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1 Main result

Let R denote the set of real numbers, (E , ◦) a Euclidean Jordan algebra and E+ = {y ◦
y : y ∈ E} the associated symmetric cone. We use the symbols R[x] and E [x] for the
set of real valued polynomials and the set of E-valued polynomials in a vector variable
x = (x1, x2, . . . , xn) ∈ Rn (or the set of polynomials in x = (x1, x2, . . . , xn) ∈ Rn with
coefficients in E), respectively. Precise definitions on Euclidean Jordan algebras and E-
valued polynomials are given in Section 2.1. Given f ∈ R[x] and g ∈ E [x], an optimization
problem

minimize f(x) subject to g(x) ∈ E+, (1)

is called a POP (polynomial optimization problem) over a symmetric cone E+. This prob-
lem was introduced by the authors in the paper [8] as a unified framework to extend the
hierarchies of SOS (sum of squares) and SDP (semidefinite programming) relaxation which
was proposed by Lasserre [9]. See also Parrilo [11]. The POP (1) over E+ covers not only a
normal POP over the m-dimensional nonnegative orthant

Rm
+ =

{
y ◦ y = (y2

1, y
2
2, . . . , y

2
m) : y = (y1, y2, . . . , ym) ∈ Rm

}
,

but also a polynomial SDP (semidefinite programming) problem (or a POP over S`
+) where

E = S` (the set of `× ` real symmetric matrices) and

E+ = S`
+ =

{
Y ◦ Y = Y 2 : Y ∈ S`

}

(the set of `× ` positive semidefinite real symmetric matrices).

The SOS and SDP relaxation of Lasserre [9] was extended to a polynomial SDP problem by
[3, 4, 7], and further to a POP (1) over E+ by Kojima and Muramatsu [8]. The aim of this
short note is to extend a sparse variant of the SOS and SDP relaxation proposed by Waki,
Kim, Kojima and Muramatsu [13] (see also [5, 6]) for a normal POP over Rm to a sparse
POP over E+, and to prove its theoretical convergence based on the recent convergence
result by Lasserre [10] on the sparse SOS and SDP relaxation for a normal POP over Rm

+ .
Suppose that the Euclidean Jordan algebra (E , ◦) involved in the POP (1) is rep-

resented as the product of m Euclidean Jordan algebras (E1, ◦), (E2◦), · · · , (Em, ◦). Let
Ej+ = {y ◦ y : y ∈ Ej} be the symmetric cone associated with the Jordan algebra (Ej, ◦)
(j = 1, 2, . . . ,m). For any subset I of {1, 2, . . . , n}, we use the notation xI = (xi : i ∈ I) to
denote the subvector of x consisting of elements xi (i ∈ I). Let Ij be a nonempty subset
of {1, 2, . . . , n} (j = 1, 2, . . . ,m). Given fj ∈ R[xIj

] and gj ∈ Ej[xIj
] (j = 1, 2, . . . ,m), we

consider the following POP throughout this note:

〈POP 〉 minimize
m∑

j=1

fj(xIj
) subject to gj(xIj

) ∈ Ej+ (j = 1, 2, . . . ,m).

If we let E+ = E1+ × E2+ × · · · × Em+ and g(x) = (g1(xI1), g2(xI2), . . . , gm(xIm)), we could
reduce 〈POP 〉 to the POP (1) over E+. In practical computation, however, we can take full
advantage in exploiting structured sparsity of 〈POP 〉.
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Let

Kj = {z ∈ R|Ij | : gj(z) ∈ Ej+} (j = 1, 2, . . . ,m),

K = {x ∈ Rn : xIj
∈ Kj (j = 1, 2, . . . ,m)}

= {x ∈ Rn : gj(xIj
) ∈ Ej+ (j = 1, 2, . . . ,m)}

(the feasible region of 〈POP 〉).

We impose the following three assumption on 〈POP 〉:

Kj is nonempty and compact (j = 1, 2, . . . ,m), (2)

K is nonempty, (3)

∪m
j=1Ij = {1, 2, . . . ,m},
∀k ∈ {1, 2, . . . ,m− 1} ∃s ≥ k + 1; Ik ∩

(∪m
j=k+1Ij

) ⊂ Is.

}
(4)

We note that the conditions (2) and the first relation of (4) imply that K is compact.
We now show a simple example of sparse POPs over symmetric cones.

minimize
n∑

i=1

aixi

subject to A(xj, xj+1) ∈ S2
+,(

0.3(x3
j + xn) + 1

)− ‖(xj + βi, xn)‖ ≥ 0,

1− x2
j − x2

j+1 − x2
n ≥ 0 (j = 1, . . . , n− 2).





(5)

Here

A(xj, xj+1)

=

(
1 0
0 1

)
+

(
bj cj
cj dj

)
xj +

(
1 1
1 1

)
xjxj+1 +

( −2 1
1 −1

)
xj+1,

and ai, bj, dj ∈ (−1, 0), cj, βj ∈ (0, 1) are random numbers. We can reformulate this problem
as 〈POP 〉 by letting

m = n− 2, Ij = {j, j + 1, n} (j = 1, 2, . . . ,m),

Ej = S2 × R1+2 × R (j = 1, 2, . . . ,m), E =
m∏

j=1

Ej,

Ej+ = S2
+ ×Q1+2

+ × R+ (j = 1, 2, . . . ,m), E+ =
m∏

j=1

Ej+,

gj(xj, xj+1, xn)

=
(
A(xj, xj+1),

(
0.3(x3

j + xn) + 1, xj + βi, xn

)
, (1− x2

j − x2
j+1 − x2

n)
)
.

Here Q1+2
+ denotes the 3-dimensional second-order cone. We can easily verify that the

conditions (2), (3) and (4) are satisfied for the resulting POP over E+. Specifically, we see

Ik ∩
(∪m

j=k+1Ij
) ⊂ Ik+1 for ∀k ∈ {1, 2, . . . ,m− 1}.
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In Section 3, we show some numerical results on this example.
The condition (4) is essentially equivalent to the correlative sparsity condition presented

in the paper [13] by Waki, Kim, Kojima and Muramatsu for developing a sparse variant
of the SOS and SDP relaxation of Lasserre [9] for a normal POP over Rm. This condition
was explicitly used in the paper [10] to prove the convergence of the sparse SOS and SDP
relaxation. We will add some remarks on the condition (4) in Section 4.

Define

Cj = R[xIj
]2 + gj • Ej[xIj

]2 ⊂ R[xIj
] (j = 1, 2, . . . ,m) and C =

m∑
j=1

Cj ⊂ R[x],

which form cones in R[x]. Here R[xIj
]2 (Ej[xIj

]2) is the set of sums of squares of R-valued
(Ej-valued) polynomials in xIj

(j = 1, 2, . . . ,m) and ϕ • ψ denotes the inner product of
ϕ, ψ ∈ Ej[xIj

] which is naturally induced from the inner product in Ej. More details will be
given in Section 2.1.

Now we present the major result of this note.

Theorem 1 Assume that the conditions (2), (3), (4) and

∀j ∈ {1, 2, . . . ,m} ∃pj ∈ Cj; {xIj
: pj(xIj

) ≥ 0} is compact (6)

hold. Then any positive polynomial a ∈∑m
j=1R[xIj

] on the set K belongs to the cone C.
If we take the Euclidean space Rmj and its nonnegative orthant Rmj

+ with some positive
integer mj for Ej and Ej+, respectively, 〈POP 〉 becomes a normal POP. In this case, Theo-
rem 1 is comparable to Corollary 3.8 of Lasserre [10]. We note that the conditions assumed
in Theorem 1 are slightly weaker than those in Corollary 3.8. Specifically, it is assumed in
Corollary 3.8 that K has nonempty interior.

The theorem above may be regarded as a partial generalization of Putinar’s lemma,
Lemma 4.1 of [12]; in the original Putinar’s lemma, a necessary and sufficient condition for
any positive polynomial a ∈ R[x] on a compact set {x ∈ Rn : g′j(x) ≥ 0 (j = 1, 2, . . . ,m)}
to have an SOS representation is given, where g′j ∈ R[x] (j = 1, 2, . . . ,m), while Theorem 1
provides only a sufficient condition for any positive polynomial a ∈∑m

j=1R[xIj
] on the set

K to have an SOS representation.
After giving definitions of some basic materials which have been used above and also

necessary for the succeeding discussions, we will prove the major result in Section 2. In
Section 3, we will briefly present a sparse SOS relaxation of 〈POP 〉 based on Theorem 1
and numerical results on the sparse SOS relaxation applied to example (5) to show its high
potential.

2 Proof

2.1 Euclidean Jordan algebras, E-valued polynomials and their
sums of squares

A finite dimensional vector space E over the field R of real numbers is called a Jordan algebra
if a bilinear mapping (multiplication) E × E → E denoted by ◦ is defined satisfying
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(J1) f ◦ g = g ◦ f ,

(J2) [L(f ◦ f), L(f)] = O,

where L(f) is a linear transformation of E defined by L(f)g = f ◦g, and [A,B] = AB−BA
for a pair of linear transformations A and B on E . Note that associativity does not hold for
◦, i.e., f ◦ (g ◦h) 6= (f ◦g) ◦h in general. A Jordan algebra E is Euclidean if an associative
inner product • is defined, i.e., (f ◦ g) •h = f • (g ◦h) holds for ∀ f , g,h ∈ E . We assume
that E is a Euclidean Jordan algebra having an identity element e; e ◦ f = f ◦ e = f for
all f ∈ E . Such an identity element is unique. We define f 2 = f ◦ f and f p = f p−1 ◦ f
recursively for p ≥ 3. For more details, see textbooks of Euclidean Jordan algebras, for
example, [2].

We denote by Z+ the set of nonnegative integers. Let G ⊂ Zn
+ be a nonempty finite set.

For each α ∈ G, we assume that a vector fα ∈ E is given. Then an E-valued polynomial
f : Rn → E is defined by f(x) =

∑
α∈G fαxα, where xα = xα1

1 · · · xαn
n . The set of E-valued

polynomials is denoted by E [x]. For example, when E = R, R[x] is the set of real-valued
polynomials. The support of f is defined by supp f = {α ∈ G : fα 6= 0 } . Then f can
be expressed uniquely as f(x) =

∑
α∈supp f fαxα. For r ∈ Z+, we denote by E [x]r a finite

dimensional linear subspace of the E-valued polynomials whose degree is less than or equal
to r: E [x]r = { f ∈ E [x] : deg(f) ≤ r } . Specifically, we assume that E [x]0 = E .

For f, g ∈ E [x], we define a bilinear mapping ◦ by

(f ◦ g)(x) =

( ∑

α∈supp f

fαxα

)
◦

( ∑

β∈supp g

gβxβ

)
=

∑

α∈supp f

∑

β∈supp g

(
fα ◦ gβ

)
xα+β,

where ◦ on the right-hand side is the multiplication of Jordan algebra E . We denote by e
the function of identity: e(x) = e for ∀ x ∈ Rn. Then for any f ∈ E [x], e ◦ f = f ◦ e = f .

Let D be a linear subspace of E [x]. Using ◦, we define the sums of squares of E-valued
polynomials in D by

D2 =

{
q∑

i=1

fi ◦ fi : ∃integer q ≥ 1, fi ∈ D
}
.

It is easy to verify that D2 is a convex cone.
Notice that when D = E [x], we have the sums of squares of E-valued polynomials

E [x]2 =

{
q∑

i=1

fi ◦ fi : ∃integer q ≥ 1, fi ∈ E [x]

}
,

and that when D = R[x], we have the sums of squares of real-valued polynomials

R[x]2 =

{
q∑

i=1

fi ◦ fi : ∃integer q ≥ 1, fi ∈ R[x]

}
.
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2.2 Proof of Theorem 1

.
Throughout this section, we assume that the conditions (2), (3), (4) and (6) hold. We

first observe that each Kj is contained in the compact set {xIj
: pj(xIj

) ≥ 0}. Hence we
can take a positive number Mj such that

Kj ⊂ {xIj
: pj(xIj

) ≥ 0} ⊂ {xIj
: hj(xIj

) > 0} ⊂ Bj ≡ {xIj
: hj(xIj

) ≥ 0}, (7)

where hj(xIj
) = Mj −

∑
i∈Ij

x2
i . Since hj is positive on the compact set {xIj

: pj(xIj
) ≥ 0},

we see, by Putinar’s lemma, that

hj ∈ R[xIj
]2 + R[xIj

]2pj ⊆ R[xIj
]2 + Ej[xIj

]2 • gj. (8)

Here the second inclusion above follows from the condition (6). The relations (7) and (8)
will be used in the succeeding discussion. Let

B = {x ∈ Rn : hj(xIj
) ≥ 0 (j = 1, 2, . . . ,m)}

= {x ∈ Rn : xIj
∈ Bj (j = 1, 2, . . . ,m)}.

Then K ⊂ B.
Let

λmax = sup

{
the maximum absolute eigenvalue of gj(xIj

) :
j = 1, . . . ,m, x ∈ B

}

(λmax is finite because B is compact). See [2, 8] for the definition of and some properties of

eigenvalues of y ∈ E . We define ψr ∈ −
m∑

j=1

gj • Ej[xIj
]2 ⊂

m∑
j=1

R[xIj
] by

ψr = −
m∑

j=1

gj • (ej − gj/λmax)
2r,

for any nonnegative integer r. Here ej denote the unit element of the Euclidean Jordan
algebra (Ej, ◦); ej ◦ y = y ◦ ej = y for ∀y ∈ Ej.

The proof of Theorem 1 relies on the following two lemmas.

Lemma 2 Suppose that a ∈ R[x] is positive on K. Then there exists a positive integer r̄
such that a+ ψr is positive on B for ∀ r ≥ r̄.

Proof : A proof is given in Section 2.3. ¤

Lemma 3 Suppose that a ∈∑m
j=1R[xIj

] is positive on B. Then

a ∈
m∑

j=1

(
R[xIj

]2 + R[xIj
]2hj

)
.
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Proof : The lemma follows directly from Corollary 3.8 of [10]. ¤
Suppose that a ∈ ∑m

j=1R[xIj
] is positive on the set K. By Lemma 2, there exists a

positive integer r such that a+ψr ∈
∑m

j=1R[xIj
] is positive on B. Now, applying Lemma 3,

we see that

a+ ψr ∈
m∑

j=1

(
R[xIj

]2 + R[xIj
]2hj

)
.

By ψr ∈ −
∑m

j=1 gj • Ej[xIj
]2 and (8), we obtain that

a ∈
m∑

j=1

(
R[xIj

]2 + R[xIj
]2hj + gj • Ej[xIj

]2
) ⊆

m∑
j=1

(
R[xIj

]2 + gj • Ej[xIj
]2

)
.

This completes the proof of Theorem 1.

2.3 Proof of Lemma 2

For ∀ j = 1, 2, . . . ,m, let ψrj = −gj • (ej − gj/λmax)
2r. Then ψr =

m∑
j=1

ψrj.

Lemma 4 Let j ∈ {1, 2, . . . ,m}.
1. For any ε > 0, there exists a nonnegative integer r̂ such that ψrj(xIj

) ≥ −ε for ∀
xIj
∈ Bj and r ≥ r̂.

2. Suppose that x̃Ij
∈ Bj − Kj. Then for any κ > 0, there exist a positive number δ̃

and a nonnegative integer r̃ such that ψrj(xIj
) ≥ κ for ∀ xIj

∈ Bj(x̃Ij
, δ̃) ∩ Bj and ∀

r ≥ r̃, where Bj(x̃Ij
, δ̃) = {x ∈ Rn : ‖xIj

− x̃Ij
‖ < δ̃ }.

Proof : The lemma follows directly from Lemma 4 of [8]. ¤
Let x̃r be a minimizer of a + ψr on the compact set B. We show Lemma 2 by proving

that there exists a positive integer r̄ such that a(x̃r)+ψr(x̃
r) > 0 for ∀ r ≥ r̄. Assume on the

contrary that the set L = { r : a(x̃r) + ψr(x̃
r) ≤ 0 } is infinite. Since { x̃r : r ∈ L } ⊆ B, we

can take an accumulation point x̃∗ ∈ B of { x̃r : r ∈ L }, and a subsequence { x̃r : r ∈ L′ }
(L′ ⊆ L) which converges to x̃∗ ∈ B. In the following, we will prove that there exists
r̃ > 0 and δ̃ > 0 such that a(x) + ψr(x) > 0 for ∀ x ∈ B(x̃∗, δ̃) ∩ B and r ≥ r̃. Because
x̃r ∈ B(x̃∗, δ̃) ∩ B for sufficiently large r ∈ L′, this contradicts that x̃∗ is an accumulation
point of { x̃r : r ∈ L }, which establishes the lemma.

We first consider the case where x̃∗ ∈ K. Since K is compact, we can take a positive
number ε such that a(x) ≥ ε for ∀ x ∈ K. Then there exists a positive number δ̃ such that
a(x) ≥ ε/2 for ∀ x ∈ B(x̃∗, δ̃). On the other hand, 1 of Lemma 4 implies that there exists
a positive number r̃ such that ψrj(xIj

) ≥ −ε/(4m) for ∀ r ≥ r̃ and x ∈ B (j = 1, 2, . . . ,m).

Therefore, if r ≥ r̃ and x ∈ B(x̃∗, δ̃)∩B, then a(x)+ψr(x) = a(x)+
∑m

j=1 ψr(xIj
) ≥ ε/4 > 0.

Next we consider the case where x̃∗ ∈ B−K. Let κ∗ = inf{ a(x) : x ∈ B }, which is finite
because B is compact. By 1 of Lemma 4, a positive number r̃ such that ψrj(xIj

) ≥ −1/(2m)
for ∀ r ≥ r̃ and x ∈ B (j = 1, 2, . . . ,m). Since x̃∗ ∈ B − K, there exits ` ∈ {1, 2, . . . , n}
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such that x̃∗I`
∈ B` −K`. By 2 of Lemma 4, there exists a positive number δ̃ and a positive

integer r̂ ≥ r̃ such that ψ`r(xI`
) ≥ −κ∗ + 1 for ∀ x ∈ B(x̃∗, δ̃) ∩ B and r ≥ r̂. For such x

and r, we have

a(x) + ψr(x) = a(x) +
m∑

j=1

ψjr(x) ≥ κ∗ − 1/2− κ∗ + 1 = 1/2 > 0

This completes the proof of Lemma 2.

3 A sparse SOS and SDP relaxation for 〈POP 〉
We briefly present a sparse variant of Lasserre’s SOS and SDP relaxation [9] for 〈POP 〉, and
show its theoretical convergence using Theorem 1. Let rf = ddeg(f)/2e and rj = ddeg gj/2e
(j = 1, 2, . . . ,m). For r ≥ max{rf , r1, . . . , rm}, we consider an SOS optimization problem:

〈SOS〉r





maximize ζ

subject to f − ζ ∈
m∑

j=1

(
R[xIj

]2r + gj • Ej[xIj
]2r−rj

)
.

Here the nonnegative integers rf , rj (j = 1, 2, . . . ,m) and r, which appear as the subscripts of
Ej[xIj

]r−rj
and R[xIj

]r, respectively, have been chosen so that the degrees of the polynomials
involved in the constraint are balanced. We denote the optimal value of 〈POP 〉 by ζ∗, and
the optimal value of 〈SOS〉r by ζr.

Theorem 5 Under the same assumption as Theorem 1,

ζr ≤ ζr+1 ≤ ζ∗ (r ≥ max{rf , r1, . . . , rm}) and ζr → ζ∗ as r →∞.

Proof : We first note the monotonicity relation

Ej[xIj
]2r−rj

⊂ Ej[xIj
]2r+1−rj

and R[xIj
]2r ⊂ R[xIj

]2r+1 (j = 1, 2, . . . ,m), (9)

which implies that ζr ≤ ζr+1. Let r ≥ max{rf , r1, . . . , rm}, and let ζ be a feasible solution
of 〈SOS〉r. Then there exist wj ∈ Ej[xIj

]2r−rj
(j = 1, 2, . . . ,m) and w̃j ∈ R[xIj

]2r (j =
1, 2, . . . ,m) such that

f(x)− ζ =
m∑

j=1

gj(xIj
) • wj(xIj

) +
m∑

j=1

w̃j(xIj
) for ∀x ∈ Rn.

We also know that

m∑
j=1

gj(xIj
) • wj(xIj

) +
m∑

j=1

w̃j(xIj
) ≥ 0 for ∀x ∈ K,

which implies that f(x) − ζ ≥ 0 for ∀x ∈ K. This inequality holds at ζ = ζr. Thus
we have shown that ζr ≤ ζ∗. Finally we prove ζr → ζ∗ as r → ∞. Let ε > 0. Then
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Table 1: Numerical results on the SOS relaxation applied to example (5)

n cpu time r εobj εfeas the size of A in SeDuMi # of nonzeros in A

200 8.3 2 9.6e-12 0.0 3,974 × 37422 78,012
400 16.0 2 1.5e-11 0.0 7,974 × 75,222 156,812
600 25.7 2 4.0e-12 0.0 11,974 × 113,022 235,612
800 34.8 2 3.2e-12 0.0 15,974 × 150,822 314,412

1000 44.5 2 1.6e-12 0.0 19,974 × 188,622 393,212

f − ζ∗ + ε ∈ ∑m
j=1R[xIj

] is positive on K. By Theorem 1 and the monotonicity relation
(9), there exists a positive integer p such that

f − ζ∗ + ε ∈
m∑

j=1

(
R[xIj

]2p + gj • Ej[xIj
]2p

)
.

Take r ≥ max{rf , p+ r1, . . . , p+ rm}). Then

f − ζ∗ + ε ∈
m∑

j=1

(
R[xIj

]2r + gj • Ej[xIj
]2r−rj

)
.

Hence ζ = ζ∗ − ε is a feasible solution of 〈SOS〉r. Hence ζ∗ − ε ≤ ζr. ¤
We can reformulate 〈SOS〉r as an SDP problem, and we can also apply a sparse SDP

relaxation to 〈POP 〉 to derive its dual. We refer to the paper [8] for derivation of those
SDP problems, and we only show numerical results on the sparse SOS relaxation applied to
example (5) in Table 1. We solved the resulting SDP problems by SeDuMi on Macintosh
with 2.5GHz PowerPC G5. The symbols in Table 1 are:

cpu time = the computational time in seconds for SeDuMi to solve the SDP,

εfeas = −min{the left side (min.eigen)values over all constraints, 0},
εobj =

|the lower bound for opt. value− the approx. opt. value|
max{1, |the lower bound for opt. value|} ,

r = the parameter r used in 〈SOS〉r,
A = the constraint matrix of the SDP in SeDuMi format.

In Table 1, we observe:

• The sparse SOS relaxation can solve large size problems with dimension up to 1000
less than 1 minute, which we can not solve without exploiting sparsity.

• The data matrix A is large, but very sparse; about 20 nonzero elements in each row
of A in average.

• The cpu time and the number of nonzero elements in A increase linearly with n.
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4 Concluding remarks

In the condition (4), some Ik can be a subset of Ij (k 6= j) or that some Ik can be non-
maximal among the family Ij (j = 1, 2, . . . ,m); hence even Ik = Ij is allowed for some
k 6= j. If Ik is a subset of Ij (k 6= j), we can redefine

Ej ← Ej × Ek, Ej+ ← Ej+ × Ek+, gj(xIj
)← (gj(xIj

), gj(xIk
))

so that the resulting POP over E+ is not only equivalent to 〈POP 〉 but also remains to
satisfy all the conditions (2), (3) and (4). Thus we can choose the smallest family with
deleting all non-maximal Ij and reconstruct a POP over E+ which is equivalent to 〈POP 〉.
In this case, the resulting family Ij (j ∈ J) for some J ⊂ {1, 2, . . . ,m}) satisfies

each Ik is maximal among the family, i.e., Ij 6⊆ Ik if j 6= k. (10)

We may impose the condition (10) in addition to (2), (3) and (4) to describe a sparse SOS
relaxation in theory, but then we may loose some effectiveness in the sparse SOS relaxation
〈SOS〉r in practice. For example, consider a case where Ik ⊂ Ij and the degree of gk is much
smaller than the degree of gj. If we combine Ik into Ij then the SOS relaxation 〈SOS〉r of
the resulting POP over E+ is weaker than the one derived from the original POP over E+
because the degree of the combined polynomial (gj, gk) is much larger than the degree of gj.

Let G = (V,E) be a graph having a node set V = {1, 2, . . . , n} and an edge set E =
{{i, j} : {i, j} ⊂ Ij for ∃j}. Then the condition (4) together with (10) implies that the
graph G is a chordal graph and that each Ij (j ∈ J) is corresponding to a maximal clique
of G. If we define an n × n symmetric symbolic matrix M = (Mij) with ? designating
an unspecified nonzero number and 0 such that Mij = ? iff either {i, j} ∈ Ik for some
k = 1, 2, . . . ,m or i = j and Mij = 0 otherwise, the condition (4) holds if and only if M
allows a sparse Cholesky factorization with no fill-in. The condition (4) is called as the
running intersection property in graph theory (see e.g [1] for more details).
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