
A particle swarm pattern search method for

bound constrained nonlinear optimization

A. Ismael F. Vaz ∗ L. N. Vicente †

February 11, 2006

Abstract

In this paper we develop, analyze, and test a new algorithm for the
global minimization of a function subject to simple bounds without
the use of derivatives. The underlying algorithm is a pattern search
method, more specifically a coordinate search method, which guaran-
tees convergence to stationary points from arbitrary starting points.

In the optional search phase of pattern search we apply a par-
ticle swarm scheme to globally explore the possible nonconvexity of
the objective function. Our extensive numerical experiments showed
that the resulting algorithm is highly competitive with other global
optimization methods also based on function values.

Keywords: Direct search, pattern search, particle swarm, derivative free
optimization, global optimization, bound constrained nonlinear optimization.

AMS subject classifications: 90C26, 90C30, 90C56.

1 Introduction

Pattern and direct search methods are one of the most popular classes of
methods to minimize functions without the use of derivatives or of approxi-
mations to derivatives [23]. They are based on generating search directions

∗Departamento de Produção e Sistemas, Escola de Engenharia, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal (aivaz@dps.uminho.pt). Support for
this author was provided by Algoritmi Research Center, and by FCT under grants
POCI/MAT/59442/2004 and POCI/MAT/58957/2004.

†Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal
(lnv@mat.uc.pt). Support for this author was provided by Centro de Matemática da
Universidade de Coimbra and by FCT under grant POCI/MAT/59442/2004.

1

which positively span the search space. Direct search is conceptually simple
and natural for parallelization. These methods can be designed to rigorously
identify points satisfying stationarity for local minimization (from arbitrary
starting points). Moreover, their flexibility can be used to incorporate al-
gorithms or heuristics for global optimization, in a way that the resulting
direct or pattern search method inherits some of the properties of the im-
ported global optimization technique, without jeopardizing the convergence
for local stationarity mentioned before.

The particle swarm optimization algorithm was firstly proposed in [11, 21]
and has deserved some recent attention in the global optimization commu-
nity. The particle swarm algorithm tries to simulate the social behaviour of
a population of agents or particles, in an attempt to optimally explore some
given problem space. During time (iterations in the optimization context),
each particle is associated with a stochastic velocity vector which indicates
where the particle is moving to. The velocity vector for a given particle at
a given time is a linear stochastic combination of the velocity in the previ-
ous time instant, of the direction to the particle’s best ever position, and
of the direction to the best ever swarm positions (for all particles). The
particle swarm algorithm is a stochastic algorithm in the sense that it relies
on parameters drawn from random variables, and thus different runs for the
same starting swarm may produce different outputs. Some of its advantages
are being simple to implement and easy to parallelize. It depends, however,
on a number of parameters which influence the rate of convergence in the
vicinity of the global optimum. Particle swarm seems to outperform genetic
algorithms on difficult problem classes, namely for unconstrained global op-
timization problems [6].

The goal of this paper is to show how particle swarm can be incorporated
in the pattern search framework. The resulting particle swarm pattern search
algorithm is still a pattern search algorithm, producing sequences of iterates
along the traditional requirements for this class of methods (based on integer
lattices and positive spanning sets). The new algorithm is better equipped
for global optimization because it is more aggressive in the exploration of the
search space. Our numerical experiences showed that a large percentage of
the computational work is spent in the particle swarm component of pattern
search.

Within the pattern search framework, the use of the search step for sur-
rogate optimization [5, 27] or global optimization [1] is an active area of
research. Hart has also used evolutionary programming to design evolution-
ary pattern search methods (see [14] and the references therein). There are
some significative differences between his work and ours. First, we are exclu-
sively focused on global optimization and our heuristic is based on particle

2

swarm rather then on evolutionary algorithms. Further, our algorithm is
deterministic in its pattern search component. As a result, we obtain that a
subsequence of the mesh size parameters tends to zero is the deterministic
sense rather than with probability one like in Hart’s algorithms.

We are interested in solving mathematical problems of the form

min
z∈Rn

f(z) s.t. ` ≤ z ≤ u,

where the inequalities ` ≤ z ≤ u are posed componentwise. There is no
need to assume any type on smoothness on the objective function f(z) to
apply particle swarm or pattern search. To study the convergence properties
of pattern search, and thus of the particle swarm pattern search method,
one has to impose some smoothness on f(z), the necessary to characterize
stationarity at local minimizers.

The next two sections are used to describe the particle swarm paradigm
and the basic pattern search framework. We introduce the particle swarm
pattern search method in Section 4. The convergence and termination prop-
erties of the proposed method are discussed in Section 5. A brief review
about the optimization solvers used in the numerical comparisons and im-
plementation details about our method are given in Section 6. The numerical
results are presented in Section 7 for a large set of problems. We end the
paper in Section 8 with conclusions and directions for future work.

2 Particle swarm

In this section, we briefly describe the particle swarm optimization algorithm.
Our description follows the presentation of the algorithm tested in [6] and
the reader is pointed to [6] for other algorithmic variants and details.

The particle swarm optimization algorithm is based on a population
(swarm) of particles. Each particle is associated with a velocity which indi-
cates where the particle is moving to. Let t be a time instant. Suppose that
there are s particles (where s is known as the population size). The new
position xi(t + 1) of the i–th particle at time t + 1 is computed by adding to
the old position xi(t) at time t a velocity vector vi(t + 1):

xi(t + 1) = xi(t) + vi(t + 1), (1)

for i = 1, . . . , s.
The velocity vector associated to each particle i is updated by

vi
j(t + 1) = ι(t)vi

j(t) + µω1j(t)
(

yi
j(t) − xi

j(t)
)

+ νω2j(t)
(

ŷj(t) − xi
j(t)

)

, (2)

3

for j = 1, . . . , n, where ι(t) is a weighting factor (called inertial) and µ and
ν are positive real parameters (called, in the particle swarm terminology, the
cognition parameter and the social parameter, respectively). The numbers
ω1j(t) and ω2j(t) are randomly drawn from the uniform (0, 1) distribution
used for each dimension j = 1, . . . , n. Finally, yi(t) is the position of the i-th
particle with the best objective function value so far calculated, and ŷ(t) is
the particle position with the best (among all particles) objective function
value found so far. The position ŷ(t) can be rigorously described as

ŷ(t) = argminz∈{y1(t),...,ys(t)}f(z).

The bound constraints in the variables are enforced by considering the
projection onto Ω = {x ∈ R

n : ` ≤ x ≤ u}, given for all particles i = 1, . . . , s
by

projΩ(xi
j(t)) =







`j if xi
j(t) < `j,

uj if xi
j(t) > uj,

xi
j(t) otherwise,

(3)

for j = 1, . . . , n. This projection must be applied to the new particles posi-
tions computed by equation (1).

The stopping criterion of the algorithm should be practical and has to
ensure proper termination. One possibility is to stop when the norm of the
velocities vector is small for all particles. It is possible to prove under some
assumptions and for some algorithmic parameters that the expected value of
the norm of the velocities vectors tends to zero for all particles (see also the
analysis presented in the Section 5).

The particle swarm optimization algorithm is described in Algorithm 2.1.

Algorithm 2.1

1. Choose a population size s and a stopping tolerance vtol > 0. Randomly
initialize the initial swarm {x1(0), . . . , xs(0)} and the initial swarm ve-
locities v1(0), . . . , vs(0).

2. Set yi(0) = xi(0), i = 1, . . . , s, and ŷ(0) = arg minz∈{y1(0),...,ys(0)} f(z).
Let t = 0.

3. Set ŷ(t + 1) = ŷ(t).

For i = 1, . . . , s do (for every particle i):

• Compute x̂i(t) = projΩ(xi(t)).

• If f(x̂i(t)) < f(yi(t)) then

4

– Set yi(t + 1) = x̂i(t) (update the particle i best position).

– If f(yi(t + 1)) < f(ŷ(t + 1)) then ŷ(t + 1) = yi(t + 1) (update
the particles best position).

• Otherwise set yi(t + 1) = yi(t).

4. Compute vi(t+1) and xi(t+1), i = 1, . . . , s, using formulae (1) and (2).

5. If ‖vi(t+1)‖ < vtol, for all i = 1, . . . , s, then stop. Otherwise, increment
t by one and go to Step 3.

3 Pattern search

Direct search methods are an important class of optimization algorithms
which attempt to minimize a function by comparing, at each iteration, its
value in a finite set of trial points (computed by simple mechanisms). Direct
search methods not only do not use any derivative information but also do not
try to implicitly build any type of derivative approximation. Pattern search
methods can be seen as direct search methods for which the rules of generat-
ing the trial points follow stricter calculations and for which convergence for
stationary points can be proved from arbitrary starting points. A compre-
hensive review of direct and pattern search can be found in [23], where the
terminology ’generating set search’ methods is adopted instead. In this pa-
per, we prefer to describe pattern search methods using the search/poll step
framework [3] since it suits better the incorporation of heuristic procedures.

The central notion in direct or pattern search is positive spanning. The
definitions and properties of positive spanning sets and of positive bases are
given, for instance, in [9, 23]. One of the simplest positive spanning sets is
formed by the vectors of the canonical basis and its symmetrical counterparts:

D⊕ = {e1, . . . , en,−e1, . . . ,−en}.

(The set D⊕ is also a (maximal) positive basis.) The elementary direct search
method based on this positive spanning set is known as coordinate or compass
search and its structure is basically all we need from direct or pattern search
in our paper.

Given a positive spanning set D and the current iterate1 y(t), we define
two sets of points: the mesh Mt and the poll set Pt. The mesh Mt is given
by

Mt =
{

y(t) + α(t)Dz, z ∈ N
|D|
0

}

,

1We will use y(t) to denote the current iterate, rather than xk or yk, to follow the
notation of the particle swarm framework.

5

where α(t) > 0 is the mesh size parameter (also known as the step-length
control parameter). The mesh has to meet some integrality requirements
for the method to achieve global convergence to stationary points, in other
words, convergence to stationary points from arbitrary starting points. In
particular, the matrix D has to be of the form GẐ, where G ∈ R

n×n is
a nonsingular generating matrix and Ẑ ∈ Z

n×|D|. The positive basis D⊕

satisfies this requirement trivially.
The search step conducts a finite search in the mesh Mt. The poll step is

executed only if the search step fails to find a point for which f is lower than
f(y(t)). The poll step evaluates the function at the points in the poll set

Pt = {y(t) + α(t)d, d ∈ D} ,

trying to find a point where f is lower than f(y(t)). Note that Pt is a subset
of Mt. If f is continuously differentiable at y(t), the poll step is guaranteed
to succeed if α(t) is sufficiently small, since the positive spanning set D
contains at least one direction of descent (which makes an acute angle with
−∇f(y(t))). Thus, if the poll step fails then the mesh size parameter must
be reduced. It is the poll step that guarantees the global convergence of the
pattern search method.

In order to generalize pattern search for bound constrained problems it
is necessary to use a feasible initial guess y(0) ∈ Ω and to keep feasibility
of the iterates by rejecting any trial point that is out of the feasible region.
Rejecting infeasible trial points can be accomplished by applying a pattern
search algorithm to the following penalty function

f̂(z) =

{

f(z) if z ∈ Ω,
+∞ otherwise.

The iterates produced by a pattern search method applied to the uncon-
strained problem of minimizing f̂(x) coincide trivially with those generated
by the same type of pattern search method, but applied to the minimization
of f(z) subject to simple bounds and to the rejection of infeasible trial points.

It is also necessary to include in the search directions D those directions
that guarantee the presence of a descent direction at any nonstationary point
of the bound constrained problem. One can achieve this goal in several ways,
but, rather then entering into many details about this matter, we prefer to
say that the set of directions in D⊕ is sufficiently rich to fulfill this goal in
the case of bound constraints.

In order to completely describe the basic pattern search algorithm, we
need to specify how to expand and contract the mesh size or step-length

6

control parameter α(t). These expansions and contractions use the factors
φ(t) and θ(t), respectively, which must obey to the following rules:

φ(t) = τ `t , `t ∈ N0, if t is successful,
θ(t) = τmt , mt ∈ Z

−, if t is unsuccessful,

where τ > 1 is a positive integer chosen at the beginning of the method and
unchanged with t. For instance, we can have θ(t) = 1/2 for unsuccessful
iterations and φ(t) = 1 or φ(t) = 2 for successful iterations.

The basic pattern search method for use in this paper is described in
Algorithm 3.1.

Algorithm 3.1

1. Choose a positive integer τ and the stopping tolerance αtol > 0. Choose
the positive spanning set D = D⊕.

2. Let t = 0. Select an initial feasible guess y(0). Choose α(0) > 0.

3. [Search Step]

Evaluate f at a finite number of points in Mt. If a point z(t) ∈ Mt is
found for which f̂(z(t)) < f̂(y(t)) then set y(t + 1) = z(t), α(t + 1) =
φ(t)α(t) (optionally expanding the mesh size parameter), and declare
successful both the search step and the current iteration.

4. [Poll Step]

Skip the poll step if the search step was successful.

• If there exists d(t) ∈ D such that f̂(y(t)+α(t)d(t)) < f̂(y(t)) then

– Set y(t + 1) = y(t) + α(t)d(t) (poll step and iteration success-
ful).

– Set α(t + 1) = φ(t)α(t) (optionally expand the mesh size pa-
rameter).

• Otherwise, f̂(y(t) + α(t)d(t)) ≥ f̂(y(t)) for all d(t) ∈ D, and

– Set y(t + 1) = y(t) (iteration and poll step unsuccessful).

– Set α(t + 1) = θ(t)α(t) (contract the mesh size parameter).

5. If α(t + 1) < αtol then stop. Otherwise, increment t by one and go to
Step 3.

7

An example of the use of the search step is given in the next section. The
poll step can be implemented in a number of different ways. The polling
can be opportunistic (when it quits once the first decrease in the objective
function is found) or complete (when the objective function is evaluated at all
the points of the poll set). The order in which the points in Pt are evaluated
can also differ [4, 8].

4 The particle swarm pattern search method

Pattern search methods are local methods in the sense that they are de-
signed to achieve convergence (from arbitrary starting points) to points that
satisfy necessary conditions for local optimality. These methods are known
to identify well global minimizers for certain classes of problems (see, for
instance, [1, 29]), especially when appropriate heuristic procedures are in-
corporated in the search step. In fact, the flexibility of the search step of a
pattern search method can be used to improve the ability of the method to
jump over local minimizers. On the other hand, the poll step can rigorously
guarantee convergence to stationary points.

The hybrid method introduced in this paper is a pattern search method
that incorporates a particle swarm search in the search step. The idea is
to start with an initial population and to apply one step of particle swarm
at each search step. Consecutive iterations where the search steps succeed
reduce to consecutive iterations of particle swarm, in an attempt to identify
a neighborhood of a global minimizer. Whenever the search step fails, the
poll step is applied to the best position over all particles, performing a local
search in the poll set centered at this point.

The points calculated in the search step by the particle swarm scheme
must belong to the pattern search mesh Mt. This task can be done in several
ways and, in particular, one can compute their ‘projection’ onto Mt

projMt
(xi(t)) = min

u∈Mt

‖u − xi(t)‖,

for i = 1, . . . , s, or an approximation thereof.
There is no need then to project onto Ω since the use of the penalty

function f̂ in pattern search takes care of the bound constraints.
The stopping criterion of the particle swarm pattern search method is the

conjunction of the stopping criteria for particle swarm and pattern search.
The particle swarm pattern search method is described in Algorithm 4.1.

Algorithm 4.1

8

1. Choose a positive integer τ and the stopping tolerance αtol > 0. Choose
the positive spanning set D = D⊕.

Choose a population size s and a stopping tolerance vtol > 0. Randomly
initialize the initial swarm {x1(0), . . . , xs(0)} and the initial swarm ve-
locities v1(0), . . . , vs(0).

2. Set yi(0) = xi(0), i = 1, . . . , s, and ŷ(0) = arg minz∈{y1(0),...,ys(0)} f(z).
Choose α(0) > 0. Let t = 0.

3. [Search Step]

Set ŷ(t + 1) = ŷ(t).

For i = 1, . . . , s do (for every particle i):

• Compute x̂i(t) = projMt
(xi(t)).

• If f̂(x̂i(t)) < f̂(yi(t)) then

– Set yi(t + 1) = x̂i(t) (update the particle i best position).

– If f(yi(t + 1)) < f(ŷ(t + 1)) then

∗ Set ŷ(t+1) = yi(t+1) (update the particles best position;
search step and iteration successful).

∗ Set α(t + 1) = φ(t)α(t) (optionally expand the mesh size
parameter).

• Otherwise set yi(t + 1) = yi(t).

4. [Poll Step]

Skip the poll step if the search step was successful.

• If there exists d(t) ∈ D such that f̂(ŷ(t)+α(t)d(t)) < f̂(ŷ(t)) then

– Set ŷ(t + 1) = ŷ(t) + α(t)d(t) (update the leader particle posi-
tion; poll step and iteration successful).

– Set α(t + 1) = φ(t)α(t) (optionally expand the mesh size pa-
rameter).

• Otherwise, f̂(ŷ(t) + α(t)d(t)) ≥ f̂(ŷ(t)) for all d(t) ∈ D, and

– Set ŷ(t + 1) = ŷ(t) (no change in the leader particle position;
poll step and iteration unsuccessful).

– Set α(t + 1) = θ(t)α(t) (contract the mesh size parameter).

5. Compute vi(t+1) and xi(t+1), i = 1, . . . , s, using formulae (1) and (2).

6. If α(t + 1) < αtol and ‖vi(t + 1)‖ < vtol, for all i = 1, . . . , s, then stop.
Otherwise, increment t by one and go to Step 3.

9

5 Convergence

To analyze the sequence of iterates generated by Algorithm 4.1 we need to
let it run for an infinite number of iterations. For this purpose, we consider
αtol = 0 and vtol = 0, so that the algorithm never meets the termination
criterion. Let {ŷ(t)} be the sequence of iterates produced by Algorithm 4.1.
Since all necessary pattern search ingredients are present, this method gen-
erates, under the appropriate assumptions, a sequence of iterates converging
(independently of the starting point) to first-order critical points. A stan-
dard result for this class of methods tells us that there is a subsequence of
unsuccessful iterations converging to a limit point and for which the mesh
size parameter tends to zero [3, 23].

Theorem 5.1 Let L(ŷ(0)) = {z ∈ R
n : f(z) ≤ f(ŷ(0))} be a compact

set. Then, there exists a subsequence {ŷ(tk)} of the iterates produced by
Algorithm 4.1 (with αtol = vtol = 0) such that

lim
k−→+∞

ŷ(tk) = ŷ∗ and lim
k−→+∞

α(tk) = 0,

for some ŷ∗ ∈ Ω. The subsequence {tk} consists of unsuccessful iterations.

The integrality assumptions imposed in the construction of the meshes
Mt and on the update of the mesh size parameter are fundamental for the
integer lattice type arguments required to prove this result. There are other
ways to obtain such a result that circumvent the need for these integrality
assumptions [23], for instance the imposition of a sufficient decrease condition
on the step acceptance mechanism of the poll step.

Depending on the differentiability properties of the objective function,
different type of stationarity can be proved for the point ŷ∗. For instance, if
the function is continuously differentiable at this point, one can prove from
the positive spanning properties of D that ∇f(ŷ∗) = 0.

Theorem 5.1 tells us that a stopping criterion solely based on the size of
the mesh size parameter (of the form α(t) < αtol) will guarantee termination
of the algorithm in a finite number of iterations. However, the stopping
criterion of Algorithm 4.1 also requires ‖vi(t)‖ < vtol, i = 1, . . . , s. Thus,
it must be investigated whether or not the velocities in the particle swarm
scheme satisfy a limit of the form

lim
k−→+∞

‖vi(tk)‖ = 0 i = 1, . . . , s.

To do this we have to investigate the asymptotic behavior of the search step
which is where the particle swarm strategy is applied. Rigorously speaking

10

such a limit can only occur with probability one. To carry on the analysis
we need to assume that xi(t), yi(t), vi(t), and ŷ(t) are random variables of
stochastic processes.

Theorem 5.2 Suppose that for t sufficiently large one has that ι(t), E(yi(t)),
i = 1, . . . , s, and E(ŷ(t)) are constant and that E(projMt

(xi(t−1)+vi(t))) =
E(xi(t−1)+vi(t)), i = 1, . . . , s. Then, for appropriate choices of the control
parameters of the particle swarm,

lim
t−→+∞

E(vi
j(t)) = 0, i = 1, . . . , s, j = 1, . . . , n.

and Algorithm 4.1 will stop (with ’probability one’) in a finite number of
iterations.

Proof. Given that there exists a subsequence driving the mesh size pa-
rameter to zero, it remains to investigate under what conditions do the ve-
locities tend to zero.

Consider the velocity equation (2), repeated here for convenience, with
the indices i for the particles and j for the vector components dropped for
simplicity. To shorten notation we write the indices t as subscripts. Since
ω1(t) and ω2(t) depend only on t, we get from (2) that

E(vt+1) = ιE(vt) + µω1 (E(yt) − E(xt)) + νω2 (E(ŷt) − E(xt)) . (4)

where ω1 = E(ω1(t)) and ω2 = E(ω2(t)). From equation (2), with v(t)
instead of v(t + 1), we also obtain that

E(vt) = ιE(vt−1) + µω1 (E(yt−1) − E(xt−1))

+ νω2 (E(ŷt−1) − E(xt−1)) . (5)

Subtracting (5) to (4) yields

E(vt+1) − E(vt) = ι(E(vt) − E(vt−1)) − (µω1 + νω2)(E(xt) − E(xt−1))

+ µω1(E(yt) − E(yt−1)) + νω2(E(ŷt) − E(ŷt−1)).

Noting that xt = projMt
(xt−1+vt) we obtain the following inhomogeneous

recurrence relation

E(vt+1) − (1 + ι − µω1 − νω2)E(vt) + ιE(vt−1) = gt, (6)

where

gt = µω1(E(yt) − E(yt−1)) + νω2(E(ŷt) − E(ŷt−1))

+ (µω1 + νω2)E(projMt
(xt−1 + vt) − (xt−1 + vt)).

11

From the assumptions of the theorem, we have, for sufficiently large t,
that gt is zero and therefore that the recurrence relation is homogeneous,
with characteristic polynomial given by

t2 − (1 + ι − µω1 − νω2)t + ι = 0. (7)

Its solutions is then of the form

E(vt+1) = c1a
t + c2b

t,

where c1 and c2 are constants and a and b are the two roots of the charac-
teristic polynomial (7):

a =
(1 + ι − µω1 − νω2) +

√

(1 + ι − µω1 − νω2)2 − 4ι

2

b =
(1 + ι − µω1 − νω2) −

√

(1 + ι − µω1 − νω2)2 − 4ι

2

Thus, as long as max{|a|, |b|} < 1 (which is achievable for certain choices of
the control parameters ι, ω1, ω2, µ, and ν), we will get E(vt+1) → 0 when
t → ∞.

For instance, when ω1 = ω2 = 0.5 and µ = ν = 0.5, we obtain

a =
(ι + 0.5) +

√

(ι + 0.5)2 − 4ι

2

and

b =
(ι + 0.5) −

√

(ι + 0.5)2 − 4ι

2
.

In this case, one has max{|a|, |b|} < 1 for any 0 < ι < 1. One can clearly
observe this fact in Figure 1. Zooming into the picture reveals that for
ι < 0.0858 we have (ι + 0.5)2 − 4ι ≥ 0, resulting in two real roots for the
characteristic polynomial. For ι ≥ 0.0858 we have two complex conjugate
roots whose modulus are equal.

It is difficult to show that the conditions of Theorem 5.2 can be rigorously
satisfied but it can be given some indication of their practical reasonability.

Given that the function is bounded below in L(y(0)) it is known that the
monotonically decreasing sequences {f(yi(t))}, i = 1, . . . , s, and {f(ŷ(t))}
converge. Thus, it is reasonable to suppose that the expected values of yi(t),
i = 1, . . . , s, and ŷ(t) converge too.

On the other hand, the difference between projMt
(xi(t − 1) + vi(t)) and

xi(t − 1) + vi(t), — and thus between their expected values — is a multiple

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ι

|a
|,|

b|

|b|

|a|

|a|,|b|

Figure 1: Plot of ι for µω1 = νω2 = 0.25.

of α(t) for some type of meshes. This situation occurs in coordinate search,
where D = D⊕. Since there is a subsequence of the mesh size parameters that
converge to zero, there is at least the guarantee that the expected difference
between xi(t − 1) + vi(t) and its projection onto Mt converges to zero along
that subsequence.

So, there is at least some indication that the term gt in (6) converges
to zero for a subsequence of the iterates. Although this is not the same as
saying that the assumptions of Theorem 5.2 are satisfied, it explains however
the observed numerical termination of the algorithm.

6 Optimization solvers used for comparison

The particle swarm pattern search algorithm (Algorithm 4.1) was imple-
mented in the C programming language. The solver is referred to as PSwarm.

In order to assess the performance of PSwarm, a set of 122 test prob-
lems from the literature ([2, 15, 18, 22, 25, 26, 30, 32]) was collected and
coded in AMPL. All coded problems have simple bounds on the variables.
The problems are available in http://www.norg.uminho.pt/aivaz (under
software).

AMPL [13] is a mathematical modeling language which allows an easy
and fast way to code optimization problems. AMPL provides also automatic
differentiation (not used in the context of derivative free optimization) and
interfaces to a number of optimization solvers. The AMPL mechanism to
tune solvers was used to pass options to PSwarm.

13

6.1 Solvers

The optimization solver PSwarm was compared to a few solvers for global
optimization, namely Direct [12], ASA [17], MCS [16], and PGAPack [24].

Direct is an implementation of the method described in [20]. Direct

reads from DIviding RECTangles and it is implemented in MATLAB [28].
Direct solved the problems coded in AMPL by using the amplfunc external
AMPL function for MATLAB together with a developed M-file to interface
Direct with AMPL.

ASA is an implementation in C of the Adaptative Simulated Annealing.
The user has to write its objective function as a C function and to compile it
with the optimization code. Options are defined during compilation time. To
use the AMPL coded problems, an interface for AMPL was also developed.
Here, we have followed the ideas of the MATLAB interface to ASA provided
by S. Sakata (see http://www.econ.lsa.umich.edu/∼sakata/software).

MCS stands for Multilevel Coordinate Search and it is inspired by the
methods of Jones et al. [20]. MCS is implemented in MATLAB and, as in
Direct, the AMPL interface to MATLAB and a developed M-file were used
to obtain the numerical results for the AMPL coded problems.

PGAPack is an implementation of a genetic algorithm. The Parallel Ge-
netic Algorithm Pack is written in C. As in ASA, the user defines a C function
and compiles it along with the optimization code. As for ASA, an interface
to AMPL was also developed. The population size selected for PGAPAck was
changed to 200 (since it performed better with a higher population size).

Direct and MCS are deterministic codes. The other two, PGAPack and ASA,
together with PSwarm, are stochastic ones. A relevant issue in stochastic codes
is the choice of the underlying random numbers generator. It is well known
that good random numbers generator are hard to find (see, for example, [31]).
ASA and Pswarm use the number generator from [7, 31]. PGAPack uses a
generator described in [19].

6.2 PSwarm details

The default values for PSwarm are αtol = 10−5, ν = µ = 0.5, φ(t) = 2,
θ(t) = 0.5, α(0) = maxj=1,..,n(uj − `j)/c with c = 5, and s = 20. The
projection onto the mesh (x̂i(t) = projMt

(xi(t))) has not been implemented
in the search step.

The inertial parameter ι is linearly interpolated between 0.9 and 0.4, i.e.,
ι(t) = 0.9 − (0.5/tmax)t, where tmax is the maximum number of iterations
permitted. Bigger values for max{|a|, |b|} will result in slower convergence.
Using a linear interpolation for ι, we start with a slower rate and terminate

14

faster.
The initial swarm is obtained by generating s random points following an

uniform distribution U(`, u), yielding xi
j(0) ∼ U(`j, uj), j = 1, . . . , n, for all

particles i = 1, . . . , s, and therefore providing a feasible initial swarm.
In particle swarm all particles will in principle converge to ŷ and a high

concentration of particles is needed in order to obtain a solution with some
degree of precision. Thus, in the last iterations of particle swarm, a massive
number of objective function evaluations is necessary to obtain some precision
in the solution. Removing particles from the swarm that are nearby others
seems a good idea, but a price in precision is paid in order to gain a decrease
in the number of objective function evaluations.

In the proposed particle swarm pattern search algorithm the scenario is
somehow different since the ŷ particle position is improved by the poll steps of
pattern search. Removing particles that do not drive the search to a global
minimizer is highly desirable. A particle i is removed from the swarm in
PSwarm when it is close to ŷ, i.e., when ‖yi(t) − ŷ(t)‖ ≤ α(0). If a particle is
close to ŷ (compared in terms of α(0)) it means that it is unlikely to further
explore the search space for a global optimum.

6.3 Performance profiles

A fair comparison among different solvers should be based on the number
of function evaluations, instead of based on the number of iterations or on
the CPU time. The number of iterations is not a reliable measure because
the amount of work done in each iteration is completely different among
solvers, since some are population based and other are single point based.
Also, while all the problems are coded in AMPL, the solvers are implemented
in different programming languages and their accesses to the problems use
different scripting languages, leading to significant differences in CPU times.

Besides the number of function evaluations, the objective function value
at the solutions determined should also be taken into account, as one of the
measures of quality of a global optimization solver. The approach taken in
this paper consisted of imposing a maximum number of function evaluations
and of comparing the objective function value at the solutions computed by
the different solvers. A lower objective function computed means that the
solver performed better.

The ASA solver does not support an option that limits the number of
objective function evaluations. The interface developed for AMPL accounts
for the number of objective function calls, and when the limit is reached exit
is immediately forced by properly setting an ASA option. Solvers PSwarm,
Direct, MCS, and PGaPack take control of the number of objective function

15

evaluations in each iteration, and therefore the maximum number of objective
function evaluations can be directly imposed. Algorithms that perform more
than one objective function evaluation per iteration can exceed the requested
maximum since the stopping criterion is checked at the beginning of each
iteration. For instance, MCS for problem lj1 38 (a Lennard-Jones cluster
problem of size 38) computes 14296 times the objective function value, when
a maximum of 1000 function evaluations is requested. Tuning other solvers
options could reduce this gap, but we decide to use, as much as possible,
the solver default options (the exceptions were the maximum numbers of
function evaluations and iterations and the population size in PGAPack).

We chose to present the numerical results in the form of performance
profiles, as described in [10]. This procedure was developed to benchmark
optimization software, i.e., to compare different solvers on several (possibly
many) test problems. One advantage of the performance profiles is the fact
that they can be presented in one figure, by plotting for the different solvers
a cumulative distribution function ρ(τ) representing a performance ratio.

The performance ratio is defined as rp,s = tp,s

min{tp,s:s∈S}
, where P is the test

set, p ∈ P, S is the set of solvers, s ∈ S, and tp,s is the value obtained by
solver s on test problem p. Define ρs(τ) = 1

np
size{p ∈ P : rp,s ≤ τ}, where

np is the number of test problems.
The value of ρs(1) is the probability that the solver will win over the

remaining ones. If we are only interested in determining which solver is the
best (in the sense that wins the most), we compare the values of ρs(1) for all
the solvers. At the other end, solvers with the largest probabilities ρs(τ) for
large values of τ are the most robust ones.

The performance profile measure described in [10] was the computing time
required to solve the problem, but other performance quantities can be used,
namely the number of function evaluations. However, the objective function
value achieved at the maximum number of function evaluations imposed
cannot be used directly as a performance profile measure. For instance,
a problem in the test set whose objective function value at the solution
computed by one of the solvers is zero could lead to min{tp,s : s ∈ S} = 0. If
the objective function value at the solution determined by a solver is negative,
then the value of rp,s could also be negative. In any of the situations, it is
not possible to use the performance profiles.

Also, several runs for the same stochastic solver must be made for every
problem, so that average, best, and worst behavior can be analyzed. In [2],
the following scaled performance profile measure was introduced

tp,s =
f̄p,s − f ∗

p

fp,w − f ∗
p

, (8)

16

where f̄p,s is the average function value for the several runs of solver s on
problem p, f ∗

p is the best function value found among all the solvers (or the
global minimum when known), and fp,w is the worst function value found
among all the solvers. If we were interested in the best (resp. worst) behavior
one would use, instead of f̄p,s, the best (resp. the worst) value among all runs
of the stochastic solver s on problem p.

While using (8) could prevent rp,s from taking negative values, a division
by zero can occur when fp,w is equal to f ∗

p . To avoid division by zero, we
suggest a shift to the positive axis for problems where a negative or zero
min{tp,s : s ∈ S} is obtained. Our performance profile measure is defined as:

tp,s = (best/average/worst) objective function value obtained for
problem p by solver s (for all runs if solver s is stochastic),

rp,s =

{

1 + tp,s − min{tp,s : s ∈ S} when min{tp,s : s ∈ S} < 0.001,
tp,s

min{tp,s:s∈S}
otherwise.

7 Numerical results

The stochastic solvers PSwarm, ASA and PGAPack were run 30 times. The
performance profiles are plotted for the best, average, and worst objective
value found. The deterministic solvers Direct and MCS were run only once.
The tests were run in a Pentium IV (3.0GHz and 1Gb of RAM).

Figures 2, 3, and 4 present the plots for the best, average, and worst solu-
tions found, respectively, when the maximum number of function evaluations
was set to 1000 for problems with dimension lower than 100 and 7500 for the
13 remaining ones (maxf = 1000(7500)). Figures 5, 6, and 7 correspond to
the case when maxf = 10000(15000). Each figure includes two plots. One
for better visibility around ρ(1) and another to capture the tendency near
ρ(∞).

From Figure 2, we can conclude that PSwarm has a slightly advantage over
the other solvers in the best behavior case for maxf = 1000(7500). In the
average and worst behaviors, PSwarm loses in performance against Direct

and MCS. In any case, it wins to all the other solvers in robustness.
When maxf = 10000(15000) and for the best behavior, PSwarm together

with MCS win over the remaining solvers, being the former one slightly more
robust. In the average and worst scenarios, PSwarm loses against Direct and
MCS, but again it wins on robustness overall.

In Figures 8 and 9 we plot the profiles for the number of function eval-
uations taken to solve the problems in our list (for the cases maxf = 1000

17

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
Best objective value of 30 runs with maxf=1000 (7500)

τ

ρ

ASA
PSwarm
PGAPack
Direct
MCS

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

τ

ρ

Figure 2: Best objective function value for 30 runs with maxf = 1000(7500).

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
Average objective value of 30 runs with maxf=1000 (7500)

τ

ρ

ASA
PSwarm
PGAPack
Direct
MCS

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

τ

ρ
Figure 3: Average objective function value for 30 runs with maxf =
1000(7500).

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
Worst objective value of 30 runs with maxf=1000 (7500)

τ

ρ

ASA
PSwarm
PGAPack
Direct
MCS

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

τ

ρ

Figure 4: Worst objective function value for 30 runs with maxf =
1000(7500).

18

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
Best objective value of 30 runs with maxf=10000(15000)

τ

ρ

ASA
PSwarm
PGAPack
Direct
MCS

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

τ

ρ

Figure 5: Best objective function value for 30 runs with maxf =
10000(15000).

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
Average objective value of 30 runs with maxf=10000(15000)

τ

ρ

ASA
PSwarm
PGAPack
Direct
MCS

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

τ

ρ
Figure 6: Average objective function value for 30 runs with maxf =
10000(15000).

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
Worst objective value of 30 runs with maxf=10000(15000)

τ

ρ

ASA
PSwarm
PGAPack
Direct
MCS

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

τ

ρ

Figure 7: Worst objective function value for 30 runs with maxf =
10000(15000).

19

maxf ASA PGAPack PSwarm Direct MCS

1000 857 1009 686 1107 1837
10000 5047 10009 3603 11517 4469

Table 1: Average number of function evaluations for the test set in the cases
maxf = 1000 and maxf = 10000 (averages among the 30 runs for stochastic
solvers).

and maxf = 10000). The best solver is MCS, which is not surprising since it
is based on interpolation models and most of the objective functions tested
are smooth. PSwarm appears clearly in the second place in these profiles.
Moreover, in Table 1 we report the average number of function evaluations
taken to solve the problems in our list (also for the cases maxf = 1000 and
maxf = 10000). One can see from these tables that PSwarm appears first
and MCS performed apparently worse. This effect is due to some of the prob-
lems in our test set where the objective function exhibits steep oscillations.
PSwarm is a direct search type method and thus better suited to deal with
such type of functions, and thus it seemed to present the best balance (among
all solvers) for smooth and less smooth types of objective functions.

It is important to point out that the performance of Direct is not nec-
essarily better than the one of PSwarm as we could have inferred from the
profiles for the quality of the final objective value. In fact, the stopping cri-
terion for Direct (as well as for PGAPack) is based on the maximum number
of function evaluations permitted. One can clearly see from Table 1 that
Direct took many more evaluations than PSwarm (and that the latter one
also performed significantly better than ASA).

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1
Average objective evaluation of 30 runs with maxf=1000

τ

ρ

ASA
PSwarm
MCS
Direct
PGAPack

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

ν

ρ

Figure 8: Number of objective function evaluations in the case maxf = 1000
(averages among the 30 runs for stochastic solvers).

Table 2 reports detailed numerical results obtained by the solver PSwarm

20

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1
Average objective evaluation of 30 runs with maxf=10000

τ

ρ

ASA
PSwarm
MCS
Direct
PGAPack

100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

τ

ρ

Figure 9: Number of objective function evaluations in the case maxf = 10000
(averages among the 30 runs for stochastic solvers).

for all problems in our test set. The maximum number of function evaluations
was set to 10000. For each problem, we chose to report the best result
(in terms of f) obtained among the 30 runs. The columns in the table
refer to: ’problem’ the problem name (AMPL model file); n the problem
dimension (number of variables); ’nfevals’ the number of objective function
evaluations; ’niter’ the number of iterations; ’npoll’ the number of poll steps;
’%spoll’ the percentage of successful poll steps; ’gap’ the optimal gap (when
known, otherwise the value marked with ∗ is just the final objective function
calculated). We did not report the final number of particles because this
number is equal to one in the majority of the problems ran.

problem n nfevals niter npoll %spoll gap

ack 10 1797 121 117 81.2 2.171640E-01
ap 2 207 34 32 40.63 -8.600000E-05
bf1 2 204 36 33 33.33 0.000000E+00
bf2 2 208 37 35 37.14 0.000000E+00
bhs 2 218 29 28 39.29 -1.384940E-01
bl 2 217 36 34 41.18 0.000000E+00
bp 2 224 39 37 45.95 -3.577297E-07
cb3 2 190 29 27 29.63 0.000000E+00
cb6 2 211 37 35 48.57 -2.800000E-05
cm2 2 182 34 31 45.16 0.000000E+00
cm4 4 385 45 41 60.98 0.000000E+00
da 2 232 45 41 48.78 4.816600E-01
em 10 10 4488 324 321 89.41 1.384700E+00
em 5 5 823 99 94 79.79 1.917650E-01
ep.mod 2 227 39 35 45.71 0.000000E+00
exp.mod 10 1434 84 80 80 0.000000E+00

continues. . .

21

. . . continued
problem n nfevals niter npoll %spoll gap

fls.mod 2 227 28 22 27.27 3.000000E-06
fr.mod 2 337 71 67 52.24 0.000000E+00
fx 10 10 1773 125 108 78.7 8.077291E+00
fx 5 5 799 123 57 68.42 6.875980E+00
gp 2 190 28 26 30.77 0.000000E+00
grp 3 1339 263 28 28.57 0.000000E+00
gw 10 2296 152 146 82.19 0.000000E+00
h3 3 295 37 35 57.14 0.000000E+00
h6 6 655 59 51 68.63 0.000000E+00
hm 2 195 32 30 36.67 0.000000E+00
hm1 1 96 22 20 15 0.000000E+00
hm2 1 141 29 27 25.93 -1.447000E-02
hm3 1 110 22 21 19.05 2.456000E-03
hm4 2 198 31 28 35.71 0.000000E+00
hm5 3 255 34 30 50 0.000000E+00
hsk 2 204 28 26 34.62 -1.200000E-05
hv 3 343 44 42 54.76 0.000000E+00
ir0 4 671 84 80 66.25 0.000000E+00
ir1 3 292 41 37 51.35 0.000000E+00
ir2 2 522 131 119 61.34 1.000000E-06
ir3 5 342 25 20 10 0.000000E+00
ir4 30 8769 250 244 93.03 1.587200E-02
ir5 2 513 116 40 45 1.996000E-03
kl 4 1435 170 164 75.61 -4.800000E-07
ks 1 92 18 17 0 0.000000E+00
lj1 38 114 10072 146 127 95.28 1.409238E+02∗

lj1 75 225 10063 137 127 96.85 3.512964E+04∗

lj1 98 294 10072 129 119 98.32 1.939568E+05∗

lj2 38 114 10109 153 139 95.68 3.727664E+02∗

lj2 75 225 10090 116 90 98.89 3.245009E+04∗

lj2 98 294 10036 125 114 98.25 1.700452E+05∗

lj3 38 114 10033 157 127 93.7 1.729289E+03∗

lj3 75 225 10257 124 112 98.21 1.036894E+06∗

lj3 98 294 10050 113 107 99.07 1.518801E+07∗

lm1 3 335 44 40 52.5 0.000000E+00
lm2 10 10 1562 93 86 77.91 0.000000E+00
lm2 5 5 625 59 56 67.86 0.000000E+00
lms1a 2 1600 172 123 55.28 -2.000000E-06
lms1b 2 2387 452 55 36.36 1.078700E-02
lms2 3 1147 163 60 48.33 1.501300E-02
lms3 4 2455 262 109 53.21 6.233700E-02

continues. . .

22

. . . continued
problem n nfevals niter npoll %spoll gap

lms5 6 5596 1631 366 59.84 7.384100E-02
lv8 3 310 42 39 48.72 0.000000E+00
mc 2 211 32 29 41.38 7.700000E-05
mcp 4 248 29 22 27.27 0.000000E+00
mgp 2 193 33 31 41.94 -2.593904E+00
mgw 10 10 10007 473 461 93.71 1.107800E-02
mgw 2 2 339 43 37 43.24 0.000000E+00
mgw 20 20 10005 306 299 93.98 5.390400E-02
ml 10 10 2113 129 118 75.42 0.000000E+00
ml 5 5 603 59 55 67.27 0.000000E+00
mr 3 886 179 171 62.57 1.860000E-03
mrp 2 217 44 43 55.81 0.000000E+00
ms1 20 3512 216 207 90.82 4.326540E-01
ms2 20 3927 238 225 91.56 -1.361000E-02
nf2 4 2162 205 198 64.65 2.700000E-05
nf3 10 10 4466 586 579 95.16 0.000000E+00
nf3 15 15 10008 800 792 96.46 7.000000E-06
nf3 20 20 10008 793 768 94.92 2.131690E-01
nf3 25 25 10025 535 508 95.67 5.490210E-01
nf3 30 30 10005 359 347 96.25 6.108021E+01
osp 10 10 1885 134 121 80.17 1.143724E+00
osp 20 20 5621 229 220 90.45 1.143833E+00
plj 38 114 10103 163 135 96.3 7.746385E+02∗

plj 75 225 10028 127 109 98.17 3.728411E+04∗

plj 98 294 10182 119 105 98.1 1.796150E+05∗

pp 10 1578 104 100 81 -4.700000E-04
prd 2 400 66 34 44.12 0.000000E+00
ptm 9 10009 1186 618 73.46 3.908401E+00
pwq 4 439 57 53 60.38 0.000000E+00
rb 10 10003 793 712 76.12 1.114400E-02
rg 10 10 4364 672 158 71.52 0.000000E+00
rg 2 2 210 34 32 43.75 0.000000E+00
s10 4 431 51 48 62.5 -4.510000E-03
s5 4 395 46 43 58.14 -3.300000E-03
s7 4 415 52 49 63.27 -3.041000E-03
sal 10 10 1356 76 68 60.29 3.998730E-01
sal 5 5 452 39 37 40.54 1.998730E-01
sbt 2 305 39 37 45.95 -9.000000E-06
sf1 2 210 32 29 24.14 9.716000E-03
sf2 2 266 45 41 43.9 5.383000E-03
shv1 1 101 20 19 21.05 -1.000000E-03

continues. . .

23

. . . continued
problem n nfevals niter npoll %spoll gap

shv2 2 196 33 31 41.94 0.000000E+00
sin 10 10 1872 124 117 81.2 0.000000E+00
sin 20 20 5462 225 216 88.43 0.000000E+00
st 17 17 10011 1048 457 78.12 3.081935E+06
st 9 9 10001 1052 847 82.88 7.516622E+00
stg 1 113 26 23 17.39 0.000000E+00
swf 10 2311 161 158 82.91 1.184385E+02
sz 1 125 34 28 25 -2.561249E+00
szzs 1 112 29 27 33.33 -1.308000E-03
wf 4 10008 3505 1150 59.57 2.500000E-05
xor 9 887 73 60 68.33 8.678270E-01
zkv 10 10 10003 1405 752 75.8 1.393000E-03
zkv 2 2 212 39 35 45.71 0.000000E+00
zkv 20 20 10018 1031 422 77.01 3.632018E+01
zkv 5 5 1318 168 163 85.89 0.000000E+00
zlk1 1 119 27 25 20 4.039000E-03
zlk2a 1 130 26 22 22.73 -5.000000E-03
zlk2b 1 113 26 24 25 -5.000000E-03
zlk3a 1 138 32 29 24.14 0.000000E+00
zlk3b 1 132 32 29 24.14 0.000000E+00
zlk3c 1 132 27 25 24 0.000000E+00
zlk4 2 224 39 37 45.95 -2.112000E-03
zlk5 3 294 40 37 56.76 -2.782000E-03
zzs 1 120 29 26 23.08 -4.239000E-03

Table 2: Numerical results obtained by PSwarm.

8 Conclusions and future work

In this paper we developed a hybrid algorithm for global minimization with
simple bounds that combines a heuristic for global optimization (particle
swarm) with a rigorous method (pattern search) for local minimization. The
particle swarm pattern search method proposed enjoys the global convergence
properties of pattern search for stationary points (convergence regardless of
the starting point).

We presented some analysis for the particle swarm pattern search method
that indicates proper termination for an appropriate hybrid stopping crite-
rion. The numerical results presented are particularly encouraging given that

24

no fine tuning of algorithmic choices or parameters has been done yet for the
new algorithm. A basic implementation of the particle swarm pattern search
(PSwarm solver) has been shown to be the most robust among all global op-
timization solvers tested and to be highly competitive in efficiency with the
most efficient of these solvers (MCS).

We plan to implement the particle swarm pattern search method in a par-
allel environment. Given that both techniques (particle swarm and pattern
search) are easy to parallelize, so is the combined algorithm. In the search
step of the method, where particle swarm is applied, one can distribute the
evaluation of the objective function on the new swarm by the processors avail-
able. The same can be done in the poll step for the poll set. Another task for
future research is to handle problems with more general type of constraints.

References

[1] P. Alberto, F. Nogueira, H. Rocha, and L. N. Vicente. Pattern search
methods for user-provided points: Application to molecular geometry
problems. SIAM J. Optim., 14:1216–1236, 2004.

[2] M. M. Ali, C. Khompatraporn, and Z. B. Zabinsky. A numerical eval-
uation of several stochastic algorithms on selected continuous global
optimization test problems. J. Global Optim., 31:635–672, 2005.

[3] C. Audet and J. E. Dennis. Analysis of generalized pattern searches.
SIAM J. Optim., 13:889–903, 2003.

[4] C. Audet and J. E. Dennis. Mesh adaptive direct search algorithms for
constrained optimization. SIAM J. Optim., (to appear).

[5] C. Audet and D. Orban. Finding optimal algorithmic parameters using
the mesh adaptive direct search algorithm. Technical Report Les Cahiers
du GERAD, G-2004-96, 2004.

[6] F. van den Bergh. An Analysis of Particle Swarm Optimizers. PhD the-
sis, Faculty of Natural and Agricultural Science, University of Pretoria,
November 2001.

[7] A. K. Binder and A. D. Stauffer. A simple introduction to Monte Carlo
simulations and some specialized topics. In E. K. Binder, editor, Ap-
plications of the Monte Carlo Method in Statistical Physics, pages 1–36.
Springer-Verlag, Berlin, 1985.

25

[8] A. L. Custódio and L. N. Vicente. Using sampling and simplex deriva-
tives in pattern search methods. Technical Report 04-35, Departamento
de Matemática, Universidade de Coimbra, Portugal, 2004.

[9] C. Davis. Theory of positive linear dependence. Amer. J. Math., 76:733–
746, 1954.

[10] E. D. Dolan and J. J. Moré. Benchmarking optimization software with
performance profiles. Math. Program., 91:201–213, 2002.

[11] R. Eberhart and J. Kennedy. New optimizers using particle swarm the-
ory. In Proceedings of the 1995 6th International Symposium on Micro
Machine and Human Science, pages 39–43.

[12] D. E. Finkel. DIRECT Optimization Algorithm User
Guide. North Carolina State University, 2003.
http://www4.ncsu.edu/∼definkel/research/index.html.

[13] R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for
mathematical programming. Management Sci., 36:519–554, 1990.

[14] W. E. Hart. Locally-adaptive and memetic evolutionary pattern search
algorithms. Evolutionary Computation, 11:29–52, 2003.

[15] A.-R. Hedar and M. Fukushima. Heuristic pattern search and its hy-
bridization with simulated annealing for nonlinear global optimization.
Optim. Methods Softw., 19:291–308, 2004.

[16] W. Huyer and A. Neumaier. Global optimization by multi-
level coordinate search. J. Global Optim., 14:331–355, 1999.
http://solon.cma.univie.ac.at/∼neum/software/mcs.

[17] L. Ingber. Adaptative simulated annealing (ASA): Lessons learned. Con-
trol and Cybernetics, 25:33–54, 1996. http://www.ingber.com.

[18] L. Ingber and B. Rosen. Genetic algorithms and very fast simulated
reannealing: A comparison. Mathematical and Computer Modelling,
16:87–100, 1992.

[19] F. James. A review of pseudorandom number generators. Computer
Physics Communication, 60:329–344, 1990.

[20] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian op-
timization without the Lipschitz constant. J. Optim. Theory Appl.,
79:157–181, 1993.

26

[21] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceed-
ings of the 1995 IEEE International Conference on Neural Networks,
pages 1942–1948, Perth, Australia. IEEE Service Center, Piscataway,
NJ.

[22] E. Kiseleva and T. Stepanchuk. On the efficiency of a global non-
differentiable optimization algorithm based on the method of optimal
set partitioning. J. Global Optim., 25:209–235, 2003.

[23] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct
search: New prespectives on some classical and modern methods. SIAM
Rev., 45:385–482, 2003.

[24] D. Levine. Users guide to the PGAPack parallel genetic algorithm
library. Technical Report ANL-95/18, Argonne National Laboratory,
1996. http://www.mcs.anl.gov/pgapack.html.

[25] M. Locatelli. A note on the Griewank test function. J. Global Optim.,
25:169–174, 2003.

[26] M. Locatelli and F. Schoen. Fast global optimization of difficult
Lennard-Jones clusters. Comput. Optim. and Appl., 21:55–70, 2002.

[27] A. L. Marsden. Aerodynamic Noise Control by Optimal Shape Design.
PhD thesis, Stanford University, 2004.

[28] MathWorks. MATLAB. The MathWorks Inc., 1999. Version 5.4, Release
11.

[29] J. C. Meza and M. L. Martinez. On the use of direct search meth-
ods for the molecular conformation problem. Journal of Computational
Chemistry, 15:627–632, 1994.

[30] M. Mongeau, H. Karsenty, V. Rouzé, and J.-B. Hiriart-Urruty. Compar-
ison of public-domain software for black box global optimization. Optim.
Methods Softw., 13:203–226, 2000.

[31] S. K. Park and K. W. Miller. Random number generators: Good ones
are hard to find. Communications of the ACM, 31:1192–1201, 1988.

[32] K. E. Parsopoulos, V. P. Plagianakos, G. D. Magoulas, and M. N. Vra-
hatis. Stretching technique for obtaining global minimizers through par-
ticle swarm optimization. In Proc. Of the Particle Swarm Optimization
Workshop, pages 22–29, Indianapolis, USA, 2001.

27

