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1. Introduction. The MTY predictor-corrector algorithm proposed by Mizuno,
Todd and Ye [9] is a typical representative of a large class of MTY type predictor-
corrector methods, which play a very important role among primal-dual interior point
methods. It was the first algorithm for linear programming (LP) that had both poly-
nomial complexity and superlinear convergence. This result was extended to mono-
tone linear complementarity problems that are nondegenerate, in the sense that they
have a strictly complementarity solution [6, 23]. It turned out that the nondegener-
acy assumption is not restrictive, since according to [10] a large class of interior point
methods, which contains MTY, can have only linear convergence if this assumption
is violated. However, it is possible to obtain arbitrarily high order of convergence for
degenerate problems by using higher order information of the central path [19, 21].

The existence of a central path is crucial for interior-point methods. An important
result of the 1991 monograph of Kojima et al. [7] shows that the central path exists
for any P∗ linear complementarity problem, provided that the relative interior of its
feasible set is nonempty. We recall that every P∗ linear complementarity problem is
a P∗(κ) problem for some κ ≥ 0, i.e.

P∗ = ∪κ≥0P∗(κ) .

The class of sufficient matrices was introduced by Cottle et al. [3] in connection with
the linear complementarity problems. A matrix M ∈ Rn×n is said to be column
sufficient if:

zi(Mz)i ≤ 0 for all i implies zi(Mz)i = 0 for all i .

The matrix M is called row sufficient if its transpose is column sufficient. The matrix
M is sufficient if it is both column and row sufficient. It is proved in the same book
that the class of sufficient matrices is closely related to the existence of the solution of
the linear complementarity problems and the convexity of the solution set. A surpris-
ing result given by Väliaho [22] showed that the class of P∗ matrices coincides with
the class of sufficient matrices. Therefore, every P∗ linear complementarity problem
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is a sufficient linear complementarity problem, and vice versa. The class of sufficient
linear complementarity problems is a very general framework for studying interior-
point methods. In 1995 Miao [8] extended the MTY predictor-corrector algorithm for
P∗(κ) linear complementarity problems. His algorithm has O((1 + κ)

√
nL) iteration

complexity, and is quadratically convergent for nondegenerate problems. However,
the constant κ is explicitly used in the construction of the algorithm, which implies
that the algorithm cannot be used for sufficient linear complementarity problems.
Potra and Sheng [17] extended the MTY predictor-corrector algorithm further for
sufficient complementarity problems. While the algorithms of [17] do not depend on
the constant κ, their computational complexity does: if the problem is a P∗(κ) lin-
ear complementarity problem they terminate in at most O((1 + κ)

√
nL) iterations.

Moreover, the algorithms may attain arbitrarily high orders of convergence on non-
degenerate problems. Predictor-corrector algorithms with arbitrarily high order of
convergence for degenerate sufficient linear complementarity problems were given in
[19]. The algorithms, as shown in [18], have O((1 + κ)

√
nL) iteration complexity for

P∗(κ) linear complementarity problems.

All the above algorithms operate in l2 neighborhoods, also known as the small
neighborhoods, of the central path. It is well known however that primal-dual interior-
point methods have better practical performances in wide neighborhoods of the central
path. Unfortunately, the iteration complexity of the predictor-corrector methods that
use wide neighborhoods are worse than the complexity of the corresponding methods
for small neighborhoods. Moreover, as shown in [2, 4], it is more difficult to develop
and analyze predictor-corrector methods in wide neighborhoods. The best iteration
complexity achieved by any known interior-point method for monotone linear comple-
mentarity problems in the wide neighborhoods using first order information is O(nL).
By using a large neighborhood defined by a suitable self regular proximity measure,
Peng et al. [12] have obtained a predictor-corrector method with O(log n

√
nL) it-

eration complexity which is superlinearly convergent on nondegenerate problems. It
turns out that the complexity result can be improved by using higher order infor-
mation. The algorithms described in [11, 5, 24] have O(

√
nL) iteration complexity.

However, these algorithms are not of a predictor-corrector type, and they are not
superlinearly convergent. The algorithm described in [20] operates in the δ−∞ neigh-
borhood, and is superlinear convergent for sufficient linear complementarity problems,
but no complexity results have been proved for this algorithm. A predictor-corrector
method for monotone linear complementarity problems using wide neighborhoods of
the central path was proposed in [15]. The algorithm has O(

√
nL) iteration com-

plexity by using a higher order predictor, and it is superlinear convergence even for
degenerate problems. In a recent paper, Potra and Liu [16] extended the algorithm
in [15] to sufficient linear complementarity problems. Two algorithms are analyzed
in [16]. Both algorithms are of predictor-corrector type acting in between two wide
neighborhoods of the central path. The radii of those neighborhoods have to satisfy
an inequality that depends on the handicap κ of the problems. The first algorithm in
[16] depends also on κ, while the second does not. The second algorithm uses the first
algorithm by assigning κ = 1 and then doubles κ until a certain criterion is satisfied.
Both algorithms have O((1+κ)1+1/m

√
nL) iteration complexity and are superlinearly

convergent even for degenerate problems.

The traditional predictor-corrector algorithms operate between two neighbor-
hoods of the central path. The predictor step aims to decrease the duality gap while
keeping the point in the outer neighborhood. It is followed by a corrector step, which
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brings the point back into the inner neighborhood so that the next predictor-corrector
iteration can be performed. As analyzed in a recent paper [14], the centering direc-
tion is not as efficient in the wide neighborhoods as in the small neighborhoods, so
that a line search on the centering direction is always needed in the corrector step
using wide neighborhoods. Moreover, since the pure centering direction is anyhow
inefficient in the wide neighborhoods, a corrector-predictor method was proposed in
[14] where the corrector is used to improve both optimality and centrality. In the
present paper, we generalize this algorithm to sufficient linear complementarity prob-
lems. By using higher order information, the algorithm has O((1 + κ)

√
nL) iteration

complexity, which matches the best iteration complexity obtained in the small neigh-
borhoods. Moreover, our algorithm is superlinearly covergent even for degenerate
problems. More precisely, by using a predictor with order mp > 1, we show that the
duality gap converges to zero with Q-order mp+1 in the nondegenerate case, and with
Q-order (mp + 1)/2 in the degenerate case. Our algorithm improves considerably the
results of [16]. First, the algorithm is a corrector-predictor interior-point method so
that it uses only one wide neighborhood of the central path, whose radius can be any
number between 0 and 1, and therefore does not depend on κ. Second its iteration
complexity is improved (O((1 + κ)

√
nL) versus O((1 + κ)1+1/m

√
nL)). Finally, by

contrast with the algorithms of [16] the present algorithm reduces the duality gap
both in the corrector and the predictor steps and therefore it is more efficient. In the
present paper we work on horizontal linear complementarity problems (HLCP), which
is a slight generalization of the standard linear complementarity problem. Equivalence
results of different variants of linear complementarity problems can be found in [1].
We choose to work on HLCP because of its symmetry.

We denote by IN the set of all nonnegative integers. IR, IR+, IR++ denote the set
of real, nonnegative real, and positive real numbers respectively. For any real number
κ, d κ e denotes the smallest integer greater or equal to κ. Given a vector x, the
corresponding upper case symbol denotes, as usual, the diagonal matrix X defined by
the vector. The symbol e represents the vector of all ones, with dimension given by
the context.

We denote component-wise operations on vectors by the usual notations for real
numbers. Thus, given two vectors u, v of the same dimension, uv, u/v, etc. will
denote the vectors with components uivi, ui/vi, etc. This notation is consistent
as long as component-wise operations always have precedence in relation to matrix
operations. Note that uv ≡ Uv and if A is a matrix, then Auv ≡ AUv, but in general
Auv 6= (Au)v. Also if f is a scalar function and v is a vector, then f(v) denotes
the vector with components f(vi). For example if v ∈ IRn

+, then
√

v denotes the
vector with components

√
vi, and 1 − v denotes the vector with components 1 − vi.

Traditionally the vector 1 − v is written as e − v, where e is the vector of all ones.
Inequalities are to be understood in a similar fashion. For example if v ∈ IRn, then
v ≥ 3 means that vi ≥ 3, i = 1, . . . , n. Traditionally this is written as v ≥ 3 e. If ‖ . ‖
is a vector norm on IRn and A is a matrix, then the operator norm induced by ‖ . ‖ is
defined by ‖A ‖ = max{‖Ax ‖ ; ‖x ‖ = 1}. As a particular case we note that if U is
the diagonal matrix defined by the vector u, then ‖U ‖2=‖u ‖∞.

We use the notations O(·), Ω(·), Θ(·), and o(·) in the standard way to express
asymptotic relationships between functions. The most common usage will be associ-
ated with a sequence {xk} of vectors and a sequence {τk} of positive real numbers. In
this case xk = O(τk) means that there is a constant K (dependent on problem data)
such that for every k ∈ IN ,

∥∥xk
∥∥ ≤ Kτk. Similarly, if xk > 0, xk = Ω(τk) means that
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(xk)−1 = O(1/τk). If we have both xk = O(τk) and xk = Ω(τk), we write xk = Θ(τk)
If x, s ∈ IRn, then the vector z ∈ IR2n obtained by concatenating x and s will be

denoted by dx, s c, i.e.,

z = dx, s c =
[

x
s

]
=

[
xT , sT

]T
.(1.1)

Throughout this paper the mean value of xs will be denoted by

µ(z) =
xT s

n
.(1.2)

2. The P∗(κ) horizontal linear complementarity problem. Given two ma-
trices Q,R ∈ IRn×n, and a vector b ∈ IRn, the horizontal linear complementarity
problem (HLCP) consists in finding a pair of vectors z = dx, s c such that

xs = 0
Qx + Rs = b

x, s ≥ 0.
(2.1)

The standard (monotone) linear complementarity problem (SLCP or simply LCP)
is obtained by taking R = −I, and Q positive semidefinite. Let κ ≥ 0 be a given
constant. We say that (2.1) is a P∗(κ) HLCP if

Qu + Rv = 0 implies (1 + 4κ)
∑

i∈I+

uivi +
∑

i∈I−
uivi ≥ 0, for any u, v ∈ IRn ,

where I+ = {i : uivi > 0} and I− = {i : uivi < 0}. If the above condition is satisfied
we say that (Q,R) is a P∗(κ) pair and we write (Q,R) ∈ P∗(κ). In case R = −I,
(Q,−I) is a P∗(κ) pair if and only if Q is a P∗(κ) matrix in the sense that:

(1 + 4κ)
∑

i∈Î+

xi[Qx]i +
∑

i∈Î−
xi[Qx]i ≥ 0, ∀x ∈ IRn ,

where Î+ = {i : xi[Qx]i > 0} and Î− = {i : xi[Qx]i < 0}. Problem (2.1) is then
called a P∗(κ) LCP and it is extensively discussed in [7]. If (Q, R) belongs to the class

P∗ = ∪κ≥0P∗(κ) ,

then we say that (Q,R) is a P∗ pair and (2.1) is a P∗ HLCP.
The class of sufficient matrices was defined by Cottle et al. in [3]. The appropriate

generalization to sufficient pair [18, 19] is in terms of the null space of the matrix
[Q R] ∈ IRn×2n

Φ := N ([Q R]) = {du, v c|Qu + Rv = 0}(2.2)

and its orthogonal space

Φ⊥ =
{du, v c|u = QT x, v = RT x, for some x ∈ IRn

}
.(2.3)

(Q,R) is called column sufficient if

du, v c ∈ Φ, uv ≤ 0 implies uv = 0 ,
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and row sufficient if

du, v c ∈ Φ⊥, uv ≥ 0 implies uv = 0 .

(Q,R) is a sufficient pair if it is both column and row sufficient. The corresponding
results of row and column sufficient matrices in [3] can be extended to row and column
sufficient pairs (see, for example, [20]): (Q,R) is a sufficient pair if and only if for any
b, the HLCP (2.1) has a convex (perhaps empty) solution set and every KKT point
of

minx,s xT s
s.t. Qx + Rs = b

x, s ≥ 0

is a solution of (2.1).
Väliaho’s result [22] states that a matrix is sufficient if and only if it is a P∗(κ)

matrix for some κ ≥ 0. The result can be extended to sufficient pairs by using the
equivalence results from [1] (see also [20]): (Q,R) is a sufficient pair if and only if
there is a finite κ ≥ 0 so that (Q,R) is a P∗(κ) pair. By extension, a P∗ HLCP will
be called a sufficient HLCP and a P∗ pair will be called a sufficient pair.

Let us note that if (Q, R) is a sufficient pair, then the matrix [Q R] is full rank.
In fact, we have the following slightly stronger result.

Theorem 2.1. Given two matrices Q,R ∈ IRn×n, if the pair (Q,R) is column
sufficient, the matrix [Q R] is full rank.

Proof. Let r be the rank of Q, the LU factorization of Q can be written as

PQ = L

[
F1 F2

0 0

]
,

where P is a permutation matrix, L ∈ IRn×n is an invertible lower triangular matrix,
F1 ∈ IRn−r×n−r is an invertible upper triangular matrix, and F2 and the zeros are
matrices with the correct dimensions.
Let us denote by G

G = L−1PR =
[

G11 G12

G21 G22

]
,

where G11 ∈ IRn−r×n−r, and G12, G21, G22 are with the correct dimensions.
Since permutation matrices are invertible, and L is invertible, we have

rank([Q R]) = rank(L−1P [Q R]) = rank

([
F1 F2 G11 G12

0 0 G21 G22

])
.

We denote by u1 and u2 the components of u in the first r and last n − r indices,
respectively, and similarly for v. Therefore, du, v c ∈ Φ is equivalent to

{
F1u1 + F2u2 + G11v1 + G12v2 = 0

G21v1 + G22v2 = 0 .

For any v2 ∈ Ker(G22), we construct a pair of vectors u and v such that

v1 = 0, u2 = −v2, u1 = −F−1
1 (F2u2 + G12v2) .
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Clearly we have du, v c ∈ Φ. Moreover, we also obtain

u1v1 ≤ 0 , and u2v2 = −v2
2 ≤ 0 .

Because (Q,R) is column sufficient, we have

u1v1 = 0 , and u2v2 = 0 .

We thus have v2 ∈ Ker(G22) implies v2 = 0. Therefore G22 is invertible, and

rank([Q R]) = rank

([
F1 F2 G11 G12

0 0 G21 G22

])
= n .

It is interesting to remark that row sufficiency alone does not imply the full rank
property. For example, take

Q =
[

1 0
0 0

]
and R =

[ −1 0
0 0

]
,

it is easily seen that (Q,R) is row sufficient, but rank([Q R]) = 1. We also note that
in [19, 18, 20], the full rank property was given as an assumption, which in fact always
hold because of the above theorem.

We denote the set of all feasible points of HLCP by

F = {z = dx, s c ∈ IR2n
+ : Qx + Rs = b},

and its solution set by

F∗ = {z∗ = dx∗, s∗ c ∈ F : x∗s∗ = 0}.
The relative interior of F , which is also known as the set of strictly feasible points or
the set of interior points, is given by

F0 = F
⋂

IR2n
++ .

It is known (see, for example, [7]) that if F0 is nonempty, then the nonlinear system,

xs = τe
Qx + Rs = b

has a unique positive solution for any τ > 0 . The set of all such solutions defines the
central path C of the HLCP, that is,

C = {z ∈ IR2n
++ : Fτ (z) = 0, τ > 0} ,

where

Fτ (z) =
[

xs− τe
Qx + Rs− b

]
.

If Fτ (z) = 0, then it is easy to see that τ = µ(z), where µ(z) is given by (1.2). The
wide neighborhood N−

∞(α) is defined as

N−
∞(α) = {z ∈ F0 : δ−∞(z) ≤ α } ,
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where 0 < α < 1 is a given parameter and

δ−∞(z) :=

∥∥∥∥∥
[

xs

µ(z)
− e

]− ∥∥∥∥∥
∞

is a proximity measure of z to the central path. Alternatively, if we denote

D(β) = {z ∈ F0 : xs ≥ βµ(z)},
then the neighborhood N−

∞(α) can also be written as

N−
∞(α) = D(1− α).

It is well known (see, for example, the proof in [14]) that

lim
α↓0

N−
∞(α) = lim

β↑1
D(β) = C, lim

α↑1
N−
∞(α) = lim

β↓0
D(β) = F .

3. A higher order corrector-predictor algorithm. The higher order cor-
rector and predictor use higher derivatives of the central path. Given a point z =
dx, s c ∈ D(β) , we consider the curve given by an mth order vector valued polynomial
of the form

z(θ) = z +
m∑

i=1

wiθi ,(3.1)

where the vectors wi = dui, vi c are obtained as solutions of the following linear
systems

{
su1 + xv1 = γµe− (1 + ε)xs

Qu1 + Rv1 = 0 ,

{
su2 + xv2 = εxs− u1v1

Qu2 + Rv2 = 0 ,(3.2)
{

sui + xvi = −∑i−1
j=1 ujvi−j

Qui + Rvi = 0
, i = 3, . . . ,m .

In a corrector step we choose ε = 0 and γ ∈ [γ , γ], where 0 < γ < γ < 1 are given
parameters, while in a predictor step we take

γ = 0 , and ε =
{

0 , if HLCP is nondegenerate
1 , if HLCP is degenerate .(3.3)

We note that in the corrector step, where we have ε = 0, w1 is the affine scaling
direction if γ = 0, and the classical centering direction if γ = 1. In system (3.2),
w1 is a convex combination of the affine scaling and the centering directions. The
directions wi are related to the higher derivatives of the central path [19]. Due to
the fact that the m linear systems in (3.2) have the same left hand matrix, only one
matrix factorization and m backsolves are needed. Therefore it involves O(n3) +
O(mn2) arithmetic operations. We take m = mc in the corrector step, and m = mp

in the predictor step. From (3.1) and (3.2) it follows that

x(θ)s(θ) = (1− θ)1+εxs + γθµe +
2m∑

i=m+1

θihi ,
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µ(θ) = (1− θ)1+εµ + γθµ +
2m∑

i=m+1

θi(eT hi/n) ,

where hi =
m∑

j=i−m

ujvi−j .(3.4)

In the development of our algorithm, we want to preserve positivity of each iterated
point. We thus give an upper bound θ0 for the step length taken both in the predictor
and the corrector step:

θ0 = sup{θ̂ 0 : x(θ) > 0, s(θ) > 0, ∀θ ∈ [0 , θ̂ 0]} .(3.5)

We introduce the following notation, which will be used in describing both the cor-
rector and predictor steps:

p(θ) =
x(θ)s(θ)

µ(θ)
, f(θ) = min

i=1,...,n
pi(θ) .(3.6)

The corrector. The corrector step is obtained by taking ε = 0, and 0 < γ < 1 in
(3.1)-(3.2). The main purpose of the corrector step is to increase proximity to the
central path. However, we also improve the normalized complementarity gap µ(θ) at
the same time. We choose σ ∈ [σ, σ], where 0 < σ < σ < 1 are given parameters, and
define

θ1 = sup{θ̂ 1 : 0 ≤ θ̂ 1 ≤ θ0, µ(θ) ≤ (1− σ(1− γ)θ)µ, ∀θ ∈ [0 , θ̂ 1]} .(3.7)

The step-length of the corrector is obtained as

θc = argmax {f(θ) : θ ∈ [ 0, θ1] } .(3.8)

As a result of the corrector step we obtain the point

z = dx , s c := z(θc) .(3.9)

We have clearly z ∈ D(βc) with βc > β. While the parameter β is fixed during the
algorithm, the positive quantity βc varies from iteration to iteration. However, we
will prove that there is a constant β∗c > β, such that βc > β∗c in all iterations.

The predictor. The predictor is obtained by taking z = z , where z is the result
of the corrector step, and γ = 0 in (3.1)-(3.2). The aim of the predictor step is to
decrease the normalized complementarity gap as much as possible while keeping the
iterate in D(β). We define the predictor step length as

θp = argmin {µ(θ) : θ ∈ [ 0, θ2 ] } ,(3.10)

where

θ2 = max{θ̂ 2 : z(θ) ∈ D(β), ∀θ ∈ [0 , θ̂ 2]} .(3.11)

A standard continuity argument can be used to show that z(θ) > 0, ∀θ ∈ [0 , θ2]. As
a result of the predictor step, we obtain a point

z+ = dx+, s+ c := z(θp) .(3.12)

By construction we have z+ ∈ D(β), so that a new corrector step can be applied.
Summing up we can formulate the following iterative procedure:
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Algorithm 1
Given real parameters 0 < β < 1, 0 < γ < γ < 1, 0 < σ < σ < 1, integers mc,mp ≥ 1,
and a vector z0 ∈ D(β) :

Set k ← 0;
repeat

(corrector step)
Set z ← zk;
Choose γ ∈ [ γ , γ ] and set m = mc;
Compute directions wi = dui, vi c, i = 1, . . . , m, by solving (3.2);
Compute θ0 from (3.5)
If HLCP is skew-symmetric, set σ = 1 and θ1 = θ0;

Else, choose σ ∈ [σ , σ ], and compute θ1 from (3.7);
Compute corrector step-length θc from (3.8);
Compute z from (3.9);
Set z k ← z , µ k ← µ = µ(z ) .
(predictor step)
Set z ← z k, γ = 0, and m = mp;
Compute directions wi = dui, vi c, i = 1, . . . , m, by solving (3.2);
Compute θp from (3.10);
Compute z+ from (3.12);
Set zk+1 ← z+ , µk+1 ← µ+ = µ(z+) , k ← k + 1.

continue
The computation of the exact values of θc and θp is quite involved, so that in practice
good estimates of θc and θp are obtained by appropriate line search procedures. In
particularly, by adopting the line search procedure from [14] we can preserve both the
computational complexity and superlinear convergence of the theoretical algorithm.
In fact the convergence properties can be proved by using the explicit lower bounds
in the next section.

4. Polynomial complexity. We analyze in this section the computational com-
plexity of Algorithm 1. In the proof of the complexity results, we will use the following
lemmas, which were proved in [16].

Lemma 4.1. Assume that HLCP (2.1) is P∗(κ), and let w = du, v c be the
solution of the following linear system

su + xv = a
Qu + Rv = 0

where z = dx, s c ∈ IR2n
++ and a ∈ IRn are given vectors, and consider the index sets:

I+ = {i : uivi > 0}, I− = {i : uivi < 0}.
Then the following inequalities are satisfied:

1
1 + 4κ

‖u v ‖∞ ≤
∑

i∈I+

uivi ≤ 1
4

∥∥∥ (xs)−1/2 a
∥∥∥

2

2
.

Lemma 4.2. Assume that HLCP (2.1) is P∗(κ), and let w = du, v c be the
solution of the following linear system

su + xv = a
Qu + Rv = 0 ,
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where z = dx, s c ∈ IR2n
++ and a ∈ IRn are given vectors. Then the following inequality

holds:

uT v ≥ −κ
∥∥∥ (xs)−1/2 a

∥∥∥
2

2
.(4.1)

Let us denote

ηi =
∥∥Dui + D−1vi

∥∥
2
, where D = X−1/2S1/2 .(4.2)

The following lemma is a slight improvement over the corresponding results in [16]
and a generalization to sufficient HLCP of the corresponding results in [14].

Lemma 4.3. If HLCP (2.1) is sufficient and z = dx, s c ∈ D(β), then for n ≥ 8,
the solution of (3.2) satisfy

1√
1 + 2κ

√
‖Dui ‖22 + ‖D−1vi ‖22 ≤ ηi ≤ 2

1 + 2κ
αi

√
βµ

(
(1 + 2κ)τ

4
√

n

)i

,(4.3)

where

τ =
2
√

β(1 + ε− γ)2 + (1− β)γ2

β
,(4.4)

and the sequence

αi =
1
i

(
2i− 2
i− 1

)
≤ 1

i
4i

is the solution of the following recurrence scheme

α1 = 1, αi =
i−1∑

j=1

αj αi−j .

Proof. The first part of the inequality follows immediately, since by using (3.2)
and Lemma 4.2 we have

∥∥ Dui + D−1vi
∥∥2

2
=

∥∥Dui
∥∥2

2
+ 2ui T vi +

∥∥ D−1vi
∥∥2

2

≥
∥∥ Dui

∥∥2

2
+

∥∥ D−1vi
∥∥2

2
− 2κ

∥∥Dui + D−1vi
∥∥2

2
.

By multiplying the first equations of (3.2) with (xs)−1/2 we obtain

Du1 + D−1v1 = −
(
(1 + ε)(xs)1/2 − γµ(xs)−1/2

)

Du2 + D−1v2 = −
(
ε(xs)1/2 − (xs)−1/2u1v1

)

Dui + D−1vi = −(xs)−1/2
i−1∑

j=1

DujD−1vi−j , 3 ≤ i ≤ m.

Because z ∈ D(β) we have (xs)−1/2 ≤ (1/
√

βµ)e, and we deduce that

η1 = ‖(1 + ε)(xs)1/2 − γµ(xs)−1/2‖ , η2 = ‖ε(xs)1/2 − (xs)−1/2u1v1‖ ,
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and

ηi ≤ 1√
βµ

i−1∑

j=1

∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2
, 3 ≤ i ≤ m.(4.5)

We have

η2
1 = ‖(1 + ε)(xs)1/2 − γµ(xs)−1/2‖2 =

n∑

j=1

(
(1 + ε)2xjsj − 2(1 + ε)γµ +

γ2µ2

xjsj

)

= ((1 + ε)2 − 2(1 + ε)γ)µn + γ2µ2
n∑

j=1

1
xjsj

≤ µn

(
(1 + ε)2 − 2(1 + ε)γ +

γ2

β

)
=

βµnτ2

4
,

which shows that the second inequality in (4.3) is satisfied for i = 1. We next show
that the inequality also holds for i = 2, i.e., we want to prove that

η2
2 ≤ (

1 + 2κ

8
)2βµn2τ4 =

1
128

βµn2τ4(2 + 8κ + 8κ2).

Using Lemma4.2, Corollary 2.3 of [13], and the fact z ∈ D(β), we have

η2
2 = ‖ε(xs)1/2 − (xs)−1/2u1v1‖2 =

n∑

j=1

(
ε2xjsj − 2εu1

i v
1
i +

(u1
i v

1
i )2

xjsj

)

≤ ε2nµ + 2εκη2
1 +

η4
1

8βµ
(1 + 4κ + 8κ2) ≤ ε2nµ +

εκβµnτ2

2
+

βµn2τ4

128
(1 + 4κ + 8κ2) .

Therefore, it remains to show that

ε2nµ +
εκβµnτ2

2
≤ βµn2τ4

128
(1 + 4κ) ,

which holds trivially for ε = 0. The inequality holds for ε = 1 provided

βnτ4 ≥ 128 , nτ2 ≥ 16 .

Using the definition of τ (4.4), this reduces to

n(β(2− γ)2 + (1− β)γ2)2

β3
≥ 8 ,

n(β(2− γ)2 + (1− β)γ2)
β2

≥ 4 .

Since the minimum over 0 ≤ β, γ ≤ 1 of both left hand side functions are obtained at
β = γ = 1, we conclude that that the second inequality in (4.3) is satisfied for i = 1
whenever n ≥ 8. For i ≥ 3 and 1 ≤ j < i we obtain the following inequality by using
the first inequality in (4.3)

∥∥Duj
∥∥

2

∥∥D−1vi−j
∥∥

2
+

∥∥ Dui−j
∥∥

2

∥∥D−1vj
∥∥

2

≤
(∥∥Duj

∥∥2

2
+

∥∥D−1vj
∥∥2

2

)1/2 (∥∥ Dui−j
∥∥2

2
+

∥∥D−1vi−j
∥∥2

2

)1/2

≤ (1 + 2κ)ηj ηi−j ,
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we thus have from (4.5)

ηi ≤ 1 + 2κ

2
√

βµ

i−1∑

j=1

ηj ηi−j , i = 2, . . . ,m .

The required inequalities are then easily proved by mathematical induction.
By virtue of Lemma 4.3 we obtain the following bound for ‖hi‖.
Lemma 4.4. If HLCP (2.1) is sufficient and z = dx, s c ∈ D(β) then for n ≥ 8,

the directions computed in (3.4) satisfy

ζi := ‖hi‖ ≤ 2βµ

(1 + 2κ)i
((1 + 2κ)τ

√
n )i , i = m + 1, . . . , 2m.(4.6)

Proof. For any m + 1 ≤ i ≤ 2m, we have

∥∥hi
∥∥

2
≤

m∑

j=i−m

∥∥Duj
∥∥

2

∥∥ D−1vi−j
∥∥

2
≤

i−1∑

j=1

∥∥ Duj
∥∥

2

∥∥D−1vi−j
∥∥

2

=
1
2

i−1∑

j=1

(∥∥Duj
∥∥

2

∥∥ D−1vi−j
∥∥

2
+

∥∥Dui−j
∥∥

2

∥∥D−1vj
∥∥

2

)

≤ 1
2

i−1∑

j=1

√
‖Duj ‖22 + ‖D−1vj ‖22

√
‖Dui−j ‖22 + ‖D−1vi−j ‖22

≤ 1 + 2κ

2

i−1∑

j=1

ηj ηi−j ≤ 2βµ

1 + 2κ

(
(1 + 2κ)τ

√
n

4

)i i−1∑

j=1

αj αi−j

=
2βµ

1 + 2κ

(
(1 + 2κ)τ

√
n

4

)i

αi ≤ 2βµ

(1 + 2κ)i
(
(1 + 2κ)τ

√
n
)i

,

where the last inequality follows from the fact that αi ≤ 1
i 4

i.
From the above lemmas we obtain the following result.
Corollary 4.5. If HLCP (2.1) is sufficient and z = dx, s c ∈ D(β) then the

following relations hold for any α > 0, κ ≥ 0, and n ≥ 8:

α

µ

2m∑

i=m+1

θi
∥∥hi

∥∥
2

< 1, ∀ 0 ≤ θ ≤ 1
(1 + 2κ)τ

√
n

min

{
1 ,

(
1.4 αβ

1 + 2κ

) −1
m+1

}
,(4.7)

α

µ
√

n

2m∑

i=m+1

θi
∥∥hi

∥∥
2

< θ , ∀ 0 ≤ θ ≤ 1
(1 + 2κ)τ

√
n

min
{

1 , (1.4 αβτ )
−1
m

}
,(4.8)

Proof. For any t ∈ (0, 1] we have

2m∑

i=m+1

ti

i
≤ tm+1

2m∑

i=m+1

1
i

< tm+1

∫ 2m

m

du

u
= tm+1 log 2 < .7 tm+1 .

Using Lemma 4.4 and the above inequality we obtain

2m∑

i=m+1

θi
∥∥hi

∥∥
2

<
1.4βµ

1 + 2κ
((1 + 2κ)τ

√
nθ)m+1 , ∀ θ ∈

(
0,

1
(1 + 2κ)τ

√
n

]
.(4.9)
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Therefore,

α

µ

2m∑

i=m+1

θi
∥∥ hi

∥∥
2

<
1.4αβ

1 + 2κ
((1 + 2κ)τ

√
nθ)m+1 ≤ 1 ,

∀ θ ∈
(

0,
1

(1 + 2κ)τ
√

n
min

{
1 ,

(
1.4 αβ

1 + 2κ

) −1
m+1

}]
.

(4.9) also implies that

α

µ
√

n

2m∑

i=m+1

θi
∥∥ hi

∥∥
2

<
1.4αβ

(1 + 2κ)
√

n
((1+2κ)τ

√
nθ)m+1 = 1.4αβτθ ((1+2κ)τ

√
nθ)m ≤ θ ,

∀ θ ∈
(

0,
1

(1 + 2κ)τ
√

n
min

{
1 , (1.4 αβτ)

−1
m

}]
.

From the definition of τ (4.4) it follows that

2(1 + ε)
√

1− β√
β

≤ τ ≤ 2max

{
1 + ε√

β
,

√
1− β + βε2

β

}
<

2(1 + ε)
β

.(4.10)

In the corrector step we take ε = 0, therefore we will use the bound τ < 2/β in the
analysis below.

Theorem 4.6. If HCLP (2.1) is sufficient, then Algorithm 1 is well defined and
the following relations hold for any κ ≥ 0 and n ≥ 8:

z k, zk ∈ D(β) ,

µk+1 ≤
(

1− χ

(1 + 2κ)n
1
2+ mc+1

2mc(mp+1)

)
µ k , k = 0, 1, . . . ,

µ k+1 ≤
(

1− χ

(1 + 2κ)n
1
2+υ

)
µ k , k = 0, 1, . . . ,

where χ, χ are constants depending only on β, γ, γ , σ, σ , and

υ := min
{

1
2mc

,
mc + 1

2mc(mp + 1)

}
.(4.11)

Proof. Analysis of the corrector. On the corrector we have m = mc, ε = 0,
0 < γ < γ < γ < 1, 0 < σ < γ < σ < 1, and τ < 2/β.

First, we prove that if z ∈ D(β), then the quantities θ0 defined in (3.5) satisfy

θ0 ≥ θ3 :=
β

2(1 + 2κ)
√

n

(
2.8

1 + 2κ

)− 1
mc+1

,(4.12)



14

This can be shown by using (4.7) with α = 2/β, and the fact that θ3 < 1/2,

x(θ)s(θ)
µ

> (1− θ)
xs

µ
+

1
µ

2m∑

i=m+1

θihi ≥ β

2
e− 1

µ

2m∑

i=m+1

θi
∥∥ hi

∥∥
2
e > 0 ,∀θ ∈ [0, θ3] .

Since x(0) > 0 , s(0) > 0, we can use a standard continuity argument to show that
x(θ) > 0 , s(θ) > 0 , ∀ θ ∈ [0 , θ3] , which proves that θ0 ≥ θ3.

Next we show that the quantities θ1 defined in (3.7), satisfy

θ1 ≥ θ4 :=
β

2(1 + 2κ)
√

n

(
(1− σ )(1− γ )

2.8

) 1
mc

.(4.13)

By using (4.8) with α = 1/ ((1− σ )(1− γ )), we deduce that the following inequalities
hold for any θ ∈ [0, θ4]:

µ(θ)− (1− σ(1− γ)θ)µ
µ

= −(1− σ)(1− γ)θ +
1

µn

2m∑

i=m+1

θieT hi

≤ −(1− σ )(1− γ )θ +
1

µ
√

n

2m∑

i=m+1

θi
∥∥ hi

∥∥
2
≤ 0,

which shows that θ1 ≥ θ4.

At last, we show that if z ∈ D(β), then

f(θ) ≥ β +
1
2
(1− β)γ θ ≥ β +

1
2
(1− β)γ θ , ∀ θ ∈ [0 , θ5] ,(4.14)

where

θ5 := min

{
θ4 ,

β

2(1 + 2κ) n
1
2+ 1

2mc

(
(1− β)γ

5.6

) 1
mc

}
≥ χ5

(1 + 2κ)n
1
2+ 1

2mc

,(4.15)

χ5 :=
β

2
min

{
(1− σ )(1− γ )

2.8
,

(1− β)γ
5.6

}
.(4.16)

It is easily seen that

p(θ) =
x(θ)s(θ)

µ(θ)
=

(1− θ)xs + γθµe +
∑2m

i=m+1 θihi

(1− θ)µ + γθµ +
∑2m

i=m+1 θieT hi/n

≥ (1− θ)βµe + γθµe +
∑2m

i=m+1 θihi

(1− θ)µ + γθµ +
∑2m

i=m+1 θieT hi/n

= βe
(1− β)γθµe + β

∑2m
i=m+1 θi(hi − (eT hi/n)e) + (1− β)

∑2m
i=m+1 θihi

(1− θ)µ + γθµ +
∑2m

i=m+1 θieT hi/n

≥ βe +
(1− β)γθµ−∑2m

i=m+1 θi
∥∥hi

∥∥
2

µ(θ)
e

≥ βe + (1− β)γθ − 1
µ

2m∑

i=m+1

θi
∥∥ hi

∥∥
2

e , ∀ θ ∈ [0, 1] .(4.17)
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The last inequality follows from the fact that

µ(θ) ≤ (1− σ(1− γ)θ)µ ≤ µ , ∀ θ ∈ [0, θ4] .

According to (4.8), with α replace by 2
√

n/((1−β)γ), and τ replaced by 2/β, we have

1
µ

2m∑

i=m+1

θi
∥∥hi

∥∥
2

<
1
2
(1− β)γ θ , ∀θ ≤ β

2(1 + 2κ)
√

n

(
(1− β)γ
5.6
√

n

) 1
m

.

and (4.14) follows from the above inequality and (4.17).
Relation (4.14) shows that if z ∈ D(β), then the point z obtained in the corrector
step of Algorithm 1 belongs to D(β + δ), where

δ =
1
2
(1− β)γ θ5 .(4.18)

As we mentioned before, the main purpose of the corrector is to increase proximity
to the central path. However, it turns out that if the corrector step-length θc is
large enough then we also obtain a significant reduction of the duality gap during the
corrector step. In what follows we find a lower bound for θc in case the point z ∈ D(β)
is not very well centered. More precisely we show that

∃j such that pj :=
xjsj

µ
≤ β + .44 δ ⇒ θc > .2 θ5 .(4.19)

Let us denote

λ = .44 δ = .22(1− β)γ θ5 , qi =
hi

µ
, i = m + 1, . . . , 2m.

For any θ ∈ [0, 1] we have

pj(θ) =
xj(θ)sj(θ)

µ(θ)
=

(1− θ)pj + γθ +
∑2m

i=m+1 θiqi
j

(1− θ) + γθ +
∑2m

i=m+1 θieT qi/n

<
(1− θ)(β + λ) + γθ +

∑2m
i=m+1 θiqi

j

(1− θ) + γθ +
∑2m

i=m+1 θieT qi/n

= β + λ +
γ(1− β − λ)θ − (β + λ)

∑2m
i=m+1 θieT qi/n +

∑2m
i=m+1 θiqi

j

1− (1− γ)θ +
∑2m

i=m+1 θieT qi/n

≤ β + λ +
γ(1− β − λ)θ + (1 + β+λ√

n
)
∑2m

i=m+1 θi
∥∥ qi

∥∥
2

1− (1− γ)θ − 1√
n

∑2m
i=m+1 θi ‖ qi ‖2

≤ β + λ +
γ(1− β)θ + 2

∑2m
i=m+1 θi

∥∥ qi
∥∥

2

1− (1− γ)θ −∑2m
i=m+1 θi ‖ qi ‖2

.

Assume now that θ ∈ [0, .2 θ5] and set θ = .2φ. Since φ ∈ [0, θ5], by virtue of (4.8),
we can write

2m∑

i=m+1

θi
∥∥ qi

∥∥
2

=
2m∑

i=m+1

.2iφi
∥∥ qi

∥∥
2
≤ .2m+1

2m∑

i=m+1

φi
∥∥ qi

∥∥
2

<
.2m+1

2
γ(1− β)φ =

.2m

2
γ(1− β)θ ≤ .1γ(1− β)θ .
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Using the fact that θ5 < .5 , ∀n ≥ 1, we obtain

pj(θ) < β + λ +
1.2γ(1− β)θ

1− (1− γ + .1 γ(1− β)) θ
≤ β + λ +

1.2γ(1− β)θ
1− θ

< β + λ + 1.4γ(1− β)θ ≤ β + λ + .28γ(1− β)θ5 = β + δ , ∀ θ ∈ [0, .2 θ5] .

It follows that f(θc) ≥ β+δ > max0≤θ≤.2 θ5 f(θ) , wherefrom we deduce that θc > .2 θ5.

Analysis of the predictor. In the predictor step we have γ = 0 and m = mp. From
(4.4) it follows τ = 2(1 + ε)/

√
β ≤ 4/

√
β. Since the predictor step follows a corrector

step, we have z ∈ D(β + δ) ⊂ D(β).
First, we study the behavior of the normalized duality gap in the predictor step.

We start by proving that

(1−2.5 θ)µ ≤ µ(θ) ≤ (1−.5 θ)µ , ∀ 0 ≤ θ ≤ θ6 :=
√

β

4(1 + 2κ)
√

n
min

{
1 ,

(
11.2

√
β

) −1
mp

}
.

(4.20)
Due to the obvious fact that

(1− 2θ) ≤ (1− θ)2 ≤ (1− θ) , ∀ θ ∈ [0, 1] ,

we have

(1− 2θ)µ +
2m∑

i=m+1

θi(eT hi/n) ≤ µ(θ) ≤ (1− θ)µ +
2m∑

i=m+1

θi(eT hi/n) .

Using (4.8), with α = 2 and τ = 4/
√

β, we obtain
∣∣∣∣∣

2m∑

i=m+1

θi(eT hi/n)

∣∣∣∣∣ ≤
1√
n

2m∑

i=m+1

θi
∥∥ hi

∥∥
2

< .5 θµ ,

for all θ ∈ [0, θ6]. Using Lemma 4.4 and the sum of a geometric series with ratio .1,

we deduce that for any θ ∈ [0 ,

√
β

40(1+2κ)
√

n
] holds

µ′(θ) = −(1 + ε− 2εθ)µ +
2m∑

i=m+1

iθi−1(eT hi/n) ≤ −µ +
1√
n

2m∑

i=m+1

iθi−1
∥∥hi

∥∥
2

≤ −µ + 8µ
√

β

2m−1∑

i=m

(
4(1 + 2κ)θ

√
n√

β

)i

< −µ + 8µ
√

β
.1m

1− .1
< −µ + 8µ

.1m

.9
< 0 .

Since θ6 >

√
β

44.8(1+2κ)
√

n
>

√
β

50(1+2κ)
√

n
, we conclude that

(1− 2.5 θ)µ ≤ µ(θ) ≤ (1− .5 θ)µ and µ′(θ) < 0,(4.21)

∀θ ∈
[
0,

√
β

50(1 + 2κ)
√

n

]
.(4.22)

Next, we claim that the quantity θ2 from (3.11) used in the computation of the
predictor step-length satisfies
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θ2 ≥ θ7 :=
√

β

4(1 + 2κ)
√

n
min

{
1 ,

(
11.2

√
β

) −1
mp

,

(
(1 + 2κ)δ

2β

) 1
mp+1

}

≥ χ7

(1 + 2κ)n
1
2+ mc+1

2mc(mp+1)

,(4.23)

χ7 :=
1
4

min

{
1

11.2
,

(
(1− β)γχ5

4

) 1
2

}
.(4.24)

Using (4.20) with n ≥ 8 we obtain

µ(θ) ≥ (1− 2.5θ6)µ ≥ (1− 2.5
8
√

2
)µ ≥ .7µ, ∀ θ ∈ [0, θ6] .

By taking γ = 0, and β + δ instead of β, in (4.17), using (4.7) with α = 1/(.7δ), we
deduce that

f(θ) ≥ β + δ −
∑2m

i=m+1 θi
∥∥hi

∥∥
2

µ(θ)
≥ β + δ − 1

.7µ

2m∑

i=m+1

θi
∥∥ hi

∥∥
2
≥ β , ∀ θ ∈ [0, θ7] ,

which proves that θ2 ≥ θ7. From the definition of θ7 it follows

θ7 ≥
√

β

4(1 + 2κ)
√

n
min

{
1

11.2
√

β
,

1√
β

(
(1 + 2κ)δ

2

) 1
mp+1

}

≥ 1
4(1 + 2κ)

√
n

min

{
1

11.2
,

(
(1− β)γθ5

4

) 1
mp+1

}

≥
√

β

4(1 + 2κ)
√

n
min

{
1

11.2
,

(
(1− β)γχ5

4n
mc+1
2mc

) 1
mp+1

}

≥ χ7

(1 + 2κ)n
1
2+ mc+1

2mc(mp+1)

.

Bounding the decrease of the duality gap. Due to the fact that the duality
gap decreases in both predictor step and corrector step, a complete analysis of the
decreases of the duality gap has to be done by studying a succession of corrector-
predictor-corrector steps. Assume that we are at iteration k and we have a point
zk ∈ D(β), with normalized duality gap µk. We follow the notations of Algorithm 1.
The corrector step produces a point z k ∈ D(β + δ), with δ given by (4.18). The
corresponding normalized duality gap clearly satisfies µk ≤ µk, but a bound on the
decrease of the duality gap cannot be given at this stage. The corrector is followed
by a predictor that produces a point zk+1 = z(θp) ∈ D(β) with duality gap µk+1 =
µ(θp) = min0≤θ≤θ2 µ(θ). We have θ7 ≤ θ2 and θ7 ≤ θ6, so that according to (4.20)

µk+1 ≤ µ(θ7) ≤ (1− .5 θ7) µ k ≤
(

1− χ7

2 n
1
2+ mc+1

2mc(mp+1)

)
µ k , µ k ≤ µk .(4.25)

The above relation is sufficient for proving polynomial complexity, but it does not
take into account the contribution of the corrector step. A finer analysis is needed in
order to account for that. We distinguish two cases:
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(a) θ2 ≥
√

β

50(1+2κ)
√

n
. According to (4.21), in this case we have

µk+1 = min
0≤θ≤θ2

µ(θ) ≤
(

1−
√

β

100(1 + 2κ)
√

n

)
µ k ;

(b) θ2 <

√
β

50(1+2κ)
√

n
. In this case µ(θ) is decreasing on the interval [0 , θ2] , by

virtue of (4.21), and by using (4.23) we deduce that θp = θ2, f(θp) = β.
The latter equality must be true, since if f(θp) > β, then, by a continuity
argument, it follows that θ2 > θp which is a contradiction (see the definition
of θ2 (3.11)) . But if f(θp) = β, then, according to (3.8), in the next corrector
step we have θc > .2 θ5, so that

µ k+1 < (1− .2 σ(1− γ )θ5) µk+1 ≤
(

1− σ(1− γ )χ5

5(1 + 2κ)n
1
2+ 1

2mc

)
µk+1 .

In conclusion, for any k ≥ 0 we have

µ k+1 ≤ µk+1 ≤
(

1−
√

β

100(1 + 2κ)
√

n

)
µ k

or

µ k+1 <

(
1− σ(1− γ )χ5

5(1 + 2κ)n
1
2+ 1

2mc

)(
1− χ7

2(1 + 2κ)n
1
2+ mc+1

2mc(mp+1)

)
µ k .

By taking

χ := min
{√

β

100
,

σ(1− γ )χ5

5
,
χ7

2

}
,

we deduce that

µ k+1 ≤
(

1− χ

(1 + 2κ)n
1
2+υ

)
µ k , k = 0, 1, . . . ,

where υ is given by (4.11). The proof is complete
As an immediate consequence of the above theorem we obtain the following com-

plexity result:
Corollary 4.7. Algorithm 1 produces a point z = dx, s c ∈ D(β) with xT s ≤ ε,

in at most O
(
(1 + κ)n1/2+υ log

(
x0 T s0/ε

))
iterations, where υ is given by (4.11).

It follows that if the order of either the corrector or the predictor is larger than a
multiple of log n, then Algorithm 1 has O ((1 + κ)

√
nL)-iteration complexity.

Corollary 4.8. If max {mc , mp } = Ω(log n), then Algorithm 1 produces a
point z = dx, s c ∈ D(β) with xT s ≤ ε, in at most O

(
(1 + κ)

√
n log

(
x0 T s0/ε

))
.

Proof. Under the hypothesis of the corollary there is a constant ϑ, such that
υ ≤ ϑ/ log n. Hence n1/2+υ ≤ n

ϑ
log n

√
n = eϑ

√
n.

Due to the fact that limn→∞ n1/nω

= 1 for any ω ∈ (0, 1), in applications we
can choose mp = dnωe for some value of ω ∈ (0, 1). This choice was initially sug-
gested by Roos (private communication) and subsequently used in [24] and [16]. A
correspondence between n and dnωe with ω = 0.1 is shown in table 4.
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Table 4.1

n 104 105 106 107 108 109 1010

dn.1e 3 4 4 6 7 8 11

5. Superlinear convergence. In this section we show that the duality gap of
the sequence produced by Algorithm 1 is superlinearly convergent. The result is based
on the following lemma which is a consequence of the results about the analyticity of
the central path from [19].

Lemma 5.1. If HLCP (2.1) is sufficient then the solution of (3.2) with γ = 0
satisfies

ui = O(µi), vi = O(µi), i = 1, . . . ,m , if HLCP (2.1) is nondegenerate ,

and

ui = O(µi/2), vi = O(µi/2), i = 1, . . . , m , if HLCP (2.1) is degenerate .

By using the above lemma we obtain the following superlinear convergence result,
which is a trivial extension of the corresponding result in [14] to sufficient linear
complementarity problems.

Theorem 5.2. The sequence µk produced by Algorithm 1 satisfies

µk+1 = O(µmp+1
k ) , if HLCP (2.1) is nondegenerate ,

and

µk+1 = O(µ(mp+1)/2
k ) , if HLCP (2.1) is degenerate .

6. Conclusions. We have presented a corrector-predictor interior point algo-
rithm for sufficient horizontal linear complementarity problems acting in a wide neigh-
borhood of the central path.

The corrector of order mc is used to improve both the centrality and the com-
plementarity gap. The predictor of order mp follows each corrector step to further
decrease the complementarity gap. If max{mc, mp} = Ω(log n), then the iteration
complexity of the algorithms is O((1 + κ)

√
nL). Although the complexity of our al-

gorithm depends on κ, the algorithm itself does not, so that the algorithm works for
the class of sufficient HLCP. Our algorithm has the best known iteration complexity
for sufficient linear complementarity problems and is superlinearly convergent even
for degenerate problems. The cost of implementing one iteration of our algorithm is
O(n3) arithmetic operations.
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