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Abstract

We examine the problem of approximating a positive, semidefinite matrix Σ by
a dyad xxT , with a penalty on the cardinality of the vector x. This problem arises
in sparse principal component analysis, where a decomposition of Σ involving sparse
factors is sought. We express this hard, combinatorial problem as a maximum eigen-
value problem, in which we seek to maximize, over a box, the largest eigenvalue of
a symmetric matrix that is linear in the variables. This representation allows to use
the techniques of robust optimization, to derive a bound based on semidefinite pro-
gramming. The quality of the bound is investigated using a technique inspired by
Nemirovski and Ben-Tal (2002).
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Notation

The notation 1 denotes the vector of ones (with size inferred from context), while Card(x)
denotes the cardinality of a vector x (number of non-zero elements), and D(x) the diagonal
matrix with the elements of x on its diagonal. We denote by ei the unit vectors of R

n.
For a n × n matrix X, X º 0 means X is symmetric and positive semi-definite. The
notation B+, for a symmetric matrix B, denotes the matrix obtained from B by replacing
negative eigenvalues by 0. The notation has precedence over the trace operator, so that
TrB+ denotes the sum of positive eigenvalues of B if any, and 0 otherwise. Throughout,
the symbol E refers to expectations taken with respect to the normal Gaussian distribution
of dimension inferred from context. Finally, the support of a vector x is defined to be the
set of indices corresponding to its non-zero elements.

1 Introduction

Given a non-zero n × n positive semi-definite symmetric matrix Σ and a scalar ρ > 0, we
consider the cardinality-penalized variational problem

φ(ρ) := max
x

xT Σx − ρCard(x) : ‖x‖2 = 1. (1)

This problem is equivalent to solving the sparse rank-one approximation problem

min
z

‖Σ − zzT‖2
F − ρCard(z),

which arises in the sparse PCA problem [4, 2], where a “decomposition” of Σ into sparse
factors is sought. We refer to [2] for a motivation of the sparse PCA problem, and an
overview of its many applications.

In the paper [2], the authors have developed the “direct sparse PCA” approach, which
leads to the following convex relaxation for the problem (1):

max
X

TrXΣ − ρ‖X‖1 : X º 0, TrX = 1.

The above problem is amenable to both general-purpose semidefinite programming (SDP)
interior-point codes, and more recent first-order algorithms such as Nesterov’s smooth min-
imization technique [3]. Unfortunately, the quality of the relaxation seems to be hard to
analyze at present.

In this paper, we introduce two new representations of the problem, and a new SDP
bound, based on robust optimization ideas [1]. Our main goal is to use the new representa-
tions of the problem to analyze the quality of the corresponding bound.

The paper is organized as follows. Section 2 develops some preliminary results allowing
to restrict our attention to the case when ρ < maxi Σii. Section 3 then proposes two new
representations for φ(ρ), one based on largest eigenvalue maximization, and the other on a
thresholded version of the Rayleigh quotient. In section 4, we derive an SDP-based upper
bound on φ(ρ), and in section 5, we analyze its quality: as a function of the penalty parameter
ρ first, then in terms of structural conditions on matrix Σ.
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It will be helpful to describe Σ in terms of the Cholesky factorization Σ = AT A, where
A = [a1 . . . an], with ai ∈ Rm, i = 1, . . . , n, where m = Rank(Σ). Further, we will assume,
without loss of generality, that the diagonal of Σ is ordered, and none of the diagonal elements
is zero, so that Σ11 ≥ . . . ≥ Σnn > 0. Finally, we define the set I(ρ) := {i : Σii > ρ}, and
let n(ρ) := Card I(ρ).

2 Equality vs. Inequality Models

In the sequel we will develop SDP bounds for the related quantity

φ(ρ) := max
x

xT Σx − ρCard(x) : ‖x‖2 ≤ 1. (2)

The following theorem says that when ρ < Σ11, the two quantities φ(ρ), φ(ρ) are positive
and equal; otherwise, both φ(ρ) and φ(ρ) have trivial solutions.

Theorem 1 If ρ < Σ11, we have φ(ρ) = φ(ρ) > 0, and the optimal sets of problems (1)
and (2) are the same. Conversely, if ρ ≥ Σ11, we have φ(ρ) = 0 ≥ φ(ρ) = Σ11 − ρ, and
a corresponding optimal vector for φ(ρ) (resp. φ(ρ)) is x = e1, the first basis vector in R

n

(resp. x = 0).

Proof: If ρ < Σ11, then the choice x = e1 in (2) implies φ(ρ) > 0, which in turn implies
that an optimal solution x∗ for (2) is not zero. Since the Card function is scale-invariant, it
is easy to show that without loss of generality, we can assume that x∗ has l2-norm equal to
one, which then results in φ(ρ) = φ(ρ) > 0.

Let us now turn to the case when ρ ≥ Σ11. We develop an expression for φ(ρ) as follows.
First observe that, since Σ º 0,

max
‖x‖1=1

xT Σx = Σ11,

which implies that, for every x,
Σ11‖x‖2

1 ≥ xT Σx. (3)

Now let t ≥ 0. The condition φ(ρ) ≤ −t holds if and only if

∀ x, ‖x‖2 = 1 : ρCard(x) ≥ t + xT Σx.

Specializing the above condition to x = e1, we obtain that φ(ρ) ≤ −t implies ρ ≥ Σ11 + t.
Conversely, assume that ρ ≥ Σ11 + t. Using (3), we have for every x, ‖x‖2 = 1:

ρCard(x) ≥ ρ‖x‖2
1 ≥ (Σ11 + t)‖x‖2

1 ≥ xT Σx + t,

where we have used the fact that ‖x‖1 ≥ 1 whenever ‖x‖2 = 1. Thus we have obtained that
φ(ρ) ≤ −t with t ≥ 0 if and only if ρ ≥ Σ11 + t, which means that φ(ρ) = Σ11 − ρ whenever
ρ ≥ Σ11.

Finally, let us prove that φ(ρ) = 0 when ρ ≥ Σ11. For every x 6= 0 such that ‖x‖2 ≤ 1,
we have

ρCard(x) ≥ ρ

‖x‖2
2

‖x‖2
1 ≥ ρ‖x‖2

1 ≥ xT Σx,

which shows that φ(ρ) ≤ 0, and concludes our proof. ¥

In the sequel, we will make the following assumption.
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Assumption 1 We assume that ρ < Σ11, that is, the set I(ρ) := {i : Σii > ρ} is not empty.

3 New Representations

3.1 Largest eigenvalue maximization

The following theorem shows that the problem of computing φ(ρ) can be expressed as a
eigenvalue maximization problem, where the sparsity pattern is the decision variable.

Theorem 2 For ρ ∈ [0, Σ11[, φ(ρ) can be expressed as the maximum eigenvalue problem

φ(ρ) = max
u∈[0,1]n

λmax

(

n
∑

i=1

uiBi

)

, (4)

where Bi := aia
T
i − ρ · Im, i = 1, . . . , n.

An optimal solution to the original problem (1) is obtained from a sparsity pattern vector
u that is optimal for (4), by finding an eigenvector y corresponding to the largest eigenvalue
of D(u)ΣD(u), and setting x = D(u)y/‖D(u)y‖2, where D(u) := diag(u).

Proof. Since ρ < Σ11, the result of Theorem 1 implies that φ(ρ) is equal to φ(ρ) defined in
in (2). Let us now prove that φ(ρ) = φ̃(ρ), where

φ̃(ρ) := max
u∈{0,1}n

max
yT y≤1

yT D(u)ΣD(u)y − ρ · 1T u. (5)

To prove this intermediate result, first note that if x is optimal for φ(ρ), that is, for (2),
then we can set ui = 1 if xi 6= 0, ui = 0 otherwise, so that Card(x) = 1T u; then, we set
y = x and obtain that the pair (u, y) is feasible for φ̃(ρ), and achieves the objective value
φ(ρ), hence φ(ρ) ≤ φ̃(ρ). Conversely, if (u, y) is optimal for φ̃(ρ), then x = D(u)y is feasible
for φ(ρ) (as expressed in (2)), and satisfies Card(x) ≤ Card(u) = 1T u, thus

φ̃(ρ) = yT D(u)ΣD(u)y − ρ1T u ≤ xT Σx − ρCard(x) ≤ φ(ρ),

This concludes the proof that φ(ρ) = φ̃(ρ).
We proceed by eliminating y from (5), as follows:

φ(ρ) = max
u∈{0,1}n

λmax(D(u)ΣD(u)) − ρ · 1T u

= max
u∈{0,1}n

λmax(D(u)AT AD(u)) − ρ · 1T u

= max
u∈{0,1}n

λmax(AD(u)AT ) − ρ · 1T u

= max
u∈{0,1}n

λmax(
n

∑

i=1

uiaia
T
i ) − ρ · 1T u,

in virtue of Σ = AT A, and D(u)2 = D(u) for every feasible u. Invoking the convexity of the
largest eigenvalue function, we can replace the set {0, 1}n by [0, 1]n in the above expression,
and obtain (4). ¥
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3.2 Thresholded Rayleigh quotient

The following theorem shows that φ(ρ) can be expressed as a maximal “thresholded Rayleigh
quotient”, which for ρ = 0 reduces to the ordinary Rayleigh quotient.

Theorem 3 For ρ ∈ [0, Σ11[, we have

φ(ρ) = max
ξT ξ=1

n
∑

i=1

((aT
i ξ)2 − ρ)+, (6)

= max
X

n
∑

i=1

(aT
i Xai − ρ)+ : X º 0, TrX = 1. (7)

An optimal solution x for (1) is obtained from an optimal solution ξ to problem (6) by setting
ui = 1 if (aT

i ξ)2 > ρ, ui = 0 otherwise; then, finding an eigenvector y corresponding to the
largest eigenvalue of D(u)ΣD(u), and setting x = D(u)y/‖D(u)y‖2.

Proof: From the expression (4), we derive

φ(ρ) = max
u∈[0,1]n

max
ξT ξ≤1

ξT

(

n
∑

i=1

uiaia
T
i

)

ξ − ρ · 1T u

= max
ξT ξ≤1

n
∑

i=1

((aT
i ξ)2 − ρξT ξ)+

= max
ξT ξ=1

n
∑

i=1

((aT
i ξ)2 − ρ)+, (8)

where the last equality derives from the fact that φ(ρ) > 0 (which is in turn the consequence
of our assumption that Σ11 = maxi a

T
i ai > ρ). Finally, the equivalence between (6) and (7)

stems from convexity of the objective function in problem (7), which implies that without
loss of generality, we can impose X to be of rank one in (7). ¥

The following corollary shows that we can safely remove columns and rows in Σ that
have variance below the threshold ρ.

Corollary 1 Without loss of generality, we can assume that every optimal solution to the
original problem (1) has a support included in the set I(ρ) := {i : Σii > ρ}. Thus, if Σii ≤ ρ,
the corresponding column and row can be safely removed from Σ.

Proof: This is a direct implication of the fact that for every i, if ρ ≥ aT
i ai, then we have

(aT
i ξ)2 ≤ ρ for every ξ such that ξT ξ = 1. Hence, the corresponding term does not appear

in the sum in (8). ¥
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3.3 Exact Solutions in Some Special cases

Theorems 2 and 3 allows to solve exactly the problem in some special cases.
First, Theorem 2 can be invoked when Σ is diagonal, in which case the optimal vector x

turns out to be simply the first unit vector, e1.
Next, consider the case when the matrix Σ has rank one, that is, m = 1. Then, the ai’s

are scalars, and the representation given in Theorem 3 yields

φ(ρ) = max
ξ2=1

n
∑

i=1

((aiξ)
2 − ρ)+ =

n
∑

i=1

(a2
i − ρ)+.

A corresponding optimal solution for φ(ρ) is obtained by setting ui = 1 if ρ < a2
i , ui = 0

otherwise, and then setting x = ã/‖ã‖2, with ã obtained from a by thresholding a with
absolute level

√
ρ. In the sequel, we assume that m > 1.

A similar result holds when Σ has the form Σ = I + aaT , when a is a given n-vector,
since then the problem trivially reduces to the rank-one case.

4 SDP relaxation

A relaxation inspired by [1] is given by the following theorem.

Theorem 4 For every ρ ∈ [0, Σ11[, we have φ(ρ) ≤ ψ(ρ), where ψ(ρ) is the solution to a
semidefinite program:

ψ(ρ) := min
(Yi)n

i=1

λmax

(

n
∑

i=1

Yi

)

: Yi º Bi, Yi º 0, i = 1, . . . , n. (9)

The problem can be represented in dual form, as the convex problem

ψ(ρ) = max
X

n
∑

i=1

Tr
(

X1/2aia
T
i X1/2 − ρX

)

+
: X º 0, TrX = 1. (10)

Proof: If (Yi)
n
i=1 is feasible for the above SDP, then for every ξ ∈ Rm, ξT ξ ≤ 1, and

u ∈ [0, 1]n, we have

ξT

(

n
∑

i=1

uiBi

)

ξ ≤
n

∑

i=1

(ξT Biξ)+ ≤ ξT

(

n
∑

i=1

Yi

)

ξ ≤ ψ(ρ),

which proves φ(ρ) ≤ ψ(ρ). The dual of the SDP (9) is given by

ψ(ρ) = max
X,(Pi)n

i=1

n
∑

i=1

〈Pi, Bi〉 : X º Pi º 0, i = 1, . . . , n, TrX = 1. (11)

Using the fact that, for any symmetric matrix B, and positive semi-definite matrix X,

max
P

{〈P,B〉 : X º P º 0} = Tr
(

X1/2BX1/2
)

+
,
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allows to represent the dual problem in the form (10). Note that the convexity of the
representation (10) is not immediately obvious. ¥

A few comments are in order.
The fact that φ(ρ) ≤ ψ(ρ) can also be inferred directly from the dual expression (10): we

have, by convexity, and using the representation (7) for φ(ρ),

ψ(ρ) ≥ max
X

{

n
∑

i=1

(

aT
i Xai − ρ

)

+
: X º 0, TrX = 1

}

= φ(ρ).

From the representation (10) and this, we obtain that if the rank k of X at the optimum of
the dual problem (10) is one, then our relaxation is exact: φ(ρ) = ψ(ρ).

In fact, problem (10) can be obtained as a rank relaxation of the following exact repre-
sentation of φ:

φ = max
X

n
∑

i=1

Tr
(

X1/2aia
T
i X1/2 − ρX

)

+
: X º 0, TrX = 1, Rank(X) = 1.

In contrast, applying a direct rank relaxation to problem (6) (that is, writing the problem
in terms of letting X = ξξT and dropping the rank constraint on X) would be useless: it
would yield (7), which is φ(ρ) itself.

Finally, note that our relaxation shares the property of the exact formulation (6) observed
in Corollary 1, that indices i such that ρ ≥ Σii can be simply ignored, since then Bi ¹ 0.

5 Quality of the SDP relaxation

In this section, we seek to estimate a lower bound on the quality of the SDP relaxation,
which we define to be a scalar θ ∈ [0, 1] such that

θψ(ρ) ≤ φ(ρ) ≤ ψ(ρ). (12)

Thus, (1 − θ)/θ is a upper bound on the relative approximation error, (ψ(ρ) − φ(ρ))/φ(ρ).

5.1 Quality estimate as a function of the penalty parameter

Our first result gives a bound on the relaxation quality conditional on a bound on ρ. We
begin by making the following assumption:

Assumption 2 We assume that 0 < ρ < min
1≤i≤n

Σii = Σnn, and m = Rank(Σ) > 1 .

From the result of Corollary 1, we can always reduce the problem so that the above assump-
tion holds, by removing appropriate columns and rows of Σ if necessary.

Theorem 5 With assumption 2 in force, for every value of the penalty parameter ρ ∈
[0, Σnn[, and for every γ ≥ 0 such that

ρ ≤ γ

n + γ
Σ11, (13)
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the bound (12) holds with θ set to θm(γ), where for m > 1 and γ ≥ 0, we define

θm(γ) := E

(

ξ2
1 −

γ

m − 1
·

m
∑

j=2

ξ2
j

)

+

, (14)

which can be computed by the formula

θm(γ) =

∫ π/2

0

(

cos2(t) − γ

m − 1
sin2(t)

)

+

sinm−2(t)dt

∫ π/2

0

cos2(t) sinm−2(t)dt

. (15)

For every γ ≥ 0, the value θm(γ) decreases with m, and admits the bound

θm(γ) ≥ 1

2

(

1 − γ +
2

π

√

1 +
γ2

m − 1

)

+

. (16)

In particular, if ρ satisfies (13) with γ = 1, that is, ρ ≤ Σ11/(n + 1), then bound (12)
holds with θ ≥ 1/π.

Before we prove the theorem, let us make a few comments.
First, as will be apparent from the proof, the value of m can be safely replaced by the

rank k of an optimal solution to the SDP (10). This can only improve the quality estimate,
as k ≤ m and θm(γ) is a decreasing function of m for every γ ≥ 0.

Second, the smaller m is, and the larger γ is, the smaller the corresponding quality
estimate. However, a small value for γ does not allow for a large range of ρ values via (13),
and this effect is becomes more pronounced as n grows. The theorem presents the result
in such a way that the respective contributions of m,n to the deterioration of the quality
estimate are separated. A plot of the function θm for various values of m is shown in Figure 1.

Third, the theorem allows to plot the predicted quality estimate θ as a function of the
penalty parameter, in the interval [0, Σnn[. Leveraging these results to the entire range
[0, Σ11[ will be straightforward, but will require us to be careful about the sizes n and m, as
they change as ρ crosses the values Σn−1,n−1, . . . , Σ11, in view of Corollary 1. We formalize
the argument in Corollary 2.

Finally, the theorem allows to derive conditions on the structure of Σ that guarantee a
prescribed value of the quality. We describe such a condition in Corollary 3.

Proof of theorem 5: The approach we use in our proof is inspired by that of Theorem 2.1
in [1]. Let X º 0, TrX = 1, be optimal for the upper bound ψ(ρ) in dual form (10), so that

ψ(ρ) =
n

∑

i=1

Tr(Bi(X)+),

where Bi(X) := X1/2BiX
1/2. Let k = Rank(X). We have seen that if k = 1, then our

relaxation is exact: φ(ρ) = ψ(ρ). If the rest of the proof, we will assume that k > 1. We
thus have 1 < k ≤ m = Rank(Σ) ≤ n.
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Figure 1: Plot of function θm(γ), as defined in (15), for various values of m.

Assume that we find a scalar θ ∈ [0, 1] such that:

E

n
∑

i=1

(ξT Bi(X)ξ)+ > (θψ(ρ)) · E(ξT Xξ), (17)

where ξ follows the normal distribution in R
m. The bound above implies that there exist a

non-zero ξ ∈ Rm such that

n
∑

i=1

(ξT Bi(X)ξ)+ > (θψ(ρ)) · (ξT Xξ).

Thus, with ui = 1 if ξT Bi(X)ξ > 0, ui = 0 otherwise, we obtain that there exist a non-zero
ξ ∈ Rm and u ∈ [0, 1]n such that

ξT

(

n
∑

i=1

uiBi(X)

)

ξ > (θψ(ρ)) · (ξT Xξ).

With z = X1/2ξ:

zT

(

n
∑

i=1

uiBi

)

z > (θψ(ρ)) · (zT z).

The above implies that z 6= 0, so we conclude that there exist u ∈ [0, 1]n such that

λmax

(

n
∑

i=1

uiBi

)

> θψ(ρ),

from which we obtain the quality estimate θψ(ρ) ≤ φ(ρ) ≤ ψ(ρ). By a continuity argument,
this result still holds if (17) is satisfied, but not strictly. The rest of the proof is dedicated
to finding a scalar θ such that the bound (17) holds.
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Fix i ∈ {1, . . . , n}. It is easy to show that Bi(X) has exactly one positive eigenvalue
αi, since assumption 2 holds. Thus αi = TrBi(X)+. Further, Bi(X) has exactly rank
k = Rank(X). Denote by (−βi

j)
k−1
j=1 the negative eigenvalues of Bi(X), ordered such that

βi
1 ≥ . . . ≥ βi

k−1. Likewise, denote by {λj}k
j=1 the non-zero eigenvalues of X, ordered such

that λ1 ≥ . . . ≥ λk. Using an interlacing property of eigenvalues, we can show that

βi
j ≤ ρλj, j = 1, . . . , k − 1.

Thus,
k−1
∑

j=1

βi
j ≤ ρ

k−1
∑

j=1

λj = ρ(1 − λk) ≤ ρ.

Let ξ ∼ N (0, Im). By rotational invariance of the normal distribution, we have:

E(ξT Bi(X)ξ)+ = E

(

αiξ
2
1 −

k−1
∑

j=1

βi
jξ

2
j+1

)

+

.

Thus,

E(ξT Bi(X)ξ)+ ≥ min
β∈Rk







E

(

αiξ
2
1 −

k−1
∑

j=1

βjξ
2
j+1

)

+

: β ≥ 0,
k−1
∑

j=1

βj ≤ ρ







(18)

≥ min
β∈Rm







E

(

αiξ
2
1 −

m−1
∑

j=1

βjξ
2
j+1

)

+

: β ≥ 0,
m−1
∑

j=1

βj ≤ ρ







(19)

= E

(

αiξ
2
1 −

ρ

m − 1

m−1
∑

j=1

ξ2
j+1

)

+

, (20)

where we have exploited the convexity and symmetry in problem (19). (As claimed in the
first remark made after Theorem 5, we could safely keep k instead of m in the remaining of
the proof.)

Summing over i, and in view of ψ(ρ) =
∑n

i=1 αi, we get:

E

n
∑

i=1

(ξT Bi(X)ξ)+ ≥
n

∑

i=1

E

(

αiξ
2
1 −

ρ

m − 1

m−1
∑

j=1

ξ2
j+1

)

+

(by the bound (20))

≥ E

(

ψ(ρ)ξ2
1 −

nρ

m − 1

m−1
∑

j=1

ξ2
j+1

)

+

(by homogeneity and convexity)

≥ θm(γ) · ψ(ρ), (21)

provided γ ≥ nρ/(m − 1)ψ(ρ). Using the fact that ψ(ρ) ≥ φ(ρ) ≥ Σ11 − ρ, we obtain that
the bound (12) holds with θ = θm(γ) whenever (13) does, as claimed in the theorem. The
expression (15) of the function θm is proved in Appendix A, while the bound (16) is proved
in Appendix B. ¥
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Figure 2: Plot of the function ϑ(ρ) defined in Corollary 2, for a specific 5 × 5
covariance matrix Σ. The left pane corresponds to a random matrix, and the right
pane, to a random matrix that satisfies the conditions of Corollary 3.

The following corollary allows to plot the quality estimate, as derived from Theorem 5, as
a function of ρ across the entire range [0, Σ11[. We do not make the assumption 2 anymore,
but do keep assumption 1.

Corollary 2 Let ρ ∈ [0, Σ11[, and define n(ρ) = Card{i : Σii > ρ} > 0 and m(ρ) =
Rank(Σ(ρ)), where Σ(ρ) is the n(ρ) × n(ρ) matrix obtained by removing the last n − n(ρ)
rows and columns in Σ. The bound (12) holds for θ = ϑ(ρ), where

ϑ(ρ) =







θm(ρ)(γ(ρ)), γ(ρ) =
n(ρ)

m(ρ) − 1
· ρ

Σ11 − ρ
if m(ρ) > 1,

1 otherwise.

An example of the resulting plot is shown in Figure 2.

5.2 Quality estimate based on the structure of Σ

The next result illustrates how to obtain a quality estimate based on structural assumptions
on Σ, requiring that its ordered diagonal decreases fast enough.

Corollary 3 Assume Σ11 > . . . > Σnn. If Σ22 ≤ ρ < Σ11, then the bounds (12) hold with
θ = 1, that is, φ(ρ) = ψ(ρ). If in addition, we have, for every h ∈ {2, . . . , n}

Σhh ≤ 1

h + 1
Σ11, (22)

then, whenever 0 < ρ < Σ22, the bounds (12) hold with θ ≥ 1/π.
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Proof: In the case ρ ∈ [Σ22, Σ11[, n(ρ) = 1, so that m(ρ) = 1, and the bound (12) holds
with θ = 1. Now let ρ be such that 0 < ρ < Σ22. Then there exist h ∈ {2, . . . , n} such that
Σh+1,h+1 ≤ ρ < Σhh, with the convention Σn+1,n+1 = 0. In this case, n(ρ) = Card{i : Σii >
ρ} = h, so that the sufficient condition (13) with γ = 1 writes

ρ ≤ 1

(h + 1)
Σ11,

which, in view of Σh+1,h+1 ≤ ρ < Σhh, holds when (22) holds, independent of ρ. Applying
the bound (16) ends the proof. ¥

An example corresponding to the situation of Corollary 3 is shown in Figure 2 (left pane).
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A A Formula for θm

Let γ > 0, m > 1. Let us prove that the function θm defined in (14) can be represented as
in (15). Using the hyperspherical change of variables

ξ1 = r cos(φ1)
ξ2 = r sin(φ1) cos(φ2)

...
ξm−1 = r sin(φ1) . . . sin(φm−2) cos(φm−1)

ξm = r sin(φ1) . . . sin(φm−2) sin(φm−1),

with φj ∈ [0, π], j = 1, . . . ,m − 2, φm−1 ∈ [0, 2π], and with the corresponding change of
measure

dξ = rm−1 sinm−2(φ1) . . . sin(φm−2)dφ1 . . . dφm−1,

12



we obtain

θm(γ) = (2π)−m/2

∫

Rm

(

ξ2
1 −

γ

m − 1

m
∑

j=2

ξ2
j

)

+

e−‖ξ‖2

2
/2dξ

= Im · Jm(γ),

where Im is some constant, independent of γ, and

Jm(γ) :=

∫ π

0

(

cos2(φ1) −
γ

m − 1
sin2(φ1)

)

+

sinm−2(φ1)dφ1.

Since θm(0) = 1, we have Im = 1/Jm(0). Exploiting symmetry to reduce the integration
interval from [0, π] to [0, π/2], proves the formula (15).

B A bound on θm

The bound stems from the identity a+ = (a+ |a|)/2, valid for every a ∈ R, and the following
result, found in the proof of Theorem 2.1 of [1]:

∀ y ∈ R
m : E

∣

∣

∣

∣

∣

m
∑

i=1

yiξ
2
i

∣

∣

∣

∣

∣

≥ 2

π
‖y‖2.
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