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1 Introduction

A uniform version of the (strong) Law of Large Numbers (LLN) for considered (real-
valued) random functions has been instrumental in consistency analysis of optimal
values and solutions in stochastic optimization (see, e.g., [6, sections 2.6 and 6.2]).
However, those results cannot be applied to a similar analysis of stationary points, in
nonsmooth nonconvex stochastic optimization, formulated in terms of subdifferentials
(generalized gradients) of the corresponding objective functions. Consequently a uni-
form LLN for random set-valued mappings (multifunctions) is needed. In this paper
we present such a result. An LLN for random sets was originally derived by Artstein
and Vitale [1]. This has a natural application to establishing LLN for subdifferen-
tials of random functions at a given (fixed) point. In studying convergence properties
of stationary points of sample average approximations of stochastic programs, one
needs a uniform type of LLN for random multifunctions given by subdifferentials
(generalized gradients) of considered random functions. In this paper we extend the
Artstein-Vitale LLN to a uniform setting and show how it can be applied to establish-
ing convergence of stationary points of sample average approximations of stochastic
programs.

We use the following notation throughout the paper. For a point x in a metric
space (X , ρ) and r ≥ 0, we denote by Br(x) := {x′ ∈ X : ρ(x′, x) ≤ r} the ball of
radius r centered at x. For a set A ⊂ Rn and y ∈ Rn, we denote by dist(y, A) :=
infz∈A ‖y− z‖ the distance from y to A with respect to the Euclidean norm ‖ · ‖. For
two sets A, C ⊂ Rn we denote by

D(A, C) := sup
x∈A

dist(x, C)

the deviation of the set A from the set C, by

H(A, C) := max{D(A, C), D(C, A)}

the Hausdorff distance between A and C, and ‖A‖ := supy∈A ‖y‖. Note that both
D(·, ·) and H(·, ·) satisfy the triangle inequality, i.e., for sets A, B, C ⊂ Rn, the fol-
lowing inequality holds

D(A, C) ≤ D(A, B) + D(B, C), (1.1)

and similarly for the Hausdorff distance. Note also that for sets A, B, A′, B′ ⊂ Rn,
the following inequality holds

D(A + B, A′ + B′) ≤ D(A, A′) + D(B, B′). (1.2)

Both inequalities (1.1) and (1.2) follow easily from the formula

D(A, C) = inf
t≥0
{t : A ⊂ C + tB},

where B is the unit ball in Rn.
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2 Uniform LLN for Set-Valued Mappings

Let (X , ρ) be a metric space, (Ω,F , P ) be a probability space and A : X × Ω ⇒ Rn

be a multifunction (set-valued mapping), which maps (x, ω) ∈ X × Ω into a subset
of Rn. We assume that A(x, ω) is compact valued, i.e., for every (x, ω) ∈ dom(A) we
have that A(x, ω) ∈ Cn, where Cn denotes the space of nonempty compact subsets
of Rn. Equipped with the Hausdorff metric H(·, ·), the space Cn becomes a metric
space. We can view the multifunction A as a single-valued mapping from dom(A)
into Cn. With some abuse of notation we denote this single-valued mapping also by
A. Also for x ∈ X , we sometimes use the notation Ax(ω) := A(x, ω).

We assume that for every x ∈ X , the multifuction Ax(·) is measurable. That is,
for any closed set C ⊂ Rn, the set

A−1
x (C) =

{
ω ∈ Ω : Ax(ω) ∩ C 6= ∅

}
is F -measurable. We have that Ax is measurable iff the corresponding single-valued
mapping Ax : dom(Ax) → Cn is measurable in the usual sense, i.e., the inverse of
every Borel subset of the metric space (Cn, H), belongs to the sigma algebra F (e.g.,
[5, Theorem 14.4]).

We say that Ai : X × Ω → Cn, i = 1, ..., is an iid sequence of realizations of the
multifunction A if for every x ∈ X , the multifunction Ai(x) = Ai(x, ·) is measurable
and has the same probability distribution as A(x, ω), and each Ai(x) is independent
of {Aj(x)}j 6=i. We have the following (strong) Law of Large Numbers for the iid
sequence Ai = Ai(x) of random sets (for fixed x ∈ Rn), due to Artstein and Vitale
[1].

Theorem 1 Let Ai, i = 1, ..., be an iid sequence of realizations of a (measurable)
mapping A : Ω → Cn such that E‖A‖ < ∞. Then

N−1(A1 + ... + AN) → E[conv(A)] w.p.1 as N →∞. (2.1)

Here conv(A) denotes the convex hull of A. The convergence in (2.1) is taken in
the (Hausdorff) metric of the space Cn. The expectation E[conv(A)] is defined as the
set of integrals

∫
Ω

a(ω)dP (ω) taken over all measurable selections a(ω) ∈ conv(A)(ω).
Recall that by a theorem due to Aumann [3],

E[conv(A)] = E[A]

if the probability space (Ω,F , P ) is nonatomic.
We say that a multifunction A : X → Cn is upper semicontinuous at a point

x̄ ∈ X if for any neighborhood V of the set A(x̄) there exists a neighborhood N of x̄
such that for every x ∈ N the inclusion A(x) ⊂ V holds. Since here the multifunction
A is assumed to be compact valued, this is equivalent to the condition

lim
x→x̄

D(A(x),A(x̄)) = 0. (2.2)
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It is said that A is upper semicontinuous if it is upper semicontinuous at every point
of X . For r ≥ 0 we denote

Ar(x) :=
⋃

x′∈Br(x)

A(x′).

Note that for any t ≥ 0 and A ⊂ Rn it holds that conv(A+tB) = conv(A)+tB, where
B is the unit ball in Rn. It follows that if the multifunction A is upper semicontinuous,
then the multifunction conv(A) is also upper semicontinuous.

We prove now the main result of this paper which can be viewed as an extension
of Theorem 1 to a uniform setting.

Theorem 2 Let Ai(x), i = 1, ..., be an iid sequence of realizations of a (measurable)
mapping A : X × Ω → Cn and SN(x) := N−1

∑N
i=1Ai(x). Suppose that the metric

space (X , ρ) is compact, there exists a P -integrable function κ : Ω → R+ such that

‖A(x, ω)‖ ≤ κ(ω), ∀ (x, ω) ∈ X × Ω, (2.3)

and that for any x ∈ X the multifunction A(·, ω) is upper semicontinuous at x for P -
almost every ω ∈ Ω. Then the expected value E(x) := E[conv(A)(x)] is well defined,
the multifunction E : X → Cn is upper semicontinuous and for any r > 0, the
following limits hold:

sup
x∈X

D
(
SN(x), Er(x)

)
→ 0 w.p.1 as N →∞, (2.4)

sup
x∈X

D
(
E(x),Sr

N(x)
)
→ 0 w.p.1 as N →∞. (2.5)

Proof. First note that by assumption (2.3), we have

E‖conv(A)(x)‖ ≤ E[κ] < ∞, ∀x ∈ X .

It follows that the expected value E(x) is well defined and ‖E(x)‖ ≤ E[κ] for all
x ∈ X . We also have by (1.2) and (2.3) that for any x, x′ ∈ X and ω ∈ Ω,

D
(
conv(A)(x′, ω), conv(A)(x, ω)

)
≤ 2κ(ω). (2.6)

Consider a sequence γk ↓ 0 and define Vk(x) := Bγk
(x), i.e., Vk(x) is a ball of radius

γk centered at x. Because of (2.6), we have by the Lebesgue Dominated Convergence
Theorem that for any (fixed) point x ∈ X ,

lim
k→∞

∫
Ω

supx′∈Vk(x) D(conv(A)(x′, ω), conv(A)(x, ω))dP (ω) =∫
Ω

lim
k→∞

supx′∈Vk(x) D(conv(A)(x′, ω), conv(A)(x, ω))dP (ω).
(2.7)
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Since A(·, ω), and hence conv(A)(·, ω), is upper semicontinuous at x w.p.1, we have
that the supremum inside the integral in the right hand side of (2.7) tends to zero for
a.e. ω ∈ Ω. We obtain that

lim
k→∞

∫
Ω

sup
x′∈Vk(x)

D(conv(A)(x′, ω), conv(A)(x, ω))dP (ω) = 0. (2.8)

We also have that

D(E(x′), E(x)) ≤
∫

Ω

D(conv(A)(x′, ω), conv(A)(x, ω))dP (ω), ∀x, x′ ∈ X . (2.9)

It follows that D(E(xk), E(x)) → 0 for any xk → x, and hence E(·) is upper semicon-
tinuous at x.

Let us observe that it follows from (1.2) that for any x, x′ ∈ X , it holds that

D
(
SN(x′),SN(x)

)
≤ N−1

N∑
i=1

D
(
Ai(x

′),Ai(x)
)
. (2.10)

Consequently

sup
x′∈Vk(x)

D
(
SN(x′),SN(x)

)
≤ N−1

N∑
i=1

sup
x′∈Vk(x)

D
(
Ai(x

′),Ai(x)
)
. (2.11)

By the (strong) LLN we have that w.p.1,

N−1

N∑
i=1

sup
x′∈Vk(x)

D
(
Ai(x

′),Ai(x)
)
→ E

[
sup

x′∈Vk(x)

D
(
A(x′),A(x)

)]
. (2.12)

Consider an arbitrary point x ∈ X . Of course, the limit of the form (2.8) holds for
the multifunction A as well. Consequently, we have that for any ε > 0 the right hand
side of (2.12) is less than ε for all k large enough. Together with (2.11) and (2.12)
this implies that there exists δ > 0 such that for a.e. ω ∈ Ω there exists N̄(ω) such
that

sup
x′∈Bδ(x)

D
(
SN(x′),SN(x)

)
≤ ε (2.13)

for all N ≥ N̄(ω). Consequently, by compactness of X , given δ > 0 there exist a
finite set of points xj ∈ X , j = 1, ..., `, with respective neighborhoods Wj := Bδ(xj),

such that X ⊂
⋃`

j=1 Wj and for a.e. ω ∈ Ω there is N̄(ω) such that

sup
x′∈Wj

D
(
SN(x′),SN(xj)

)
≤ ε, j = 1, ..., `, (2.14)

for all N ≥ N̄(ω). Of course, we can take δ ≤ r.
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Now we can apply the pointwise LLN of Theorem 1 at every point xj to conclude
(probably by taking a larger value of N̄(ω)) that

D
(
SN(xj), E(xj)

)
≤ ε, j = 1, ..., `, (2.15)

for all N ≥ N̄(ω). For a point x ∈ X we have that x ∈ Wj for some j ∈ {1, ..., `}.
Then

D
(
SN(x), Er(x)

)
≤ D

(
SN(x),SN(xj)

)
+ D

(
SN(xj), E(xj)

)
+ D

(
E(xj), Er(x)

)
. (2.16)

It follows from (2.14) and (2.15) that the first and second terms in the right hand
side of (2.16) are less than or equal to ε for N ≥ N̄(ω), and the last term is zero since
ρ(xj, x) ≤ r. We obtain that for N ≥ N̄(ω),

sup
x∈X

D
(
SN(x), Er(x)

)
≤ 2ε, (2.17)

and hence (2.4) follows.
The other limit (2.5) can be proved in a similar way. That is, for a given ε > 0,

we can choose a finite number of points xj ∈ X , j = 1, ..., `, and δ ∈ (0, r), such that
the neighborhoods Wj := Bδ(xj), j = 1, ..., `, cover X , and

sup
x∈Wj

D
(
E(x), E(xj)

)
≤ ε, j = 1, ..., `, (2.18)

and (by Theorem 1) for a.e. ω ∈ Ω there exists N̄(ω) such that

D
(
E(xj),SN(xj)

)
≤ ε, j = 1, ..., `, (2.19)

for all N ≥ N̄(ω). Consequently

D
(
E(x),Sr

N(x)
)
≤ D

(
E(x), E(xj)

)
+ D

(
E(xj),SN(xj)

)
+ D

(
SN(xj),Sr

N(x)
)
≤ 2ε,

and hence (2.5) follows.

Remark 1 If A(·, ω) is compact valued and upper semicontinuous, then Ar(·, ω) is
also compact valued and upper semicontinuous. It follows that under the assumptions
of Theorem 2, limits (2.4) and (2.5) imply that

sup
x∈X

D
(
Sr′

N (x), Er(x)
)
→ 0 w.p.1 as N →∞, (2.20)

sup
x∈X

D
(
Er′(x),Sr

N(x)
)
→ 0 w.p.1 as N →∞, (2.21)

for any r > r′ ≥ 0.
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Remark 2 The natural question is whether the limit (2.4) holds for r = 0. It looks
that in the absence of continuity of A(·, ω) this could be not true. However, we don’t
have such a counterexample. Of course, the same question can be asked about the
limit (2.5) for r = 0, and ultimately whether the uniform LLN (2.23) holds under the
assumptions of Theorem 2. As far as we know these questions are open.

If the expected value multifunction E(x) is continuous (in the Hausdorff metric),
then it is possible to strengthen the convergence result (2.4) to r = 0. That is, the
following result holds.

Theorem 3 If in addition to the assumptions of Theorem 2 the expected value mul-
tifunction E(x) is continuous, then

sup
x∈X

D
(
SN(x), E(x)

)
→ 0 w.p.1 as N →∞. (2.22)

Proof. Convergence (2.22) follows from the assertion (2.4) of Theorem 2 and the
following fact:

(?) Let (X , ρ) be a compact metric space and E : X → Cn be a continuous mapping.
Then for any ε > 0 there exists δ > 0 such that H(Eδ(x), E(x)) ≤ ε for all x ∈ X .

Proof of the above assertion (?) is rather standard. Let us argue by a contradiction.
Suppose that the assertion is false. Then there exist ε > 0 and sequences xk ∈ X
and rk ↓ 0 such that H (Erk(xk), E(xk)) > ε for all k. Since X is compact, we can
assume that xk converges to a point x∗ ∈ X . Moreover, since E is continuous at x∗,
we have that there is δ > 0 such that H(E(x), E(x′)) < ε for all x, x′ ∈ Bδ(x

∗). This,
however, contradicts the assumption that H (Erk(xk), E(xk)) > ε for ρ(xk, x

∗) < δ/2
and rk < δ/2.

Moreover, if for every x ∈ X the multifunction A(x, ω) is a singleton w.p.1, i.e.,
A(x, ω) = {a(x, ω)} for a.e. ω ∈ Ω, then the expected value E(x) = {e(x)} is also
single valued. In that case the upper semicontinuity of E(x) is equivalent to continuity
of the corresponding mapping e : X → Rn. The following result then is a consequence
of Theorem 3.

Corollary 1 Suppose that, in addition to the assumptions of Theorem 2, for every
x ∈ X the set A(x, ω) is a singleton for a.e. ω ∈ Ω. Then the expected value
E(x) = {e(x)} is single valued, the mapping e : X → Rn is continuous and the
convergence (2.22) follows.

If we assume that the multifunction A(·, ω) is continuous (rather than just upper
semicontinuous) we obtain the following result.
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Theorem 4 Suppose that, in addition to the assumptions of Theorem 2, for every
x ∈ X the multifunction A(·, ω) is continuous at x for a.e. ω ∈ Ω. Then the expected
value multifunction E(x) is continuous and the following uniform LLN holds:

sup
x∈X

H
(
SN(x), E(x)

)
→ 0 w.p.1 as N →∞. (2.23)

Proof. One can proceed in proving continuity of E(x) exactly in the same way
as the proof of the upper semicontinuity in Theorem 2, by replacing D in equations
(2.6)–(2.9) with H. Also in order to prove (2.23) one can use the same arguments as
in the proof of Theorem 2. The crucial difference here is that by continuity of E(x)
we can use the inequality (2.16) with D replaced by H and r = 0.

3 Uniform LLN for Subdifferentials of Random

Functions

In this section we discuss applications of the results of the previous section to studying
convergence of subdifferentials of sample averages of random functions. Let ξi : Ω →
Rd, i = 1, ..., be an iid sequence of random vectors supported on a set Ξ, i.e., Ξ is a
closed subset of Rd and ξi ∈ Ξ w.p.1. Consider a function F : Rn×Ξ → R. We assume
that F (x, ξ) is a Carathéodory function, i.e., F (x, ·) is (Borel) measurable for every
x ∈ Rn and F (·, ξ) is continuous for a.e. ξ ∈ Ξ (in fact we assume later that F (·, ξ) is
Lipschitz continuous). We assume that the expected value function f(x) := E[F (x, ξ)]
is well defined (finite valued). Consider the sample average function:

f̂N(x) := N−1

N∑
i=1

F (x, ξi).

Let X be a nonempty compact subset of Rn. Suppose that for a.e. ξ ∈ Ξ the
function Fξ(·) = F (·, ξ) is Lipschitz continuous on a neighborhood of X , and let
∂Fξ(x) be its Clarke’s generalized gradient at x ∈ X (cf., [4]). There are several
equivalent ways to define ∂Fξ(x). For example, consider the so-called generalized
directional derivative

F ◦
ξ (x, d) := lim sup

y→x
t↓0

Fξ(y + td)− Fξ(y)

t
.

We have that F ◦
ξ (x, ·) is convex positively homogeneous and is the support function

of the closed compact set ∂Fξ(x), [4, Proposition 2.1.2]. For a given x ∈ X , we can
view ξ 7→ F ◦

ξ (x, ·) as a mapping from X × Ξ into the space C(Sn−1) of continuous
functions, on the unit sphere Sn−1 of Rn, equipped with the sup-norm. Since there
is an isometric correspondence between the space of convex compact subsets of Rn,
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equipped with the Hausdorff metric, and the corresponding subset of C(Sn−1), it
follows that the multifunction ξ 7→ ∂Fξ(x) is measurable (cf., [5, Theorem 14.4]).

Consider the multifunction A(x, ξ) := ∂Fξ(x). By the above, we have that for
every x ∈ X the multifunction A(x, ·) : Ξ ⇒ Rn is convex and compact valued and
measurable. It is a property of Clarke’s generalized gradient that this multifunction
is upper semicontinuous, [4, Proposition 2.1.5]. Suppose, further, that:

(i) there is a measurable function κ : Ξ → R+ such that E[κ(ξ)] < ∞ and

|F (x′, ξ)− F (x, ξ)| ≤ κ(ξ)‖x′ − x‖, for all x′, x ∈ X and ξ ∈ Ξ. (3.1)

The above assumption (i) implies condition (2.3) of Theorem 2. We can apply now
Theorem 2 to the multifunction A(x, ξ). Let

SN(x) := N−1

N∑
i=1

A(x.ξi) = N−1

N∑
i=1

∂Fξi
(x)

and E(x) := E[A(x)] be the corresponding sample average and the expected value
multifunctions, respectively. Then the following inclusions hold ∂f̂N(x) ⊂ SN(x)
and ∂f(x) ⊂ E(x), [4, Theorem 2.7.2]. Unfortunately, these inclusions can be strict.
Therefore, in order to get a meaningful uniform LLN for Clarke’s generalized gradi-
ents, we need some additional assumptions.

Recall that a locally Lipschitz function g : Rn → R is said to be regular at a
point x ∈ Rn, in the sense of Clarke, if g(·) is directionally differentiable at x and
the directional derivative g′(x, ·) coincides with the generalized directional derivative
g◦(x, ·) (cf., [4, Definition 2.3.4]). Then g′(x, ·) coincides with the support function of
the generalized gradient ∂g(x), and hence g′(x, ·) is convex. Denote

∂rg(x) :=
⋃

x′∈Br(x)

∂g(x′), (3.2)

where the ball Br(x) is taken with respect to the Euclidean norm of Rn. As a conse-
quence of Theorem 2 we have the following result.

Theorem 5 Let ξi, i = 1, ..., N , be an iid sequence of random vectors supported on
a set Ξ ⊂ Rd, F : Rn × Ξ → R be a Carathéodory function, and X be a nonempty
compact subset of Rn. Suppose that the above condition (i) and the following condition
are satisfied: (ii) for any x ∈ X the function F (·, ξ) is regular at x for a.e. ξ ∈ Ξ.
Then for any r > r′ ≥ 0 the following limits hold:

sup
x∈X

D
(
∂r′ f̂N(x), ∂rf(x)

)
→ 0 w.p.1 as N →∞, (3.3)

sup
x∈X

D
(
∂r′f(x), ∂rf̂N(x)

)
→ 0 w.p.1 as N →∞. (3.4)
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Proof. It follows from assumption (i) that for all ξ ∈ Ξ the function F (·, ξ) is
Lipschitz continuous on a neighborhood of X , and hence the generalized gradient
∂Fξ(x), of F (·, ξ) at x is well defined convex and compact for any x ∈ X . Moreover,
it follows from (2.23) that ‖∂Fξ(x)‖ ≤ κ(ξ) for all (x, ξ) ∈ X × Ξ. Now because

of the regularity assumption (ii), we have that the sample average function f̂N(x) is
regular (cf., [4, Proposition 2.3.6]) and ∂f̂N(x) = N−1

∑N
i=1 ∂Fξi

(x). Also, because
of the regularity assumption (ii), we have that f(x) is regular at every x ∈ X and
∂f(x) = E[∂Fξ(x)], [4, Theorem 2.7.2]. The uniform convergence properties (3.3) and
(3.4) follow now by Theorem 2 (see Remark 1).

By Corollary 1 we have the following result (cf., [7, Proposition 2.2]).

Theorem 6 Let ξi, i = 1, ..., N , be an iid sequence of random vectors supported on
a set Ξ ⊂ Rd, F : Rn × Ξ → R be a Carathéodory function, and X be a nonempty
compact subset of Rn. Suppose that the condition (i) and the following condition are
satisfied: (iii) for every x ∈ X the set ∂Fξ(x) is a singleton for a.e. ξ ∈ Ξ. Then the
expected value function f(x) is continuously differentiable, E[∂Fξ(x)] = {∇f(x)} for
any x ∈ Xand

sup
x∈X

D
(
∂f̂N(x), {∇f(x)}

)
→ 0 w.p.1 as N →∞. (3.5)

4 Applications to Stochastic Optimization

In this section, we discuss an application of the established results to stochastic
programming. Consider the following stochastic optimization problem:

Min
x∈X

{
f(x) := E [F (x, ξ)]

}
, (4.1)

where X is a nonempty convex compact subset of Rn, ξ is a random vector supported
on a set Ξ ⊂ Rd, and F (x, ξ) is a random function satisfying the assumptions of
Theorem 5.

For ε ≥ 0 we say that a point x̄ ∈ X is an ε-stationary point of the problem (4.1)
if it satisfies the following equation

0 ∈ ∂ εf(x) +NX (x). (4.2)

Here NX (x) denotes the normal cone of the set X at x ∈ X and ∂εf(x) is defined in
(3.2). (Note that, by the definition, NX (x) = ∅ if x 6= X .) In particular, for ε = 0 we
refer to a point x̄ ∈ X satisfying (4.2) as a stationary point.

Let ξ1, ..., be an iid sample of the random vector ξ. Consider the following sample
average program

Min
x∈X

{
f̂N(x) :=

1

N

N∑
i=1

F (x, ξi)

}
. (4.3)
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As above, we say that a point x̄ ∈ X is an ε-stationary point of the problem (4.3) if
it satisfies the equation

0 ∈ ∂εf̂N(x) +NX (x). (4.4)

We denote by Σε and Σ̂ε
N the sets of ε-stationary points of problems (4.1) and (4.3),

respectively. Note that (4.2) is a necessary condition for a point x ∈ X to be a locally
optimal solution of the problem (4.1). Therefore the set Σε is nonempty provided
that f(x) is continuous and X is nonempty and compact. Similar remark applies to
the set Σ̂ε

N as well.

Theorem 7 Let ξi be an iid sequence of random vectors supported on a set Ξ ⊂ Rd,
F : Rn×Ξ → R be a Carathéodory function, X be a nonempty convex compact subset
of Rn and εN be a sequence of nonnegative numbers converging to zero. Suppose that
the assumptions (i) and (ii) of Theorem 5 hold. Then

D
(
Σ̂

ε
N

N , Σ0
)
→ 0 w.p.1 as N →∞. (4.5)

Proof. By using compactness of X and the uniform convergence result (3.3), it

is quite straightforward to prove that for any ε > 0, it holds that D
(
Σ̂

ε
N

N , Σε
)
→ 0

w.p.1 as N →∞ (see, e.g., [8, Section 7.1]). Also by the upper semicontinuity of the
multifunction x 7→ ∂f(x) we have that⋂

ε>0

(
∂ εf(x) +NX (x)

)
= ∂f(x) +NX (x).

Because of the compactness of X , these two properties imply (4.5).
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