On the Quality of a Semidefinite Programming Bound
for Sparse Principal Component Analysis

Laurent El Ghaoui
EECS Department, UC Berkeley
elghaoui@eecs.berkeley.edu

February 1, 2006

Abstract

We examine the problem of approximating a positive, semidefinite matrix > by
a dyad zz”, with a penalty on the cardinality of the vector z. This problem arises
in sparse principal component analysis, where a decomposition of ¥ involving sparse
factors is sought. We express this hard, combinatorial problem as a maximum eigen-
value problem, in which we seek to maximize, over a box, the largest eigenvalue of
a symmetric matrix that is linear in the variables. This representation allows to use
the techniques of robust optimization, to derive a bound based on semidefinite pro-
gramming. The quality of the bound is investigated using a technique inspired by
Nemirovski and Ben-Tal (2002).
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Notation

The notation 1 denotes the vector of ones (with size inferred from context), while Card(z)
denotes the cardinality of a vector x (number of non-zero elements), and D(zx) the diagonal
matrix with the elements of x on its diagonal. We denote by e; the unit vectors of R".
For a n x n matrix X, X > 0 means X is symmetric and positive semi-definite. The
notation B, for a symmetric matrix B, denotes the matrix obtained from B by replacing
negative eigenvalues by 0. The notation has precedence over the trace operator, so that
Tr B, denotes the sum of positive eigenvalues of B if any, and 0 otherwise. Throughout,
the symbol E refers to expectations taken with respect to the normal Gaussian distribution
of dimension inferred from context. Finally, the support of a vector z is defined to be the
set of indices corresponding to its non-zero elements.

1 Introduction

Given a non-zero n X n positive semi-definite symmetric matrix > and a scalar p > 0, we
consider the cardinality-penalized variational problem

#(p) := max 2" Yx — pCard(z) : |z|2 = 1. (1)
This problem is equivalent to solving the sparse rank-one approximation problem
min [|X — z27||% — p Card(z),

which arises in the sparse PCA problem [4, 2|, where a “decomposition” of ¥ into sparse
factors is sought. We refer to [2] for a motivation of the sparse PCA problem, and an
overview of its many applications.

In the paper [2], the authors have developed the “direct sparse PCA” approach, which
leads to the following convex relaxation for the problem (1):

max Tr XY —p|| X : X =0, Tr X =1.

The above problem is amenable to both general-purpose semidefinite programming (SDP)
interior-point codes, and more recent first-order algorithms such as Nesterov’s smooth min-
imization technique [3]. Unfortunately, the quality of the relaxation seems to be hard to
analyze at present.

In this paper, we introduce two new representations of the problem, and a new SDP
bound, based on robust optimization ideas [1]. Our main goal is to use the new representa-
tions of the problem to analyze the quality of the corresponding bound.

The paper is organized as follows. Section 2 develops some preliminary results allowing
to restrict our attention to the case when p < max; >;;. Section 3 then proposes two new
representations for ¢(p), one based on largest eigenvalue maximization, and the other on a
thresholded version of the Rayleigh quotient. In section 4, we derive an SDP-based upper
bound on ¢(p), and in section 5, we analyze its quality: as a function of the penalty parameter
p first, then in terms of structural conditions on matrix 3.



It will be helpful to describe ¥ in terms of the Cholesky factorization ¥ = AT A, where
A=la...a,], with a; € R™, i =1,...,n, where m = Rank(X). Further, we will assume,
without loss of generality, that the diagonal of X is ordered, and none of the diagonal elements
is zero, so that ¥y; > ... > %,, > 0. Finally, we define the set Z(p) := {i : ¥; > p}, and
let n(p) := Card Z(p).

2 Equality vs. Inequality Models

In the sequel we will develop SDP bounds for the related quantity
(p) == max 27 Xx — pCard(x) : ||z]» < 1. (2)

The following theorem says that when p < X, the two quantities ¢(p), o(p) are positive
and equal; otherwise, both ¢(p) and ¢(p) have trivial solutions.

Theorem 1 If p < %11, we have ¢(p) = ¢(p) > 0, and the optimal sets of problems (1)
and (2) are the same. Conversely, if p > Y11, we have ¢(p) = 0 > ¢(p) = X1 — p, and
a corresponding optimal vector for ¢(p) (resp. ¢(p)) is x = ey, the first basis vector in R™

(resp. © =0).

Proof: If p < %3, then the choice = e; in (2) implies ¢(p) > 0, which in turn implies
that an optimal solution x* for (2) is not zero. Since the Card function is scale-invariant, it
is easy to show that without loss of generality, we can assume that z* has l,-norm equal to
one, which then results in ¢(p) = ¢(p) > 0.

Let us now turn to the case when p > ¥;;. We develop an expression for ¢(p) as follows.
First observe that, since ¥ > 0,

max olYr = Y1,
lzlli=1

which implies that, for every x,
Sulle)f > 2" e (3)
Now let ¢t > 0. The condition ¢(p) < —t holds if and only if
Va, |z] =1 : pCard(x) >t + 2’ Yx.

Specializing the above condition to x = e, we obtain that ¢(p) < —t implies p > 3¢y + t.
Conversely, assume that p > ¥y + ¢. Using (3), we have for every z, ||z||; = 1:

pCard(z) = pllz|[} = (S +1)l|2[lf = 2" Sw + 1,

where we have used the fact that ||z||; > 1 whenever ||z||s = 1. Thus we have obtained that
¢(p) < —t with ¢ > 0 if and only if p > 34; + ¢, which means that ¢(p) = 311 — p whenever
p > Y. B

Finally, let us prove that ¢(p) = 0 when p > ¥;. For every x # 0 such that [|z|]; < 1,
we have

p
pCard(z) > |
[E4E

which shows that ¢(p) < 0, and concludes our proof. W

jz[} = pllz]l} = 2" S,

In the sequel, we will make the following assumption.
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Assumption 1 We assume that p < 311, that is, the set Z(p) := {i : Xy > p} is not empty.

3 New Representations

3.1 Largest eigenvalue maximization

The following theorem shows that the problem of computing ¢(p) can be expressed as a
eigenvalue maximization problem, where the sparsity pattern is the decision variable.

Theorem 2 For p € [0,%X11], ¢(p) can be expressed as the maximum eigenvalue problem

@) = max Amax (; uiBi) : (4)

where B; == a;al —p- Ly, i=1,...,n.

An optimal solution to the original problem (1) is obtained from a sparsity pattern vector
u that is optimal for (4), by finding an eigenvector y corresponding to the largest eigenvalue
of D(u)XD(u), and setting x = D(u)y/||D(u)y||2, where D(u) := diag(u).

Proof. Since p < X3, the result of Theorem 1 implies that ¢(p) is equal to ¢(p) defined in
in (2). Let us now prove that ¢(p) = ¢(p), where

o(p) == max max y' D(u)XD(u)y —p- 17w (5)
ue{0,1}" yTy<1
To prove this intermediate result, first note that if  is optimal for ¢(p), that is, for (2),
then we can set u; = 1 if 2; # 0, u; = 0 otherwise, so that Card(z) = 17u; then, we set
y = v and obtain that the pair (u,y) is feasible for o(p), and achieves the objective value
o(p), hence ¢(p) < ¢(p). Conversely, if (u,y) is optimal for é(p), then z = D(u)y is feasible
for ¢(p) (as expressed in (2)), and satisfies Card(x) < Card(u) = 17w, thus

¢(p) = y" D(w)ED(w)y — p1"u < 2" Sz — p Card(x) < ¢(p),

This concludes the proof that ¢(p) = ¢(p).
We proceed by eliminating y from (5), as follows:

¢(p) = max Apa(D(u)SD(u)) —p-1'u
ue{0,1}7
= max Amax(D(w)ATAD(u)) —p-1Tu
ue{0,1}n
= Amax(AD(u)AT) — p- 17
X Amax(AD(u)AT) = p- 1w

n
T T
=  max Apax( E wiaza; ) — p- 17w,
ue{0,1}n —1
=

in virtue of ¥ = AT A, and D(u)? = D(u) for every feasible u. Invoking the convexity of the
largest eigenvalue function, we can replace the set {0,1}™ by [0, 1]™ in the above expression,
and obtain (4). W



3.2 Thresholded Rayleigh quotient

The following theorem shows that ¢(p) can be expressed as a maximal “thresholded Rayleigh
quotient”, which for p = 0 reduces to the ordinary Rayleigh quotient.

Theorem 3 For p € [0,%4,[, we have

op) = max ) (@) —p)s. (6)
=1
= max Z(a’fXai —p)+ + X =0, TrX =1 (7)

An optimal solution x for (1) is obtained from an optimal solution & to problem (6) by setting
u; = 1if (aF€)* > p, u; = 0 otherwise; then, finding an eigenvector y corresponding to the
largest eigenvalue of D(u)XD(u), and setting x = D(u)y/|| D(u)y||2-

Proof: From the expression (4), we derive

¢(p) = max max & (i uiaiaiT> E—p-1Tu
i=1

u€0,1]" £T¢<1

n

= max > ((a7€)" —pg"E)s

=1
n

= g (e - .

where the last equality derives from the fact that ¢(p) > 0 (which is in turn the consequence
of our assumption that ¥;; = max; ala; > p). Finally, the equivalence between (6) and (7)
stems from convexity of the objective function in problem (7), which implies that without
loss of generality, we can impose X to be of rank one in (7). B

The following corollary shows that we can safely remove columns and rows in > that
have variance below the threshold p.

Corollary 1 Without loss of generality, we can assume that every optimal solution to the
original problem (1) has a support included in the set Z(p) := {i : Xy > p}. Thus, if Sy < p,
the corresponding column and row can be safely removed from 3.

Proof: This is a direct implication of the fact that for every i, if p > ala;, then we have
(aF€)? < p for every € such that 7€ = 1. Hence, the corresponding term does not appear
in the sum in (8). W



3.3 Exact Solutions in Some Special cases

Theorems 2 and 3 allows to solve exactly the problem in some special cases.

First, Theorem 2 can be invoked when ¥ is diagonal, in which case the optimal vector x
turns out to be simply the first unit vector, e;.

Next, consider the case when the matrix > has rank one, that is, m = 1. Then, the a;’s
are scalars, and the representation given in Theorem 3 yields

n n

o(p) = max 3" ((a,)? — p)o = S (a? — p)-.

2:1
¢ =1 i=1

A corresponding optimal solution for ¢(p) is obtained by setting u; = 1 if p < a?, u; = 0
otherwise, and then setting x = a/||a||2, with @ obtained from a by thresholding a with
absolute level /p. In the sequel, we assume that m > 1.

A similar result holds when ¥ has the form ¥ = I + aa”, when a is a given n-vector,
since then the problem trivially reduces to the rank-one case.

4 SDP relaxation

A relaxation inspired by [1] is given by the following theorem.

Theorem 4 For every p € [0,%11], we have ¢(p) < ¥(p), where ¥ (p) is the solution to a
semidefinite program:

= min  Apax Y; Y, =B, Y,=0, i=1,...,n. 9
o005 g o (327 o
The problem can be represented in dual form, as the convex problem

$p) = max > Tr (XPaal X1 = pX), : X 20, TrX =1. (10)

Proof: If (Y;)", is feasible for the above SDP, then for every £ € R, £7¢ < 1, and
u € [0,1]™, we have

( ) £ < Z(fTBifh <" (Z Y;> &< Y(p)

which proves ¢(p . The dual of the SDP (9) is given by

Y(p) = r(na)x (P,B;jy : X>=PFP, >0, i=1,...,n, TrX =1. (11)
XP)i

Using the fact that, for any symmetric matrix B, and positive semi-definite matrix X,

max {(P,B) : X = P=0}=Tr (X'2BX'2)



allows to represent the dual problem in the form (10). Note that the convexity of the
representation (10) is not immediately obvious. W

A few comments are in order.
The fact that ¢(p) < 1 (p) can also be inferred directly from the dual expression (10): we
have, by convexity, and using the representation (7) for ¢(p),

n

¥(p) > max {Z(a?Xai—pL L X =0, ﬁxz1}=¢<p>.

i=1

From the representation (10) and this, we obtain that if the rank k of X at the optimum of
the dual problem (10) is one, then our relaxation is exact: ¢(p) = ¥(p).

In fact, problem (10) can be obtained as a rank relaxation of the following exact repre-
sentation of ¢:

¢ = max > Tr (XVPaaf X'V? — pX), + X =0, TrX =1, Rank(X)=1.

i=1

In contrast, applying a direct rank relaxation to problem (6) (that is, writing the problem
in terms of letting X = &£ and dropping the rank constraint on X) would be useless: it
would yield (7), which is ¢(p) itself.

Finally, note that our relaxation shares the property of the exact formulation (6) observed
in Corollary 1, that indices 7 such that p > 3;; can be simply ignored, since then B; < 0.

5 Quality of the SDP relaxation

In this section, we seek to estimate a lower bound on the quality of the SDP relaxation,
which we define to be a scalar 6 € [0, 1] such that

04 (p) < dp) < ¥(p). (12)
Thus, (1 — 6)/0 is a upper bound on the relative approximation error, (¥(p) — ¢(p))/o(p).

5.1 Quality estimate as a function of the penalty parameter

Our first result gives a bound on the relaxation quality conditional on a bound on p. We
begin by making the following assumption:

Assumption 2 We assume that 0 < p < 1I£11<11 Y = Yun, and m = Rank(X) > 1 .

From the result of Corollary 1, we can always reduce the problem so that the above assump-
tion holds, by removing appropriate columns and rows of ¥ if necessary.

Theorem 5 With assumption 2 in force, for every wvalue of the penalty parameter p €
0,%,,[, and for every v > 0 such that

v

<
p n—+y

2117 (13)
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the bound (12) holds with 0 set to 0,,(7y), where for m > 1 and v > 0, we define

._ 2 2l S 2
On(y) = E<§1—m'Z§j> 7 (14)

Jj=2

which can be computed by the formula

/om (co)~ -2 51“2(”)+ o

/ cos®(t) sin™ ?(t)dt
0
For every v > 0, the value 0,,(vy) decreases with m, and admits the bound
1 2 ~?2
>—-11- — /1 . 1
9m(7)_2< 7+ +m_1)+ (16)

In particular, if p satisfies (13) with v = 1, that is, p < ¥q1/(n + 1), then bound (12)
holds with 0 > 1/7.

Before we prove the theorem, let us make a few comments.

First, as will be apparent from the proof, the value of m can be safely replaced by the
rank k of an optimal solution to the SDP (10). This can only improve the quality estimate,
as k < m and 0,,(7) is a decreasing function of m for every v > 0.

Second, the smaller m is, and the larger ~ is, the smaller the corresponding quality
estimate. However, a small value for vy does not allow for a large range of p values via (13),
and this effect is becomes more pronounced as n grows. The theorem presents the result
in such a way that the respective contributions of m,n to the deterioration of the quality
estimate are separated. A plot of the function 6,, for various values of m is shown in Figure 1.

Third, the theorem allows to plot the predicted quality estimate 6 as a function of the
penalty parameter, in the interval [0,%,,[. Leveraging these results to the entire range
[0,341] will be straightforward, but will require us to be careful about the sizes n and m, as
they change as p crosses the values ¥, ,_1,..., 211, in view of Corollary 1. We formalize
the argument in Corollary 2.

Finally, the theorem allows to derive conditions on the structure of ¥ that guarantee a
prescribed value of the quality. We describe such a condition in Corollary 3.

Proof of theorem 5: The approach we use in our proof is inspired by that of Theorem 2.1
in [1]. Let X > 0, Tr X = 1, be optimal for the upper bound ¢ (p) in dual form (10), so that

U(p) = > Tr(Bi(X).),

where B;(X) := X'2B;X'2. Let k = Rank(X). We have seen that if & = 1, then our
relaxation is exact: ¢(p) = ¢(p). If the rest of the proof, we will assume that £ > 1. We
thus have 1 < £k < m = Rank(X) <n.
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Figure 1: Plot of function 6,,(7), as defined in (15), for various values of m.

Assume that we find a scalar 6 € [0, 1] such that:
E) (€7 Bi(X)&): > (00(p) - BT XE), (17)
i=1

where ¢ follows the normal distribution in R™. The bound above implies that there exist a
non-zero & € R™ such that

n

D (€Bi(X)€)+ > (04(p)) - (€7 XE).

i=1

Thus, with u; = 1 if €7 B;(X)¢ > 0, u; = 0 otherwise, we obtain that there exist a non-zero
¢ € R™ and u € [0, 1]" such that

3 (Z uz-BZ(X)) £ > (0u(p)) - (€7 X0).
With z = X1/2¢:

2T (Z uiBi> z > (0(p)) - (27 2).

The above implies that z # 0, so we conclude that there exist u € [0, 1]" such that

/\max (Z UZBZ> > 97/)(P)a
=1

from which we obtain the quality estimate 01(p) < ¢(p) < ¥(p). By a continuity argument,
this result still holds if (17) is satisfied, but not strictly. The rest of the proof is dedicated
to finding a scalar 6 such that the bound (17) holds.
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Fix i € {1,...,n}. It is easy to show that B;(X) has exactly one positive eigenvalue
a;, since assumption 2 holds. Thus «; = Tr B;(X);. Further, B;(X) has exactly rank
k = Rank(X). Denote by (—ﬁ;)?;ll the negative eigenvalues of B;(X), ordered such that
B > ...> B _,. Likewise, denote by {)\j}?:l the non-zero eigenvalues of X, ordered such
that A\ > ... > A¢. Using an interlacing property of eigenvalues, we can show that

B <p\, j=1,...,k—1

Thus,
k—1 ' k—1
D B<pY N=pl—X)<p
j=1 j=1

Let & ~ N (0, I,,,). By rotational invariance of the normal distribution, we have:

E(fTBi(X)f)Jr = E(%ﬁ Zﬁz ]+1>

n
Thus,
k-1
E(¢"B;(X)¢) > grel]i@ (ozzé“l Zﬁ] y+1> : 020, Zﬁjép (18)
+ j=1
m—1
2 5211%% <O‘zfl Zﬁa J+1> P 620, Zﬁj sp (19)
j=1
p m—1 ’
_ E<ai§f T g) , (20)
J= +

where we have exploited the convexity and symmetry in problem (19). (As claimed in the
first remark made after Theorem 5, we could safely keep k instead of m in the remaining of
the proof.)

Summing over 4, and in view of ¥(p) = > | a;, we get:

E Z(gTBi(X)g)Jr > Z E <ai§12 Z j+1> (by the bound (20))
i=1 i=1 j=1 N
—1

> E <¢( & — e Z F +1> (by homogeneity and convexity)
+
> () ¥(p), (21)

provided v > np/(m — 1)1(p). Using the fact that ¢¥(p) > ¢(p) > X11 — p, we obtain that
the bound (12) holds with 6 = 6,,() whenever (13) does, as claimed in the theorem. The
expression (15) of the function 6, is proved in Appendix A, while the bound (16) is proved
in Appendix B. B
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Figure 2: Plot of the function ¥(p) defined in Corollary 2, for a specific 5 x 5
covariance matrix Y. The left pane corresponds to a random matrix, and the right
pane, to a random matrix that satisfies the conditions of Corollary 3.

The following corollary allows to plot the quality estimate, as derived from Theorem 5, as
a function of p across the entire range [0, 3;[. We do not make the assumption 2 anymore,
but do keep assumption 1.

Corollary 2 Let p € [0,%1], and define n(p) = Card{i : X; > p} > 0 and m(p) =
Rank(X(p)), where X(p) is the n(p) x n(p) matriz obtained by removing the last n — n(p)
rows and columns in X. The bound (12) holds for 6 = 9(p), where

n(p) P
9(p) = Omip)(7(P)), V(p) = mip) —1 Y=, if m(p) > 1,

1 otherwise.

An example of the resulting plot is shown in Figure 2.

5.2 Quality estimate based on the structure of X

The next result illustrates how to obtain a quality estimate based on structural assumptions
on Y, requiring that its ordered diagonal decreases fast enough.

Corollary 3 Assume Y11 > ... > Y,,. If Yoo < p < X431, then the bounds (12) hold with
0 =1, that is, ¢(p) = ¥(p). If in addition, we have, for every h € {2,...,n}

1
Y, <
"=

21, (22)
then, whenever 0 < p < g, the bounds (12) hold with 6 > 1/7.
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Proof: In the case p € [X99, 311, n(p) = 1, so that m(p) = 1, and the bound (12) holds
with 6 = 1. Now let p be such that 0 < p < ¥gy. Then there exist h € {2,...,n} such that
Yhi1tht1 < p < Zpp, with the convention ¥, 11,41 = 0. In this case, n(p) = Card{i : X; >
p} = h, so that the sufficient condition (13) with v = 1 writes

which, in view of X1 11 < p < Xpp, holds when (22) holds, independent of p. Applying
the bound (16) ends the proof. B
An example corresponding to the situation of Corollary 3 is shown in Figure 2 (left pane).
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A A Formula for 6,,

Let v > 0, m > 1. Let us prove that the function 6, defined in (14) can be represented as
in (15). Using the hyperspherical change of variables

& = rcos(é)
& = rsin(¢r) cos(pa)

Em1 : rsin(¢q) ... sin(@m_2) cos(Gm-_1)
Em = rsin(¢q)...sin(¢n,_2)sin(¢,_1),

with ¢; € [0,7], 7 = 1,...,m — 2, ¢ € [0,27], and with the corresponding change of
measure

d¢ =™t sin™ 2 (¢y) .. .sin(ppm_2)do . .. dpp_1,

12



we obtain

0,, —  (27)"™/? >N 2| lield/zg
() = o™ (51 ml;£])+e 3
]m : ‘]m(’y)v

where I,,, is some constant, independent of 7, and

Inl)i= [ (oo - T sini(on)) s on)don

+

Since 0,,(0) = 1, we have I,, = 1/J,,(0). Exploiting symmetry to reduce the integration
interval from [0, 7] to [0, 7 /2], proves the formula (15).

B A bound on 6,,

The bound stems from the identity a, = (a+|a|)/2, valid for every a € R, and the following
result, found in the proof of Theorem 2.1 of [1]:

m

Z ?/ifiz

i=1

2
VyeR™ : E 2;||y||2.
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