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Abstract

Placing N non-overlapping circles in a smallest container is a well known, widely
studied problem that can be easily formulated as a mathematical programming
model. Solving this problem is notoriously extremely hard. Recently a public con-
test has been held for finding putative optimal solutions to a special case in circle
packing. The contest saw the participation of 155 teams who submitted a total of
27 490 tentative solutions. In this paper we will explain the strategy we used for
attacking this problem. The main aim of the paper is to show how we could win
the competition with relatively little computational power, by properly mixing local
and global optimization strategies with random search and local moves. The main
lesson learnt in participating to this context has been that although computational
power surely helps, it is not strictly necessary, and clever utilization of relatively
standard ideas from global optimization can beat special purpose methods.
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1 Introduction and problem statement

The problem of placing N non overlapping objects belonging to R
d within

a “smallest” container is a classical mathematical problem with important
applications in manufacturing and logistics and, in particular, to problems
related to cutting and packing – see e.g. [1] for a recent survey of applications
in the fields of cutting, container loading, communication networks, facility
layout. The most widely studied cases are those in which d = 2 or d = 3.
In this paper we will deal with the problem of optimally placing N circles
in a circular container with minimum radius. Many papers in the literature
deal with the problem of optimally placing N circles in a fixed container. For
example, in [2] several approaches are reviewed for dealing with the problem
of placing N equal disks of maximum radius within the unit square. Recently
a competition has been started for the following, related, problem (see http:

//www.recmath.org/contest/CirclePacking/index.php for details on the
contest): given a positive integer N , place N disks of radius, respectively, equal
to 1, 2, . . . , N inside a circle whose radius is minimal.

Letting xi, yi denote the coordinates of the center of circle i, the problem is
easily formulated as a mathematical programming problem:

min R (1)
√

(xi − xj)2 + (yi − yj)2 ≥ i + j ∀ 1 ≤ i < j ≤ N (2)
√

x2
i + y2

i ≤ R − i ∀ 1 ≤ i ≤ N. (3)

This formulation has 2N + 1 variables, one of which is the radius R of the
container, to be minimized (1). Constraints (2) force circles i and j not to
overlap, while constraints (3) forces each circle to be included in the disk
with radius R centered at the origin. Although the objective is linear and
constraints (3) define a convex region, constraints (2) are non convex (and, in
particular, they correspond to reverse-convex constraints). It is pretty easy to
see that, because of the non convexity, this problem is extremely hard to solve;
even local optimization, in presence of reverse-convex constraints, becomes a
hard task.

In comparison with the best known problem of placing identical circles in a
smallest container, here the fact that each disk has a different radius gener-
ates new difficulties and challenges. In fact, while the problem with identical
radii can be considered as a pure continuous optimization problem, here the
fact that each circle has a different radius adds some sort of a combinatorial
structure over the original one. Moreover, although a direct application of this
model to a real life problem is difficult to imagine, nonetheless the ideas used
in attacking this problem might find an application in methods for optimal
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placement of figures with the same shape but different sizes in a container.

This is an extremely challenging global optimization test problem; this contest,
in which participants were asked to propose solutions for all N in 5, . . . , 50,
resulted in a really interesting experiment in developing a new algorithm for
a difficult problem in direct competition with several other groups, some of
which could run as many as 300 CPU’s. A really stimulating aspect of the
challenge was the double blind rule: participants did not know the solutions
found by others, (neither the coordinates of circle centers nor the container
radii); the only information on other contenders’ results was summarized in a
single score which was based on the ratio between our submitted results and
that of the current record holder. Also, every contender knew, out of all of
his/her submissions, which were currently on top with respect to others.

2 Basic strategy

We developed several models and algorithms during the course of the chal-
lenge. Many of them were discarded as non productive, just a few of them
survived until the last weeks and gave us the possibility of winning. In this
section we outline the main ideas underlying most of the models and methods
we tried.

Given our experience in the field of molecular conformation problems (see [3])
and in equal circle packing [4], we decided to try a similar approach also in
this case. The main idea is that conformational problems of this kind gen-
erally display an exponential number of local optima which are not global.
Even worse, circle packing problems, because of the non convexity of the con-
straints, in addition to local optima possess also a usually uncountable set
of KKT points which are not even local minima. Given this premise, it ap-
pears that global optimization methods aimed at enumerating all, or most,
local optima are doomed to fail in this context. However it is well known in
molecular conformation problems that these local optima are not randomly
displaced in the feasible space, but follow some sort of ordered structure. In
molecular conformation problems this structure is known under the name of
”funnel landscape” of the energy (see e.g. [5]). We might define a funnel in
the following way. In order to describe what a funnel is, let X be the set of
local optima of a given optimization problem and let T : X → 2X be a map
which associates a set of “reachable” local minima to each element in X . Usu-
ally a non deterministic procedure is used which, given a local optimum X is
capable of producing a “neighbour” local optimum Y ∈ T (X). Of course we
should define more precisely what is meant by “neighbour”: in molecular con-
formation problems, e.g., the map T associates to each local minimum X the
results of a local search started from a point which is obtained by randomly
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perturbing X. Given the map T , a graph might be defined whose node set is X
and in which there is an arc between Xi and Xj if and only if Xj ∈ T (Xi) and
f(Xj) ≤ f(Xi), where f(·) is the objective function to be minimized. A funnel
bottom is any local optimum X̄ which, in this graph, has no outbound arc
directed towards a local minimum with strictly lower function value. Finally,
a funnel with funnel bottom X̄ is a maximal set of local optima characterized
by the fact that there exists at least one oriented path from any element X of
the funnel to the funnel bottom X̄.

In molecular conformation problems there is a growing evidence that indeed
atom clusters energy exhibit a funnel shape; this fact helps in explaining how
“nature” is capable of stabilizing real molecules whose energetic landscape is
characterized by an astronomical number of local optima within very short
time: in practice, molecules “jump” from one conformation to another follow-
ing a descending path on the graph up to the funnel bottom.

It is not at all evident that circle packing problems possess a similar char-
acteristics: it is true that apparently there is a relationship between three
dimensional molecular conformation and two dimensional circle packing, but
indeed the problems are radically different. In particular, circle packing prob-
lems are constrained, while, typically, molecular conformation problems are
unconstrained. However, we felt that even in circle packing the idea of explor-
ing funnel bottoms could have been a sensible one.

In order to test the assumption of a funnel landscape, a definition of neigh-
bouring optima has to be given and, based on this definition, an algorithm can
be built. In fact, given a neighbouring structure on the set of local optima, it
is quite natural to define a local exploration strategy, known in literature as
MBH, or Monotonic Basin Hopping, (see [5,6]):

Monotonic Basin Hopping

Input: MaxNoImprove: a positive integer
let X be a local minimum (randomly generated)
let k := 0
While k ≤ MaxNoImprove

choose Y ∈ T (X)
If f(Y ) < f(X) Then

let k := 0
let X := Y

Else
let k := k + 1

EndIf
EndWhile
Return X

In order to build a MBH method, both the strategy used for the initial gen-
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eration of X and that for obtaining a neighbour local minimum has to be
defined.

Within this contest, we found the following choices particularly efficient:

Random initial generation. We usually generated the coordinates of each
circle by drawing them from a uniform distribution on a suitably large box,
usually chosen as [−N2/2, N2/2]. After the generation of circle centers, it
proved useful, sometimes, to rescale all of them in order to avoid circle
overlapping. This is easily achieved. Indeed, let

η = max
i<j

i + j
√

(xi − xj)2 + (yi − yj)2
.

Then a set of N non-overlapping circles can be obtained by scaling the
variables by the factor η. In our runs we used this rescaling roughly 50% of
the times. A more critical question regards the choice of the initial value for
the R variable. We made several experiments with different local nonlinear
solvers, and found all of them extremely sensitive to the initialization of
the R variable prior to local optimization. After much experimentation,
based upon a compromise between speed and precision, we choose to adopt
SNOPT [7] as a local optimizer. We noticed that the default initialization
(R = 0) often led to infeasible solutions or to lack of convergence of the SQP
algorithm. On the other hand, choosing to initialize R in the most natural
way, i.e.

R = max
i

{
√

x2
i + y2

i + i} (4)

gave the initial solution too much rigidity and, often, the local optimizer did
not produce any useful solution. So we tried, and applied, several strategies,
including:
• setting R to a very large value (in particular, N2) in order to give much

freedom to move to all circles;
• setting R slightly larger (say 0.1%) than the value obtained in (4) – this

was the most frequently used option;
• in a group of runs we choose to start with a slightly enlarged estimate of

the optimal radius. This was obtained through a regression on the value
of the radii of our best configurations for different values of N and, in
particular, it was fixed to

R ≈ 0.046N2 + 2.29N − 5.26

This value was then slightly augmented (say 5%).
Perturbation. In order to generate a solution in the neighborhood of the

current one, we choose two different kinds of perturbations:
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(1) first we tried a continuous displacement of circles: each circle coordinate
was randomly perturbed in an interval centered at the current position;
subsequently, non overlapping constraints were imposed by scaling the
resulting variables by means of the described technique.

(2) two circles were chosen “at random” and their radii exchanged. This is
a more combinatorial neighbourhood exploration and it proved to be
much more efficient than the previous one which, in later stages of the
contest, was totally abandoned. After swapping two circles either we
restored feasibility or not (usually 50% of the times). When deciding
which pair of circles to swap, we usually preferred to operate on similar
circles. In particular a random circle was chosen and than swapped with
another one chosen, at random, among the circles whose radii were no
more than 2 units smaller or larger than the first one.

After perturbation, as usual, a decision on the initial value of R was taken
and then a local optimization was started with SNOPT.

This method enabled us to hit a few records for small values of N but, coupled
with the relatively scarce computational power we had available, could not
lead us to competitive results. Two strategies were crucial in determining the
success of our strategy.

2.1 Reduction of the space of variables

It was quite early observed that in putative optimal configurations of N circles,
the smallest ones did not play any role and very often they were “rattlers”, i.e.
disks which could be displaced to a different position without violating any
constraint nor worsening the objective. Thus we decided to solve a reduced op-
timization problem in which instead of placing disks of radii 1, . . . , N , we only
looked for optimal configurations of N −m circles of radii m + 1, . . . , N , thus
discarding the first m. The value of m we choose was usually around 0.25N .
Removing smallest circles had two beneficial effects: first a smaller dimension
of the feasible space, which made local optimization slightly easier and quite
significantly faster. Second, a greater freedom in choosing the positions of the
remaining disks, which otherwise could be artificially constrained by the po-
sition of small circles which could have found a place somewhere else without
any difficulty. It can also be observed that removing smaller disks had the
effect of reducing the number of local optima – in particular, all locally optima
packings which differ only in the position of the smallest circles are reduced
to a single one.

Obviously, after optimization with MBH, we had to restore the eliminated
circles, if possible, without enlarging the container radius. This was made by
sequentially re-inserting missing disks, one at a time starting from the largest
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one according to the following procedure.

0. Let D be a discrete grid covering the circle container, t = m and let
(xt+1

i , yt+1
i )i=m+1,...,n be the best configuration obtained without the first m

disks.
1. For each (x, y) ∈ D: if

√

(x − xt+1
i )2 + (y − yt+1

i )2 > i ∀ i = t + 1, . . . , n,

i.e., (x, y) is not contained in any of the current circles, then set

x̄t = x ȳt = y x̄i = xi ȳi = yi ∀ i = t + 1, . . . , n

and start a local optimization from X̄t = (x̄i, ȳi)i=t,...,n.
2. Let (xt

i, y
t
i)i=t,...,n be the best local optimum detected in Step 1. If t = 1,

then STOP, otherwise set t = t − 1 and go back to Step 1.

Note that it is possible, in particular during the re-insertion of the larger cir-
cles, that the radius of the external container becomes slightly larger, which
means that the configuration did not contain large enough holes and the place-
ment of these circles required the enlargement of the container.

This strategy gave an impressive improvement over our results, and many new
records could be found.

We remark that as an alternative to the above re-insertion approach based on
a discrete grid, we also looked for empty spaces by solving so called Apollonius
problems, which consist in finding a circle tangent to three given circles. In
order to detect all possible empty spaces one problem is solved for each triple
made up by three ”close enough” circles, one of which might be the container.

2.2 Population based approach

Another strategy we implemented with success was that of working with a
population of solutions. This idea is not new and, in particular, it has been
applied with success to the optimization of large molecular clusters (see [8]
and [9] ). Population-based approaches maintain a set of candidate solutions
in such a way that they are sufficiently different one another. Two are the
main ingredients of population-based approaches:

(1) a dissimilarity measure, which is used to compare different solution and
to force the population to be composed of sufficiently different individuals

(2) a criterion for inserting a new solution in the population.
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In our implementation we started by letting K different solution evolve in a
way which was very similar to the implementation of MBH already described.
As a dissimilarity measure we choose the following: let us consider two different
solutions P (i), P (j) for the circle packing problem. Here, P (i) is a N ×2 matrix
of circle centers coordinates, i.e. its elements P

(i)
h1 , P

(i)
h2 represent the x and y

coordinates of the circle with radius h. Letting ρ
(i)
h be the distance from the

origin of the center of circle h in the population i, i.e.

ρ
(i)
h =

√

(

P
(i)
h1

)2
+

(

P
(i)
h2

)2

then we defined the following pairwise dissimilarity measure:

D(P (i), P (j)) =
N

∑

k=dN/2e

k|ρ
(i)
k − ρ

(j)
k |

and we defined the average dissimilarity within the whole population as

D̄ =

∑

i<j≤K D(P (i), P (j))

K(K − 1)/2

This measure takes into account only the largest circles and is based on their
distance from the center of the container. Also, this dissimilarity measure gives
more weight to different positions of larger circles, as this is a good indicator
of significantly different structures. We might have added also an information
on the angles formed between two circle centers and the origin, but we found
that the proposed measure is simple enough yet sufficiently discriminating.

We then generated a starting population (that is a set of locally optimal
solutions) and, to each individual, applied one step of the MBH procedure, i.e.
we perturbed each solution and locally optimized it. Let us call “parents” the
solutions in the current population P and “children” the solutions, denoted
by C, generated by the perturbation and optimization of parents. For each
generated child we searched for the “least dissimilar parent”, i.e., for each
j ∈ 1, . . . , K, we found

N(j) = arg min
i∈1,...,K

{D(C(j), P (i))}

and let

D(j) = min
i∈1,...,K

{D(C(j), P (i))}

be the minimum dissimilarity found. Starting with a population which, usually,
was initially set to 40 individuals, we then took the following decisions:
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• if D(j) < D̄, then we check if the container radius of child C(j) is smaller
than that of the least dissimilar parent P (N(j)). If this is the case, then child
C(j) substitutes parent P (N(j)) in the population;

• otherwise, if D(j) ≥ D̄, then child C(j) is sufficiently different from all
other members of the population. In this case it is added to the population
of parents, provided that the population is not too large (we usually set
to 80 the maximum cardinality of the population). If population size is
already maximum, then child C(j) substitutes the current worst member in
the population, i.e. the parent with largest container radius.

The initial population is mostly generated at random; however we choose to
generate one of its elements as an already “good” one. In particular, this
element might be:

• the current record;
• the result of a MBH run;
• the result of a backward or forward move (see next subsection).

This turned out to be an extremely beneficial choice. Indeed, we observed that
the population is very quickly filled in with neighbours of this “good enough”
element and the population-based strategy allows to explore more evenly the
state space of possibly worse but still good configurations around this element,
avoiding the danger of being too greedy. We observed, in several occasions,
that improvements were consequences of the phenomena of backtracking and
survival as observed for molecular conformation problems (see [9]).

Note that, while using as “good enough” element the current record or the
result of forward and backward moves does not guarantee a full exploration of
the search space, using the results of MBH with random restarts guarantees
a complete exploration of this space.

2.3 Backward and forward moves

Quite regularly we also tried backward and forward moves in search of im-
provements. In particular, while looking for an optimal configuration for N
circles, we tried to start from a known solution with N + 1, in which we
eliminated the smallest circle (or the m + 1 smallest ones in order to have
only N − m circles as in Subsection 2.1), reduced all the radii by one; the
resulting configuration was then inserted as the “good enough” one within
the population-based approach (see the discussion at the end of the previous
subsection). Analogously, for forward moves, we started from a configuration
of N − 1 circles, removed the m − 1 smallest circles in order to have only
N − m circles as in Subsection 2.1, augmented all the radii by one, re-scaled
in order to have a feasible starting solution; again, the resulting configuration
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was used as the “good enough” one within the population-based approach.

In some cases there is a strong similarity between putative optimal confor-
mations with slightly different number of circles, and this strategy was very
useful in quickly improving several putative optima.

Conclusions

All of the strategies described in this paper have been implemented in AMPL
[10] and subsequently in C++. We ran our experiments using two Linux clus-
ters one in Turin with up to 8 processors, one in Florence with up to 5 pro-
cessors; both clusters are based on Pentium IV architectures. We chose to
maintain a shared memory location for records, i.e. for our current best solu-
tions. All of our algorithms periodically checked the shared memory and used
the most recent records found there. So our runs were asynchronous and kept
improving based on the improvements obtained by other runs. So it is quite
difficult for us to understand which part of our methods lead us to win the
contest. As a quite rough impression, we think that MBH applied to a subset
consisting of the largest circles was excellent in discovering new conformations.
The population based method was very good in refining it and, sometimes, in
significantly improving known solutions.

The main lesson we learnt from this contest was that very difficult and chal-
lenging global optimization problems can be attacked and solved within a
reasonable accuracy by properly mixing some fundamental elements, all of
which are only weakly dependent on the problem at hand. This elements are

standard local optimization – obviously not sufficient in global optimiza-
tion, but fundamental in quickly exploring the basin of attraction of local
minima, thus reducing the task of exploring the feasible space to that of
exploring the set of local optima;

local moves – perturbations of local optima enable us, through basin-hopping-
like methods, to quickly follow a path to very good local minima, jumping
from a local minimum to a better one;

dissimilarity enforcement – working with a population of sufficiently dif-
ferent solutions avoids getting trapped in a very attractive, yet sub-optimal,
local minimum.

It is clear that each of these elements benefits by including some knowledge
on the problem domain; however our aim was to prove that this difficult prob-
lem could be attacked without going into looking at pictures, or in exploiting
special geometric properties, nor by distributing the task to hundreds of pow-
erful CPU’s, but by using quite standard optimization tools. The satisfaction
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gained in winning this competition is even greater when we think that the
approach we followed can be applied to a very large number of radically dif-
ferent problems with relatively small effort. We conclude this section with a
picture of one of our putative optima, obtained for N = 50. The list of all
records as well as their coordinates can be obtained from the contest web site
and in particular can be downloaded at http://www.recmath.org/contest/
CirclePacking/index.php.
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Fig. 1. N = 50 Container Radius: 221.089753
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