk‖

≥ − lim
k→∞

ϕ(x◦ + xk)− ϕ(x◦)
‖xk‖

= −τ [ϕ](x◦). (18)

(17) and (18) imply the desired inequality τ [ϕ](x◦) + τ+[ϕ](x◦) ≥ 0.
(v) follows from (iv) due to Theorem 1, part (ii):

τ̂+[ϕ](x◦) = lim inf
x

ϕ→x◦
τ+[ϕ](x) ≥ − lim sup

x
ϕ→x◦

τ [ϕ](x) = −τ̂ [ϕ](x◦).

(vi) Due to the assumption τ [ϕ](x◦) + τ+[ϕ](x◦) = 0 the constants τ [ϕ](x◦) and
τ+[ϕ](x◦) are either both nonzero or both zero. In the latter case one obviously has

lim
x→0

ϕ(x◦ + x)− ϕ(x◦)
‖x‖

= 0

and consequently any sequence xk → 0 is a defining sequence (for any of the two constants).
This explains why the [·]− and [·]+ operations are omitted in (10) and (11). If {xk} is a
sequence defining τ [ϕ](x◦) then due to (17) and (18) one has the estimates

τ+[ϕ](x◦) ≥ lim sup
k→∞

ϕ(x◦ − xk)− ϕ(x◦)
‖xk‖

≥

lim inf
k→∞

ϕ(x◦ − xk)− ϕ(x◦)
‖xk‖

≥ −τ [ϕ](x◦) = τ+[ϕ](x◦).

which imply (11).

Corollary 3.1. If ϕ is convex then the following conditions are equivalent.

(i) ϕ attains a global minimum at x◦;

(ii) ϕ attains a local minimum at x◦;

(iii) ϕ is inf-θ-stationary at x◦;

(iv) ϕ is inf-stationary at x◦;

(v) ϕ is θ-stationary at x◦;

(vi) ϕ is stationary at x◦;

(vii) ϕ is weakly inf-θ-stationary at x◦;

(viii) ϕ is weakly inf-stationary at x◦;

(ix) ϕ is weakly stationary at x◦.

Proof. (i) ⇔ (ii) follows from Theorem 3, (i).
(i) ⇒ (iii) follows from the equality

θ[ϕ](x◦) = inf
ρ>0

θρ[ϕ](x◦)
ρ

in Theorem 3, (iii). This equality implies also the estimate θ[ϕ](x◦) ≤ θρ[ϕ](x◦)/ρ ≤ 0 for
any ρ > 0 which in its turn yields the opposite implication (iii) ⇒ (i).

(iii) ⇔ (iv) ⇔ (vii) ⇔ (viii) follow from Theorem 3, (iii).
(iii) ⇒ (v), (iv) ⇒ (vi), (viii) ⇒ (ix) follow from Definition 4, while the opposite

implications follow from Theorem 3, (iv) and (iii).
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Remark 6. Conditions τ [ϕ](x◦) = τ+[ϕ](x◦) = 0 imply the Fréchet differentiability of ϕ
at x◦ (with the derivative equal to zero). The weaker condition τ [ϕ](x◦) + τ+[ϕ](x◦) = 0
in Theorem 3, (v) implies linearity of the directional derivative of ϕ along the direction of
steepest descent (if the latter exists) with the opposite direction being automatically the
direction of steepest ascent. This condition is not sufficient for differentiability of ϕ at x◦

unless X = R. Note also that the direction opposite to the direction of steepest ascent
does not need to be a direction of steepest descent.

Example 7 (3). Take the function ϕ(x, y) = max(x, y) on R2 and assume that R2 is
equipped with the max type norm: ‖x, y‖ = max(|x|, |y|). ϕ is obviously not differentiable
at 0. At the same time τ [ϕ](0) = −1, τ+[ϕ](0) = 1. The vector (−1,−1) defines the
(unique) direction of steepest descent. The opposite vector (1, 1) defines the direction
of steepest ascent and ϕ is linear along the line defined by these vectors. Note that the
direction of steepest ascent is not unique. For instance, the vector (1, 0) also defines the
direction of steepest ascent, while the opposite vector does not define the direction of
steepest descent and ϕ is not linear along this line.

Remark 7. Stationary and weak stationary in the assertions (iii) – (ix) of the above corol-
lary can be replaced with regularity and strong regularity respectively if one replaces (i)
and (ii) with the opposite assertions: x◦ is not a point of (local or global) minimum of ϕ.

7 Subdifferential Conditions

The stationarity and regularity properties were defined above in terms of primal space
elements. In the case of a normed linear space they admit some dual characterizations in
terms of Fréchet subdifferentials.

Let X be a normed linear space. Its (topological) dual is denoted X∗. 〈·, ·〉 is the
bilinear form defining the duality pairing. Recall that the Fréchet subdifferential of ϕ at
x◦ is defined as

∂ϕ(x◦) =
{

x∗ ∈ X∗ : lim inf
x→x◦

ϕ(x)− ϕ(x◦)− 〈x∗, x− x◦〉
‖x− x◦‖

≥ 0
}

. (19)

The simplest dual characterization of stationarity is given by the next proposition.

Proposition 7. ϕ is inf-stationary at x◦ if and only if 0 ∈ ∂ϕ(x◦).

Proof. By definition (19) the condition 0 ∈ ∂ϕ(x◦) is equivalent to

lim inf
x→x◦

ϕ(x)− ϕ(x◦)
‖x− x◦‖

≥ 0,

which in its turn can be rewritten as

lim inf
x→x◦

[ϕ(x)− ϕ(x◦)]−
‖x− x◦‖

= 0.

By (3) this is equivalent to τ [ϕ](x◦) = 0.

Remark 8. Due to Corollary 4.1 the inclusion 0 ∈ ∂ϕ(x◦) is sufficient for inf-θ-stationarity
of ϕ at x◦. The opposite implication is not true in general (see Examples 1 and 2).

In what follows ϕ is assumed to be lower semicontinuous near x◦.
In general nonconvex setting the subdifferential mapping ∂ϕ(·) fails to posses good

(semi-)continuity properties. In fact, the set ∂ϕ(x) can be empty rather often. Based on
(19) one can define a more robust derivative-like object:

3The example was composed by Alexander Rubinov (personal communication).
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∂̂δϕ(x◦) =
⋃
{∂ϕ(x) : x ∈ Bδ(x◦), |ϕ(x)− ϕ(x◦)| ≤ δ} . (20)

It depends on a positive parameter δ and accumulates information on “differential” prop-
erties of ϕ at nearby points, thus attaining some properties of a strict derivative. The set
(20) is called a strict δ-subdifferential of ϕ at x◦ (see [9, 10, 11]). In contrast to (19), the
set (20) can be nonconvex. However, it possesses certain subdifferential calculus.

Using (20) one more constant can be defined for characterizing stationarity/regularity
properties of ϕ:

η[ϕ](x◦) = lim
δ→0

inf
{
‖x∗‖ : x∗ ∈ ∂̂δϕ(x◦)

}
. (21)

In contrast to the constants considered in the preceding sections this constant is nonneg-
ative.

Definition 5. ϕ is

(i) inf-η-stationary at x◦ if η[ϕ](x◦) = 0;

(ii) inf-η-regular at x◦ if η[ϕ](x◦) > 0.

Remark 9. Note that the inf-η-stationary condition η[ϕ](x◦) = 0 does not imply the
inclusion 0 ∈ ∂̂δϕ(x◦).

Example 8. Take ϕ(x) = x, if x < 0, and ϕ(x) = x2 otherwise. One has ∂ϕ(0) = ∅,
0 6∈ ∂̂δϕ(0) for any δ > 0 while η[ϕ](0) = 0.

Fortunately (21) happens to be closely related to (4) (and (5)).

Theorem 4. (i) θ̂[ϕ](x◦) + η[ϕ](x◦) ≥ 0.

(ii) If X is Asplund and θ̂[ϕ](x◦) > −1 then η[ϕ](x◦) ≤ −θ̂[ϕ](x◦)/(1 + θ̂[ϕ](x◦)).

This theorem follows from [12], Theorem 2. The first part of the theorem is elementary.
The proof of the second part is based on the application of the two fundamental results
of variational analysis: the Ekeland variational principle [4] and the fuzzy sum rule due
to M. Fabian [5].

Recall that a Banach space is called Asplund (see [6, 17]) if any continuous convex
function on it is Fréchet differentiable on a dense Gδ subset.

Corollary 4.1. (i) If ϕ is inf-η-stationary at x◦ then it is weakly inf-stationary at x◦.

(ii) If ϕ is strongly inf-regular at x◦ then it is inf-η-regular at x◦.

(iii) If X is Asplund then the conditions are equivalent: ϕ is weakly inf-stationary (strongly
inf-regular) at x◦ if and only if it is inf-η-stationary (inf-η-regular) at x◦.

Remark 10. The dual “maximization” constant can be defined in a natural way if one
replaces the strict δ-subdifferential in (21) with the strict δ-superdifferential. It is related to
(21) by the formula η+[ϕ](x◦) = η[−ϕ](x◦) and leads to corresponding sup-η-stationarity
and sup-η-regularity concepts. Theorem 4 implies similar relations between η+[ϕ](x◦) and
θ̂+[ϕ](x◦).
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