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Abstract. We consider a polynomial programming problem P on a compact
semi-algebraic set K ⊂ Rn, described by m polynomial inequalities gj(X) ≥ 0,
and with criterion f ∈ R[X]. We propose a hierarchy of semidefinite relaxations
in the spirit those of Waki et al. [9]. In particular, the SDP-relaxation of order
r has the following two features:

(a) The number of variables is O(κ2r) where κ = max[κ1, κ2] witth κ1

(resp. κ2) being the maximum number of variables appearing the monomials
of f (resp. appearing in a single constraint gj(X) ≥ 0).

(b) The largest size of the LMI’s (Linear Matrix Inequalities) is O(κr).
This is to compare with the respective number of variables O(n2r) and LMI

size O(nr) in the original SDP-relaxations defined in [11]. Therefore, great
computational savings are expected in case of sparsity in the data {gj , f},
i.e. when κ is small, a frequent case in practical applications of interest. The
novelty with respect to [9] is that we prove convergence to the global optimum
of P when the sparsity pattern satisfies a condition often encountered in large
size problems of practical applications, and known as the running intersection
property in graph theory. In such cases, and as a by-product, we also obtain
a new representation result for polynomials positive on a basic closed semi-
algebraic set, a sparse version of Putinar’s Positivstellensatz [16].

1. Introduction

In this paper we consider the polynomial programming problem

(1.1) P : inf
x∈Rn

{ f(x) | x ∈ K},

where f ∈ R[X], and K ⊂ Rn is the basic closed semi-algebraic set defined by

(1.2) K := {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m },
for some polynomials {gj}m

j=1 ⊂ R[X].
The hierarchy of semidefinite programming (SDP) relaxations introduced in

Lasserre [11] provides a sequence of SDPs of increasing size, whose associated se-
quence of optimal values converges to the global minimum of P. Moreover, as
proved in Schweighofer [17], convergence to a global minimizer of P (if unique) also
holds. For more details, the reader is referred to [5, 11, 17] and the many references
therein. In addition, practice reveals that convergence is usually fast, and often
finite (up to machine precision); see e.g. Henrion and Lasserre [5].

However, despite these nice features, the size of the SDP-relaxations grows
rapidly with the size of the original problem. Typically, the kth SDP-relaxation
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has to handle at least one LMI of size
(
n+k

n

)
and

(
n+2k

n

)
variables, which clearly

limits the applicability of the methodology to problems with small to medium size
only. Therefore, validation of the above methodology for larger size problems (and
even more, for large scale problems) is a real challenge of practical importance.

One way to extend the applicability of the methodology to problems of larger
size, is to take into account sparsity in the original data, frequently encountered
in practical cases. Indeed, as typical in many applications of interest, f as well
as the polynomials {gj} that describe K, are sparse, i.e., each monomial of f and
each polynomial gj are only concerned with a small subset of variables. This is the
approach taken in Waki et al. [9] (extending Kim et al. [7] and Kojima et al. [8]),
where the authors have built up a hierarchy of SDP-relaxations in the spirit of those
in [11], but where sparsity is taken into account. Sometimes, a sparsity pattern can
be ”read” from the data of P but not always, and in [9], the authors have proposed a
systematic procedure to detect and structure sparsity in P, via the so-called chordal
extension of the correlation sparsity pattern graph (csp graph); the csp graph has
as many nodes as variables, and a link beween two nodes (i.e., variables) means
that these two variables both appear in a monomial of the objective function or in
some inequality constraint gj ≥ 0 of P. Once a sparsity pattern has been detected,
they define a simplified ”sparse” version of the SDP-relaxations of [11]; briefly, in
the dual, the sum of squares (s.o.s.) multiplier associated with a constraint is now
a polynomial in only those variables appearing in that constraint. In doing so,
they have obtained impressive gains in the size of the resulting SDP-relaxations,
as well as in the computational time needed for obtaining an optimal solution. As
a matter of fact, they were even able to solve problems that could not be handled
with the original SDP-relaxations. However, and despite good approximations are
obtained in most problems in their sample of experiments, convergence to the global
minimum is not guaranteed.

Contribution. Our contribution is twofold: We first propose a hierarchy of
SDP-relaxations {Qr} in the spirit of the original SDP-relaxations [11] and close to
those defined in [9]. They are valid for arbitrary polynomial programming problems,
and have the following three appealing features:

(a) In the SDP-relaxation Qr of order r, the number of variables is O(κ2r)
where κ = max[κ1, κ2] witth κ1 (resp. κ2) being the maximum number of variables
appearing in f (resp. in a single constraint gj(X) ≥ 0).

(b) The largest size of the LMI’s (Linear Matrix Inequalities) is O(κr).
This is to compare with the respective number of variables O(n2r) and LMI size

O(nr) in the original SDP-relaxations defined in [11].
(c) Under a certain condition on the sparsity pattern, the resulting sequence of

their optimal value converges to the global minimum of P.
So in view of (a) and (b), and when κ is small (κ � n), i.e., when sparsity is

present, dramatic computational savings can be expected. In other words, these
new SDP-relaxations are inherently exploiting sparsity in the data {f, gj} when
present. Moreover, the size of the SDP-relaxation Qr is in a sense minimal, at least
when considering such types of SDP-relaxations, because one should at least handle
moments involving κ variables, whenever some monomial of κ variables appears in
the data {f, gj}.

The condition under which such SDP-relaxations converge to the global mini-
mum of P is easy to describe, and reflects a sparsity pattern frequently encountered
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in large scale problems. Namely, let {1, . . . , n} be the union
⋃p

k=1 Ik of subsets
Ik ⊂ {1, . . . , n}. Every polynomial gj in the definition (1.2) of K, is only con-
cerned with variables {Xi | i ∈ Ik} for some k. Next, f ∈ R[X] can be written
f = f1 + · · · + fp where each fk uses only variables {Xi | i ∈ Ik}. In cases where
the subsets {Ik} are not so easy to detect, one may use the procedure of Waki et
al. [9] via the chordal extension of the csp graph.

Finally, the collection {I1, . . . , Ip} should obey the following condition: For every
k = 1, . . . , p− 1,

(1.3) Ik+1 ∩
k⋃

j=1

Ij ⊆ Is for some s ≤ k.

Notice that (1.3) is always satisfied when p = 2. Property (1.3) depends on the
ordering and so, can be satisfied possibly after some relabelling of the Ik’s. More-
over, if not satisfied, one may enforce (1.3) but at the price of enlarging some of
the sets Ik. If I1, . . . , Ip are the maximal cliques of a chordal graph then (1.3) is
satisfied possibly after some reordering of the cliques, and is known as the running
intersection property; for more details on chordal graphs, the reader is referred to
Fukuda et al. [4] and Nakata et al. [15].

In particular, (1.3) is naturally satisfied in a number of applications, in particular,
in what we call strong and weak coupling. In the former, we have Ik ∩ Ik+j = ∅
whenever j > 1, so that (1.3) holds. In the latter, there is a set of coupling variables
with index set I ′0 ⊂ {1, . . . , n}, and a partition of {1, . . . , n} \ I ′0 into p disjoint
subsets of independent variables I ′k, k = 1, . . . , p. In this case one has Ik := I ′0 ∪ I ′k,
k = 1, . . . , p, and so Ik ∩ Ij = I ′0 for all j 6= k, which in turn implies that (1.3)
holds.

At last, and as a by-product of the property (1.3) of the sparsity pattern, we also
obtain a new sparse representation result for polynomials, nonnegative on a basic
closed semi-algebraic set, a sparse version of Putinar’s Positivstellensatz [16].

Link with related literature. As already mentioned, our work is closely
related to the recent work of Kojima et al. [8] and Waki et al. [9], in which they
were the first to exploit sparsity of data and modify (or simplify) in an appropriate
way the original SDP-relaxations defined in [11]. Our SDP-relaxations are very
close to those defined in [9], but handle p additional quadratic constraints. These
p additional constraints together with condition (1.3), are crucial to prove our
convergence result. To summarize, our result implies that by a slight modification
of the SDP-relaxations defined in [9], convergence is now guaranteed when the
sparsity pattern satisfies (1.3)

The paper is organized as follows. After introducing notation and definitions,
our main result is presented in section 3, and for clarity of exposition, some proofs
are postponed to section 4, whereas auxiliary results needed in some proofs are
postponed to an appendix section.

2. Notation and definitions

As common in algebra, variables of polynomials are denoted with capitals (e.g.
X) whereas points in Rn are denoted with small letters (e.g. x). For a real sym-
metric matrix A ∈ Rn×n, the notation A � 0 (resp. A � 0) stands for A is positive
definite (resp. semidefinite), and for a vector x, let x′ denote its transpose.
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Let R[X] denote the ring of real polynomials in the variables X1, . . . , Xn. In
the usual canonical basis v∞(X) = {Xα |α ∈ Nn} of monomials, a polynomial
g ∈ R[X] is written

(2.1) g(X) =
∑

α∈Nn

gαXα,

for some real vector g = {gα} with finitely many non zero coefficients.
With α ∈ Nn, let |α| :=

∑
i αi, and let Rr[X] ⊂ R[X] be the R-vector space of

polynomials of degree at most r, with usual canonical basis of monomials vr(X) =
{Xα |α ∈ Nn; |α| ≤ r}.

Let I0 := {1, . . . , n} be the union ∪p
k=1Ik of p subsets Ik, k = 1, . . . , p, with

cardinal denoted nk. Let R[X(Ik)] denote the ring of polynomials in the nk variables
X(Ik) = {Xi | i ∈ Ik}, and so R[X(I0)] = R[X].

For each k = 0, 1, . . . , p, let Ik be the set of all subsets of Ik. Next, for every
α ∈ Nn, let supp (α) ∈ I0 be the support of α, i.e.,

supp (α) := { i ∈ {1, . . . , n} : αi 6= 0 }, α ∈ Nn.

For instance, with n = 6 and α := (004020), supp (α) = {3, 5}. Next, define

(2.2) Sk := { α ∈ Nn : supp (α) ∈ Ik }, k = 1, . . . , p.

A polynomial h ∈ R[X(Ik)] can be viewed as a member of R[X], and is written

(2.3) h(X) = h(X(Ik)) =
∑

α∈Sk

hα Xα

for some real vector h = {hα} with finitely many non zero coefficients.

2.1. Moment matrix. Let y = (yα)α∈Nn (i.e. a sequence indexed in the canonical
basis v∞(X)), and define the linear functional Ly : R[X] → R to be:

(2.4) g 7→ Ly(g) :=
∑

α∈Nn

gα yα,

whenever g is as in (2.1).
As already presented in [11], given a sequence y = (yα)α∈Nn , the moment matrix

Mr(y) associated with y, is the matrix with rows and columns indexed in vr(X),
and such that

Mr(y)(α, β) := Ly(XαXβ) = yα+β , ∀α, β ∈ Nn with |α|, |β| ≤ r.

A sequence y is said to have a representing measure µ on Rn if

yα =
∫

Rn

Xα µ(dX), ∀α ∈ Nn.

Let s(r) :=
(
n+r

r

)
be the dimension of vector space Rr[X]. For a vector u ∈ Rs(r),

let u ∈ R[X] be the polynomial u(X) = 〈u, vr(X)〉. Then, one has

〈u,Mr(y)u〉 = Ly(u2), ∀u ∈ Rs(r).

Therefore, if y has a representing measure µ, then

〈u,Mr(y)u〉 = Ly(u2) =
∫

Rn

u(X)2 µ(dX) ≥ 0,

which implies Mr(y) � 0 (as u ∈ Rs(r) was arbitrary).
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Of course, in general, not every sequence y such that Mr(y) � 0 for all r ∈ N,
has a representing measure. The K-moment problem is precisely concerned with
finding conditions on the sequence y, to ensure it is the moment sequence of some
measure µ, with support contained in K ⊂ Rn.

2.2. Localizing matrix. Let h ∈ R[X] be a given polynomial

h(X) =
∑

γ∈Nn

hγ Xγ ,

and let y = (yα)α∈Nn be given. The localizing matrix Mr(h y) associated with h
and y, is the matrix with rows and columns indexed in vr(X), obtained from the
moment matrix Mr(y) by:

Mr(h y)(α, β) := Ly(h(X) XαXβ) =
∑

γ∈Nn

hγ yγ+α+β ,

for all α, β ∈ Nn, with |α|, |β| ≤ r.
As before, let u ∈ Rs(r), and let u := 〈u, vr(X)〉 ∈ Rr[X]. Then

〈u,Mr(h y)u〉 = Ly(h u2), ∀u ∈ Rs(r),

and if y has a representing measure µ with support contained in the set {x ∈ Rn :
h(x) ≥ 0}, then

〈u,Mr(h y)u〉 = Ly(h u2) =
∫

Rn

h(X) u(X)2 µ(dX) ≥ 0,

which implies Mr(h y) � 0 (as u ∈ Rs(r) was arbitrary).

Next, with k ∈ {1, . . . , p} fixed, and h ∈ R[X(Ik)], let Mr(y, Ik) (resp. Mr(h y, Ik))
be the moment (resp. localizing) submatrix obtained from Mr(y) (resp. Mr(h y))
by retaining only those rows (and columns) α ∈ Nn of Mr(y) (resp. Mr(h y)) with
supp (α) ∈ Ik.

In doing so, Mr(y, Ik) and Mr(h y, Ik) can be viewed as moment and localiz-
ing matrices with rows and columns indexed in the canonical basis vr(X(Ik)) of
Rr[X(Ik)]. Indeed, Mr(y, Ik) contain only variables yα with supp (α) ∈ Ik, and so
does Mr(h y, Ik) because h ∈ R[X(Ik)]. And for every polynomial u ∈ Rr[X(Ik)],
with coefficient vector u in the basis vr(X(Ik)), we also have

〈u,Mr(y, Ik)u〉 = Ly(u2), ∀u ∈ Rr[X(Ik)]

〈u,Mr(h y, Ik)u〉 = Ly(h u2), ∀u ∈ Rr[X(Ik)],

and therefore,

Mr(y, Ik) � 0 ⇔ Ly(u2) ≥ 0, ∀u ∈ Rr[X(Ik)](2.5)

Mr(h y, Ik) � 0 ⇔ Ly(h u2) ≥ 0, ∀u ∈ Rr[X(Ik)].(2.6)

3. Main result

Consider problem P as defined in (1.1), and recall that I0 = {1, . . . , n} =⋃p
k=1 Ik for some subsets Ik ⊂ {1, . . . , n}, k = 1, . . . , p. The subsets {Ik} may

be read directly from the data or may have been obtained by some procedure, e.g.
the one described in Waki et al. [9].

With ‖x‖∞ (resp. ‖x‖) denoting the usual sup-norm (resp. euclidean norm) of
a vector x ∈ Rn, we make the following assumption.
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Assumption 3.1. Let K ⊂ Rn be as in (1.2). Then, there is M > 0 such that
‖x‖∞ < M for all x ∈ K.

In view of Assumption 3.1, one has ‖X(Ik)‖2 ≤ nkM2, k = 1, . . . , p, and there-
fore, in the definition (1.2) of K, we add the p redundant quadratic constraints

(3.1) gm+k(X) := nkM2 − ‖X(Ik)‖2 ≥ 0, k = 1, . . . , p,

and set m′ = m + p, so that K is now defined by:

(3.2) K := {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m′ }.
Notice that gm+k ∈ R[X(Ik)], for every all k = 1, . . . , p.

Assumption 3.2. Let K ⊂ Rn be as in (3.2). The index set J = {1, . . . ,m′} is
partitioned into p disjoint sets Jk, k = 1, . . . , p, and the collections {Ik} and {Jk}
satisfy:

(i) For every j ∈ Jk, gj ∈ R[X(Ik)], that is, for every j ∈ Jk, the constraint
gj(X) ≥ 0 is only concerned with the variables X(Ik) = {Xi | i ∈ Ik}. Equivalently,
viewing gj as a polynomial in R[X], gjα 6= 0 ⇒ supp (α) ∈ Ik.

(ii) The objective function f ∈ R[X] can be written

(3.3) f =
p∑

k=1

fk, with fk ∈ R[X(Ik)], k = 1, . . . , p.

Equivalently, fα 6= 0 ⇒ supp (α) ∈ ∪p
k=1Ik.

(iii) (1.3) holds.

As already mentioned, (1.3) always holds when p ≤ 2.

Example 3.3. With n = 6, and m = 6, let

g1(X) = X1X2 − 1; g2(X) = X2
1 + X2X3 − 1; g3(X) = X2 + X2

3X4,

and
g4(X) = X3 + X5; g5(X) = X3X6; g6(X) = X2X3,

Then one may choose p = 4 with

I1 = {1, 2, 3}; I2 = {2, 3, 4}; I3 = {3, 5}; I4 = {3, 6},
and J1 = {1, 2, 6}, J2 = {3}, J3 = {4}, J4 = {4}.

So in Example 3.3, the objective function f ∈ R[X] should be a sum of polyno-
mials in R[X1, X2, X3], R[X2, X3, X4], R[X3, X5] and R[X3, X6] (also considered as
polynomials in R[X1, . . . , X6]).

Remark 3.4. For every k = 1, . . . , p, let

(3.4) Kk := {x ∈ Rnk : gj(x) ≥ 0, ∀ j ∈ Jk}.
For every k = 1, . . . , p, the set Kk ⊂ Rnk satisfies Putinar’s condition, that is,
there exists u ∈ R[X(Ik)] which can be written u = u0 +

∑
l∈Jk

ul gl for some s.o.s.
polynomials {u0, ul} ⊂ R[X(Ik)], and such that the level set {x ∈ Rnk : u ≥ 0} is
compact. (Take u = gm+k.) When satisfied, Putinar’s condition has the important
consequences stated in Theorem 4.1.
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3.1. Convergent SDP-relaxations. For each j = 1, . . . ,m′, and depending on its
parity, write deg gj = 2rj − 1 or 2rj . Next, with 2r ≥ 2r0 := max[deg f,maxj 2rj ],
consider the following semidefinite program:

(3.5) Qr :


inf
y

Ly(f)

s.t. Mr(y, Ik) � 0, k = 1, . . . , p
Mr−rj (gj y, Ik) � 0, j ∈ Jk; k = 1, . . . , p

y0 = 1

,

where the moment and localizing matrices Mr(y, Ik), Mr(gj y, Ik) have been defined
at the end of §2.2. Denote the optimal value of Qr by inf Qr, and minQr if the
infimum is attained.

Notice that Qr is well-defined under Assumption 3.2(i)-(ii). Assumption 3.2(iii)
is only useful to show convergence in Theorem 3.6 below.

The semidefinite program Qr is a relaxation of P. Indeed, with x ∈ Rn being a
feasible solution of P, the moment vector y = {yα} of the Dirac measure µ = δx at
x, is feasible for Qr, with value Ly(f) =

∫
fdµ = f(x).

Under Assumption 3.2, and from the definition of Mr(y, k) and Mr(gj y, k) in
§2.2, the SDP-relaxation Qr contains only variables yα with α in the set

(3.6) Γr := { α ∈ Nn : supp (α) ∈
p⋃

k=1

Ik ; |α| ≤ 2r }.

Remark 3.5. (i) Maximality of the I ′ks is not required, i.e., one may have Ij ⊂ Ik

for some pair (j, k). In this case, the LMI constraint Mr(y, Ij) � 0 is redundant.
However, if non desirable in theory, in practice it may be more convenient to allow
for non maximality.

(ii) Comparing with the SDP-relaxations of Waki et al. [9]. When the sets {Ik}
are just the cliques {Ck} obtained from the chordal extension of the csp graph as
defined in [9], then the SDP-relaxations (3.5) are basically the same as those defined
in (32) in [9]. The only difference is in the definition of the feasible set K of P,
where we have now included the p redundant quadratic constraints (3.1). In this
case, the SDP-relaxations (3.5) are thus stronger than (32) in [9], because they are
more constrained.

In view of the definition of the moment matrix Mr(y, Ik), write

Mr(y, Ik) =
∑

α∈Nn

yαBk
α, k = 1, . . . , p,

for appropriate symmetric matrices {Bk
α}, and notice that for every k = 1, . . . , p,

one has Bk
α = 0 whenever supp (α) 6∈ Ik. Similarly, for every k = 1, . . . , p, and

j ∈ Jk, write

Mr−rj (gj y, Ik) =
∑

α∈Nn

yαCjk
α ,

for appropriate symmetric matrices {Cjk
α }, and notice that Cjk

α = 0 whenever
supp (α) 6∈ Ik.
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The dual SDP Q∗
r of Qr, reads

(3.7)



sup
Ωk,Zjk,λ

λ

s.t.
∑

k: supp (α)∈Ik

[ 〈Ωk, Bk
α〉+

∑
j∈Jk

〈Zjk, Cjk
α 〉 ] + λ δα0 = fα

for all α ∈ Γr

Ωk, Zjk � 0, j ∈ Jk, k = 1, . . . , p

,

where Γr is defined in (3.6) and δα0 is the usual Kronecker symbol. From an
arbitrary feasible solution (λ, Ωk, Zjk) of Q∗

r , multiplying each side of the constraint
in (3.7) with Xα, for all α ∈ Γr, and summing up, yields

∑
α∈Γr

 ∑
k: supp (α)∈Ik

 〈Ωk, Bk
αXα〉+

∑
j∈Jk

〈Zjk, Cjk
α Xα〉

  = f(X)− λ,

which, denoting Γkr := {α ∈ Nn : supp (α) ∈ Ik; |α| ≤ 2r}, can be rewritten

(3.8)
p∑

k=1

〈Ωk,
∑

α∈Γkr

Bk
αXα〉+

∑
j∈Jk

〈Zjk,
∑

α∈Γkr

Cjk
α Xα〉

 = f(X)− λ.

Proceding as in Lasserre [11], and using the spectral decomposition of matrices
Ωk, Zjk � 0, write

Ωk =
∑

l

qklq′kl, Zjk =
∑

t

qjktq′jkt, j ∈ Jk, k = 1, . . . , p,

for some vectors {qkl,qjkt}. Next, notice that

(3.9)
∑

α∈Γkr

Bk
αXα = vr(X(Ik)) vr(X(Ik))′, k = 1, . . . , p

(recall that vr(X(Ik)) is the canonical basis of Rr[X(Ik)]). Similarly, for every
k = 1, . . . , p, and j ∈ Jk,

(3.10)
∑

α∈Γkr

Cjk
α Xα = gj(X) vr−rj

(X(Ik)) vr−rj
(X(Ik))′.

In view of the dimension of the matrix Ωk (resp. Zjk), one may identify qkl (resp.
qjkt) with the vector of coefficients of a polynomial qkl ∈ Rr[X(Ik)] (resp. qjkt ∈
Rr−rj [X(Ik)]), and so for every l, t

〈vr(X(Ik)),qkl〉 = qkl(X), k = 1, . . . , p,

〈vr−rj
(X(Ik)),qjkt〉 = qjkt(X), j ∈ Jk, k = 1, . . . , p.

Combining the latter with (3.8)-(3.10), one may rewrite (3.8) as

p∑
k=1

∑
l

qkl(X)2 + +
∑
j∈Jk

gj(X)
∑

t

qjkt(X)2

 = f(X)− λ.

In other words,

(3.11) f − λ =
p∑

k=1

( qk +
∑
j∈Jk

qjk gj ),
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for some s.o.s. polynomials qk, qjk ∈ R[X(Ik)], k = 1, . . . , p, a sparse version of
Putinar’s representation [16] for the polynomial f − λ, nonnegative on K.

Finally, in view of what precedes, the dual Q∗
r also reads:

(3.12)



sup
qk,qjk,λ

λ

s.t. f − λ =
p∑

k=1

(qk +
∑
j∈Jk

qjk gj )

qk, qjk ∈ R[X(Ik)] and s.o.s., j ∈ Jk, k = 1, . . . , p

deg qk, deg qjkgj ≤ 2r, j ∈ Jk, k = 1, . . . , p,

Theorem 3.6. Let P be as defined in (1.1), with global minimum denoted minP,
and let Assumption 3.1 and 3.2 hold. Let {Qr} be the hierarchy of SDP-relaxations
defined in (3.5). Then:

(a) inf Qr ↑ minP as r →∞.

(b) If K has a nonempty interior, then there is no duality gap between Qr and
its dual Q∗

r, and Q∗
r is solvable for sufficiently large r, i.e., inf Qr = maxQ∗

r.

(c) Let yr be a nearly optimal solution of Qr, with e.g.

Lyr (f) ≤ inf Qr +
1
r
, ∀ r ≥ r0,

and let ŷr := {yr
α : |α| = 1}. If P has a unique global minimizer x∗ ∈ K, then

(3.13) ŷr → x∗ as r →∞.

For a proof see §4.1. Theorem 3.6 establishes convergence of the hierarchy of
SDP-relaxations to the global minimum minP, as well as convergence to a global
minimizer x∗ ∈ K (if unique).

3.2. Computational complexity. The number of variables for the SDP-relaxation
Qr defined in (3.5) is bounded by

∑p
k=1

(
nk+2r

2r

)
, and so, if all nk’s are close to each

other, say nk ≈ n/p for all k, then one has one has at most O(p(n
p )2r) variables, a

big saving when compared with O(n2r) in the original SDP-relaxations defined in
[11] and implemented in [5].

In addition, one also has p LMI constraints of size O((n
p )r) and m + p LMI con-

straints of size O((n
p )r−r′) (where 2r′ is the largest degree of the polynomials gj ’s),

to be compared with a single LMI constraint of size O(nr) and m LMI constraints
of size O(nr−r′) in [5, 11]. So for instance, when using an interior point method, it
is definitely better to handle p LMIs, each of size (n/p)r, rather than a single LMI
of size nr.

Example: For illustration purposes, consider the following elementary example.
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Let n = 4, and consider the optimization problem:

P :


inf
x

x1x2 + x1x3 + x1x4

s.t. x2
1 + x2

2 ≤ a12

x2
1 + x2

3 ≤ a13

x2
1 + x2

4 ≤ a14

Hence, I1 = {1, 2}, I2 = {1, 3}, I3 = {1, 4}. The first SDP-relaxation Q1 in the
hierarchy is obtained with r = 1, and reads

inf
y

y1100 + y1010 + y1001

 1 y1000 y0100

y1000 y2000 y1100

y0100 y1100 y0200

 ,

 1 y1000 y0010

y1000 y2000 y1010

y0010 y1010 y0020

 ,

 1 y1000 y0001

y1000 y2000 y1001

y0001 y1001 y0002

 � 0

a12 − y2000 − y0200 ≥ 0; a13 − y2000 − y0020 ≥ 0; a14 − y2000 − y0002 ≥ 0.

3.3. Extraction of solutions. As for the standard SDP-relaxations of [11], one
may also detect global optimality, i.e., when minQs0 = minP for some s0, in
which case finite convergence occurs, and the SDP-relaxation Qs0 is said to be
exact. Recall that for the standard SDP-relaxations [11], one has defined a rank-
test to detect finite convergence (see e.g. Lasserre [12]), as well as an extraction
procedure (applied to the moment matrix of an exact SDP-relaxation) to obtain
one or several global minimizers x∗ ∈ Rn of P; for more details, see Henrion and
Lasserre [5, 6].

For all j, k with Ijk := Ij ∩ Ik 6= ∅, denote by Ijk the set of subsets of Ijk. Let
Mr(y, Ijk) be the submatrix obtained from Mr(y, Ij) or Mr(y, Ik), by selecting only
those rows and columns α ∈ Nn, with supp (α) ∈ Ijk and |α| ≤ r.

Theorem 3.7. Let Assumption 3.2(i)-(ii) hold, and let {Qr} be the hierarchy of
SDP-relaxations defined in (3.5). Let ak := maxj∈Jk

[rj ], for all k = 1, . . . , p, and
assume that y is an optimal solution of Qs0 for some s0.

The SDP-relaxation Qs0 is exact, i.e., minQs0 = minP, if

(3.14) rankMs0(y, Ik) = rankMs0−ak
(y, Ik), k = 1, . . . , p,

and if rank Ms0(y, Ijk) = 1, for all pairs (j, k) with Ij ∩ Ik 6= ∅.

Moreover, let ∆k := {x∗(k)} ⊂ Rnk be a set of solutions obtained from the
extraction procedure applied to each moment matrix Ms0(y, Ik), k = 1, . . . , p. Then
every x∗ ∈ Rn obtained by (x∗i )i∈Ik

= x∗(k) for some x∗(k) ∈ ∆k, is an optimal
solution of P.

For a proof see §4.2.

Remark 3.8. In Theorem 3.7 Assumption 3.2(iii) is not needed. In addition, it also
holds even if the SDP-relaxations are defined with the original set K defined in (1.2)
instead of (3.2), i.e., without the additional quadratic constraints (3.1). And so,
Theorem 3.7 is also valid for non compact sets K, provided Assumption 3.2(i)-(ii)
hold true.



SPARSE CONVERGENT SDP-RELAXATIONS 11

3.4. A sparse representation result. As a by-product of Theorem 3.6, we obtain
the following representation result1.

Corollary 3.9. Let K be as in (3.2) with the additional quadratic constraints (3.1),
and with nonempty interior. Let Assumption 3.2 hold. If f ∈ R[X] is strictly
positive on K then

(3.15) f =
p∑

k=1

( qk +
∑
j∈Jk

qjk gj ),

for some s.o.s. polynomials qk, qjk ∈ R[X(Ik)], k = 1, . . . , p.

Proof. Let f ∈ R[X] be strictly positive on K, and let f∗ > 0 be its global minimum
on K. From Theorem 3.6(a)-(b), we have inf Qr = maxQ∗

r ↑ f∗, as r → ∞.
Therefore, let r ∈ N be such that maxQ∗

r ≥ f∗/2 > 0, and as Q∗
r is solvable, let

(qk, qjk, λ) be an arbitrary optimal solution, so that maxQ∗
r = λ > 0. From that

solution, one obtains (3.11), i.e.,

f − λ =
p∑

k=1

( qk +
∑
j∈Jk

qjk gj ),

for some s.o.s. polynomials qk, qjk ∈ R[X(Ik)], k = 1, . . . , p (associated with the
optimal solution (qk, qjk, λ) of Q∗

r . But then,

f = λ +
p∑

k=1

( qk +
∑
j∈Jk

qjk gj ),

the desired result (by adding λ > 0 to one of the s.o.s. polynomials qk). �

Observe that (3.15) is a sparse version of Putinar’s representation for polyno-
mials strictly positive on K; see Theorem 4.1. Indeed, (3.15) is a certificate of
nonnegativity of f on K. Finally, Corollary 3.9 also holds if K is such that for
every k = 1, . . . , p, Kk satisfies Putinar’s condition (so that there is no need of the
quadratic constraints (3.1)).

3.5. Examples. We here provide some examples considered in Waki et al. [9].

Example 3.10. The chained singular function. With n a multiple of 4,

Ik = {k, k + 1, k + 2, k + 3}, k = 1, . . . , n− 3,

and the sparsity pattern satisfies (1.3). One has κ = 4.

Example 3.11. The Broyden banded function. In this case,

Ik = {k, k + 1, . . . ,min[k + 6, n]}, k = 1, . . . , n,

and the sparsity pattern also satisfies (1.3). One has κ = 7;

Example 3.12. The Broyden tridiagonal function. In this case

Ik = {k, k + 1,min[n, k + 2]}, k = 1, . . . , n,

and the sparsity pattern also satisfies (1.3). One has κ = 3.

1In the recent note [10], Kojima and Maramatsu have improved Corollary 3.9 and show the
same result without assuming that K has a nonempty interior.
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Example 3.13. The chained Wood function. In this case, with n a multiple of 4,

Ik = {k, k + 1, k + 2, k + 3]}, k = 1, . . . , n− 3,

and the sparsity pattern also satisfies (1.3). One has κ = 2.

Example 3.14. The generalized Rosenbrock function. In this case,

Ik = {k, k − 1}, k = 2, . . . , n,

and the sparsity pattern also satisfies (1.3).

Example 3.15. The optimal control problem (38) considered in [9]. In this case,

Ik = {{yk,j}
ny

j=1, {xk,l}nx

l=1}, k = 1, . . . ,M − 1,

IM = {{yM,j}
ny

j=1}, and the sparsity pattern also satisfies (1.3). One has κ =
nx × ny.

Example 3.15 is typical of what we call strong coupling, always the case in
discrete-time optimal control problems. Indeed, the control variables at each pe-
riod are independent, whereas the coupling of periods is done through the state
equations (i.e. the dynamics) and via the state variables.

In view of Remark 3.5, the SDP-relaxations (3.5) are stronger than (32) in [9],
when the sets {Ik} are the same as the cliques {Ck} in [9], which is the case in all
the above examples, for which Waki et al. [9] report excellent numerical results;
in particular, problems of large size that could not be handled via the standard
SDP-relaxations of [11], have been solved relatively easily.

Indeed, for instance, in Examples 3.12, 3.13, and 3.14, they have solved problems
with up to n = 500 variables, a remarkable result! For the interested reader, more
details and numerical results can be found in [9].

4. Proofs

We first restate Putinar’s theorem that is crucial in the proof of Theorem 3.6
below.

Theorem 4.1 (Putinar [16]). Let K ⊂ Rn be a compact basic semi-algebraic set
as defined in (1.2), and let y = (yα)α∈Nn be given. Let Mr(y) and Mr(gj y) be the
moment and localizing matrices defined in §2. Assume that there exists u ∈ R[X]
such that u = u0 +

∑m
j=1 uj gj for some s.o.s. polynomials {uj}m

j=0 ⊂ Σ2, and such
that the level set {x : u(x) ≥ 0} is compact.

(a) If h ∈ R[X] is strictly positive on K then h = h0 +
∑m

j=1 hj gj for some s.o.s.
polynomials {hj}m

j=0 ⊂ Σ2.
(b) If Mr(y) � 0 and Mr(gj y) � 0 for all j = 1, . . . ,m, and all r = 0, 1, . . .,

then y has a representing measure µ with support contained in K.
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4.1. Proof of Theorem 3.6. (a) We first prove that Qr has a feasible solution.
Recall the definitions

Γkr := { α ∈ Nn : supp (α) ∈ Ik; |α| ≤ 2r }, k = 1, . . . , p.

Γr :=
p⋃

k=1

Γkr = { α ∈ Nn : supp (α) ∈
p⋃

k=1

Ik; |α| ≤ 2r }.

Γ :=
⋃
r∈N

Γr = { α ∈ Nn : supp (α) ∈
p⋃

k=1

Ik }.

Let ν := δx be the Dirac measure at a feasible solution x ∈ K of P, and let

yα =
∫

Xα dν, ∀α ∈ Γr.

Recalling the definition of Mr(y, Ik) and Mr−rj (gj y, Ik) in §2.2, one has Mr(y, Ik) �
0 and Mr−rj (gj y, Ik) � 0; therefore, y is an obvious feasible solution of Qr. Next
we prove that inf Qr > −∞ for all sufficiently large r.

Recall that 2r0 ≥ max[deg f,maxj deg rj ]. In view of Assumption 3.1 and from
the definition of the set Kk in (3.4), there exists N such that N ± Xα > 0 on
Kk, for all α ∈ Γkr0 , and all k = 1, . . . , p. Therefore, for every k = 1, . . . , p, and
α ∈ Γkr0 , the polynomial N ±Xα belongs to the quadratic module Qk ⊂ R[X(Ik)]
generated by {gj}j∈Jk

⊂ R[X(Ik)], i.e.,

Qk := {σ0 +
∑
j∈Jk

σj gj : σj s.o.s. in ∈ R[X(Ik)] ∀ j ∈ {0} ∪ Jk}.

But there is even some l(r0) such that N ± Xα ∈ Qk(l(r0)) for all α ∈ Γkr0

and k = 1, . . . , p, where Qk(t) ⊂ Qk is the set of elements of Qk which have a
representation σ0 +

∑
j∈Jk

σj gj for some s.o.s. {σj} ⊂ R[X(Ik)] with deg σ0 ≤ 2t

and deg σjgj ≤ 2t for all j ∈ Jk. Of course we also have N ± Xα ∈ Qk(l) for all
α ∈ Γkr0 , whenever l ≥ l(r0). Therefore, let us take l(r0) ≥ r0.

For every feasible solution y of Ql(r0) one has

| Ly(Xα) | ≤ N, α ∈ Γkr0 ; k = 1, . . . , p.

This follows from y0 = 1, Ml(r0)(y, Ik) � 0 and Ml(r0)−rj
(gj y, Ik) � 0, which

implies

Ly(N ±Xα) = Ly(σ0) +
∑
j∈Jk

Ly(σj gj) ≥ 0

because the σj ’s are s.o.s. (see (2.5) and (2.6)).
As 2r0 ≥ degf , it follows that Ly(f) ≥ −N

∑
α |fα|. This is because by As-

sumption 3.2(ii), fα 6= 0 ⇒ α ∈ Γr0 . Hence inf Ql(r0) > −∞.

So from what precedes, and with s ∈ N arbitrary, let l(s) ≥ s be such that

(4.1) Ns ±Xα ∈ Qk(l(s)), ∀α ∈ Γks; k = 1, . . . , p,

for some Ns. Next, let r ≥ l(r0) (so that inf Qr > −∞), and let yr be a nearly
optimal solution of Qr with value

(4.2) inf Qr ≤ Lyr (f) ≤ inf Qr +
1
r

(≤ minP +
1
r
).
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Fix s ∈ N. Notice that from (4.1), for all r ≥ l(s), one has

|Lyr (Xα) | ≤ Ns, ∀α ∈ Γs.

Therefore, for all r ≥ r0,

(4.3) |yr
α| = |Lyr (Xα) | ≤ N ′

s, ∀α ∈ Γs,

where N ′
s = max[Ns, Vs], with

Vs := max { |yr
α| : α ∈ Γs; r0 ≤ r < l(s) }.

Complete each yr with zeros to make it an infinite vector in l∞, indexed in the
canonical basis v∞(X) of R[X]. Notice that yr

α 6= 0 only if α ∈ Γ.
In view of (4.3), one has

(4.4) |yr
α| ≤ N ′

s, ∀α ∈ Γ; 2s− 1 ≤ |α| ≤ 2s,

for all s = 1, 2, . . ..
Hence, define the new sequence ŷr ∈ l∞ defined by ŷ0 := 1, and

ŷr
α :=

yr
α

N ′
s

, ∀α ∈ Γ, 2s− 1 ≤ |α| ≤ 2s,

for all s = 1, 2, . . ., and in l∞, consider the sequence {ŷr} as r →∞.
Obviously, the sequence {ŷr} is in the unit ball B1 of l∞, and so, by Banach-

Alaoglu theorem (see e.g. Ash [1, Theor. 3.5.16]), there exists ŷ ∈ B1, and a
subsequence {ri}, such that ŷri → ŷ as i → ∞, for the weak ? topology σ(l∞, l1)
of l∞. In particular, pointwise convergence holds, that is,

lim
i→∞

ŷri
α → ŷα, α ∈ Nn.

Notice that ŷα 6= 0 only if α ∈ Γ. Next, define y0 := 1 and

yα := ŷα ×N ′
s, 2s− 1 ≤ |α| ≤ 2s, s = 1, 2, . . . ,

The pointwise convergence ŷri → ŷ implies the pointwise convergence yri → y, i.e.,

(4.5) lim
i→∞

yri
α → yα ∀α ∈ Γ.

Let s ∈ N be fixed. From the pointwise convergence (4.5), we deduce that

lim
i→∞

Ms(yri , Ik) = Ms(y, Ik) � 0, k = 1, . . . , p.

Similarly

lim
i→∞

Ms(gj yri , Ik) = Ms(gj y, Ik) � 0, j ∈ Jk, k = 1, . . . , p.

As s was arbitrary, we obtain that for all k = 1, . . . , p,

(4.6) Mr(y, Ik) � 0; Mr(gj y, Ik) � 0, j ∈ Jk; r = 0, 1, 2, . . .

Introduce the subsequence yk obtained from y by

(4.7) yk := { yα : supp (α) ∈ Ik }, ∀ k = 1, . . . , p.

Recall that Mr(y, Ik) (resp. Mr(gj y, Ik)) is also the moment matrix Mr(yk) (resp.
the localizing matrix Mr(gj yk)) for the sequence yk indexed in the canonical basis
v∞(X(Ik)) of R[X(Ik)]; see §2.2.

Therefore, by Remark 3.4, (4.6) implies that yk has a representing measure νk

with support contained in Kk, k = 1, . . . , p; see Theorem 4.1. As yk
0 = 1, νk is a

probability measure on Kk for all k = 1, . . . , p.
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Next, let j, k be such that Ijk := Ij ∩ Ik 6= ∅, and recall that Ijk is the set of
all subsets of Ijk. Let mjk := card (Ij ∪ Ik) and let njk := card (Ij ∩ Ik). Define
πj : Rmjk → Rnj , πk : Rmjk → Rnk , and πjk : Rmjk → Rnjk , the natural projections
with respect to the variables {Xi | i ∈ Ij}, {Xi | i ∈ Ik}, and {Xi | i ∈ Ij ∩ Ik}
respectively. Let Kj∨k ⊂ Rmjk and Kj∧k ⊂ Kj∨k be the compact sets

Kj∨k := {x ∈ Rmjk : πj(x) ∈ Kj ; πk(x) ∈ Kk }; Kj∧k := πjk(Kj∨k).

The probability measures νj and νk can be understood as probability measures on
Kj∨k, supported on Kj = πj(Kj∨k) and Kk = πk(Kj∨k), respectively.

Observe that from the definition (4.7) of yj and yk, one has

yj
α = yk

α ∀α with supp (α) ∈ Ijk,

and as measures on compact sets are moment determinate, it follows that the
marginal probability measures of νj and νk on Kj∧k (i.e. with respect to the
variables X = {Xi | i ∈ Ijk}), are the same probability measure, denoted νjk. That
is,

yk
α = yj

α =
∫

Xα dνjk, ∀α with supp (α) ∈ Ijk.

From Lemma 6.4, there exists a probability measure µ on K, constructed from
the νk’s, and with marginal νk on Kk, for all k = 1, . . . , p. In particular, this implies

(4.8) yα =
∫

Xα dµ ∀α ∈ Γ.

Recall that by Assumption 3.2, fα 6= 0 ⇒ α ∈ Γ, and so Ly(f) =
∫

f dµ. On the
other hand, from (4.2) and the pointwise convergence (4.5),

minP ≥ lim
i→∞

inf Qri = lim
i→∞

Lyri (f) = Ly(f) =
∫

f dµ.

But as µ is supported on K, we necessarily have
∫

f dµ ≥ f∗ = minP, and so
minP =

∫
f dµ. Therefore, we have proved that limi→∞ inf Qri = minP, and so

inf Qr ↑ minP follows because the sequence {inf Qr} is monotone nondecreasing.
This completes the proof of (a).

(b) In the feasible solution ν that we have constructed at the beginning of the
proof of (a), choose now ν to be uniform on K, and let y = {yα}α∈Nn be the vector
of all its moments, well defined because K is compact. As K has a nonempty
interior, the probability measure ν satisfies Mr(y) � 0 and Mr(gjy) � 0, for all all
j = 1, . . . ,m, and all r = 0, 1, . . .

Then, obviously, Mr(y, Ik) � 0 (resp. Mr(gj y, Ik) � 0, j ∈ Jk) as a submatrix
of Mr(y) � 0 (resp. Mr(gj y) � 0), for all k = 1, . . . , p.

Hence, the feasible solution y is now strictly feasible, i.e., Slater’s condition holds
for Qr. This implies the absence of a duality gap between Qr and its dual Q∗

r , and as
inf Qr > −∞ for sufficiently large r, Q∗

r is solvable, i.e., inf Qr = supQ∗
r = maxQ∗

r .
This completes the proof of (b).

(c) Finally, let x∗ ∈ K be the unique global minimizer of P, and let yr be as
in Theorem 3.6(c). From (a) there exists a subsequence yri for which we have the
pointwise convergence yri → y (see (4.5)), where y is the moment sequence of a
probability measure µ on K. In particular, (4.8) holds and minP =

∫
f dµ. From

uniqueness of the global minimizer x∗ ∈ K, it follows that µ = δx∗ (the Dirac
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measure at x∗ ∈ K). But then (4.8) yields

lim
i→∞

yri
α = yα =

∫
Xα dµ = (x∗)α, ∀α ∈ Γ.

Taking α ∈ Γ with |α| = 1 yields ŷri → x∗, and as the converging subsequence was
arbitrary, it follows that the whole sequence ŷr converges to x∗ ∈ K, the desired
result. �

4.2. Proof of Theorem 3.7. Let γk := rankMs0(y, Ik), k = 1, . . . , p. From (3.14)
the vector yk = {yk

α} defined in (4.7) (with |α| ≤ 2s0) is the vector of moments (up
to order 2s0) of a γk-atomic probability measure νk supported on Kk ⊂ Rnk , with
Kk being defined in (3.4), k = 1, . . . , p. This follows from a result of Curto and
Fialkow [3, Theor. 1.6] already used in Lasserre [12] to prove finite convergence
of SDP-relaxations for 0-1 programs; see also Laurent [14] for a shorter proof of
Theorem 1.6 in [3], and related comments.

Therefore, when applying the extraction procedure defined in [6] to the moment
matrix Ms0(y

k) (= Ms0(y, Ik)), k = 1, . . . , p, one obtains sets of vectors ∆k :=
{xl(k)}γk

l=1 ⊂ Kk, for all k = 1, . . . , p.
With δ• denoting the Dirac measure at •, one may thus write

νk =
γk∑
l=1

pkl δxl(k), for some pkl > 0 ∀ l;
γk∑
l=1

pkl = 1,

for all k = 1, . . . , p.
But then, pick any solution xlk(k) ∈ ∆k, for some lk, k = 1, . . . , p, and define

x∗ ∈ Rn to be the vector such that

(4.9) x∗(k) := {x∗i }i∈Ik
= xlk(k); k = 1, . . . , p.

There is no ambiguity for x∗i when i ∈ Ij ∩ Ik 6= ∅ for some j, k ∈ {1, . . . , p},
because in this case, from rankMs0(y, j, Ijk) = 1, we deduce that yjk = {yα} with
supp (α) ∈ Ij∩Ik, is the vector of moments (up to order 2s0) of some Dirac measure
νjk. As in the proof of (a), νjk is the marginal of νk and νj on Kj∧k (i.e. with
respect to the variables {Xi : i ∈ Ij ∩Ik}), and so the Dirac measure at some point
denoted x(j ∧ k) ∈ Kj∧k.

Hence, for any two choices xlj (j) ∈ ∆j and xlk(k) ∈ ∆k, the point x∗ ∈ Rn

defined in (4.9) is in K. We can thus construct s :=
∏p

k=1 γk solutions {xω}s
ω=1 ⊂

K, each associated with the probability pω :=
∏p

k=1 pklk if xω(k) = xlk(k) ∈ ∆k,
for some lk ∈ {1, . . . , γk}, k = 1, . . . , p. But then, by construction, the probability
measure µ on Rn, defined by

µ :=
s∑

ω=1

pωδxω ,

is supported on K, and its marginal probability measure on Kk, is νk, for all
k = 1, . . . , p. Therefore,

minP ≥ minQs0 = Ly(f) =
∫

f dµ =
s∑

ω=1

pωf(xω),

which implies that f(xω) = minP, for all ω = 1, . . . , s, because xω ∈ K for all
ω = 1, . . . , s. Therefore, we have proved that minP = minQs0 . In addition, each
xω ∈ K is an optimal solution of P. �
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5. Conclusion

We have provided a hierarchy of SDP-relaxations when the polynomial optimiza-
tion problem P has some structured sparsity (which can be detected as in Waki
et al. [9]). This hierarchy is of the same flavor (in fact a minor modification) as
that in Waki et al. [9], for which excellent numerical results have been reported.
Our contribution was to prove convergence of the optimal values to the global
minimum of P when the sparsity pattern satisfies the condition (1.3), called the
running intersection property in graph theory, and frequently encountered in prac-
tice. Therefore, this result together with [9], opens the door for the applicability of
the general approach of SDP-relaxations to medium (and even large) scale polyno-
mial optimization problems, at least when a certain sparsity pattern is present.
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6. Appendix

We state some auxiliary results needed in the proof of Theorem 3.6 in §4.1.
For a topological space Y let B(Y ) denote the usual Borel σ-algebra associated

with Y , and let P (Y ) denote the space of probability measures on Y . A Borel
space is a Borel subset of a complete separable metric space. Let Y, Z be two Borel
spaces. A stochastic kernel q(dy | z) on Y given Z is defined by:
• q(dy | z) ∈ P (Y ) for all z ∈ Z.
• The function z 7→ q(B | z) is B(Z)-measurable for all B ∈ B(Y ).

6.1. Disintegration of a Borel probability measure. The following result
states that one may decompose or disintegrate a probability measure on a prod-
uct of Borel spaces into a marginal and a stochastic kernel (also called conditional
probability when dealing with distributions of random variables).

Proposition 6.1. Let Y, Z be two Borel spaces, and let µ be a probability measure
on Y ×Z. Then there exists a probability measure ν ∈ P (Z) and a stochastic kernel
q(dy | z) on Y given Z, such that

(6.1) µ(A×B) =
∫

B

q(A | z) ν(dz), ∀A ∈ B(Y ), B ∈ B(Z).

(Proposition 6.1 can be extended to the cartesian product of an arbitrary number
of Borel spaces.) The probability measure ν is called the marginal of µ on Z. One
also has the converse.

Proposition 6.2. Let Y, Z be two Borel spaces, and let ν be a probability measure
on Z and q(dy | z) a stochastic kernel on Y given Z. Then there exists a unique
probability measure µ on Y × Z such that

(6.2) µ(A×B) =
∫

B

q(A | z) ν(dz), ∀A ∈ B(Y ), B ∈ B(Z).
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(See e.g. Ash [1, §6] and Bertsekas and Schreve [2, p. 139-141].)
Let µ (resp. ν) be a finite Borel probability measure on Rn×Rm (resp. Rm×Rp)

with all moments y = (yαβ)α∈Nn,β∈Nm (resp. z = (zβγ)β∈Nm,γ∈Np) finite. Let µ1

and ν1 be the respective marginals of µ and ν on Rm, hence with moments∫
Xβ dµ1(X) =

∫
Y 0Xβ dµ(Y, X) = y0β ∀β ∈ Nm,

∫
Xβ dν1(X) =

∫
XβZ0 dµ(X, Z) = zβ0 ∀β ∈ Nm.

If both µ and ν have compact support and y0β = zβ0 for all β ∈ Nm, then µ1 = ν1.
This is because measures with compact support are moment determinate, i.e., if two
measures on a compact subset of Rm have all same moments, they must coincide.

6.2. Probability measures with given marginals. Case p = 2. Let I0 :=
{1, . . . , n}, and let I0 = I1 ∪ I2 with I1 ∩ I2 6= ∅. Let nk = card Ik, for k = 1, 2, and
n12 = card I1 ∩ I2. For k = 1, 2, let πk : Rn → Rnk be the natural projection with
respect to Ik, that is,

x 7→ πk(x) = { xi : i ∈ Ik }, x ∈ Rn,

and let π12 : Rn1 → Rn12 , π21 : Rn2 → Rn12 be the projections with respect to
I1 ∩ I2, that is,

x 7→ π12(x) = { xi : i ∈ I1 ∩ I2 }, x ∈ Rn1

x 7→ π21(x) = { xi : i ∈ I1 ∩ I2 }, x ∈ Rn2 .

and one also extends π12 and π21 to Rn in the obvious way.
Next, for k = 1, 2, let Kk ∈ B(Rnk) be given, and let νk ∈ P (Kk). Denote by

ν12 and ν21 the respective marginals of ν1 and ν2 on Rn12 (i.e., with respect to the
variables {Xi, i ∈ I1 ∩ I2}). That is, letting Z := Rn12 ,

ν12(B) = ν1(π−1
12 (B) ∩K1), ∀B ∈ B(Z)

ν21(B) = ν2(π−1
21 (B) ∩K2), ∀B ∈ B(Z),

and we have

(6.3) ν12(π12(K1)) = ν21(π21(K2)) = 1.

Let K ⊂ Rn be the set

(6.4) K := {x ∈ Rn : πk(x) ∈ Kk, k = 1, 2 },

and view the sets Kk, k = 1, 2 as naturally embedded in Rn, with Kk = πk(K), for
every k = 1, 2.

Lemma 6.3. For k = 1, 2, let Kk ∈ B(Rnk) be given, and let νk ∈ P (Kk) be such
that ν12 = ν21 =: ν. Then there exists a probability measure µ on K with marginals
νk on Kk = πk(K), k = 1, 2, and marginal ν on π12(K).

Proof. For k = 1, 2, let π′k be the natural projection with respect to Ik \I1∩I2, i.e.,

x 7→ π′k(x) = {xi : i ∈ Ik \ I1 ∩ I2 }, x ∈ Rnk , k = 1, 2,

and define Yk ∈ B(Rnk−n12) to be the Borel set {π′k(x) : x ∈ Kk}, k = 1, 2.
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Then, for k = 1, 2, one may view νk as a probability measure on the cartesian
product Yk×Z. By Proposition 6.1, and from ν12 = ν21 =: ν, for k = 1, 2, one may
disintegrate νk as

νk(A×B) =
∫

B

qk(A | z) ν(dz), ∀A ∈ B(Yk), B ∈ B(Z),

for some stochastic kernels qk, k = 1, 2. Next, let µ be the measure on Y1×Z×Y2,
defined by

µ(A×B × C) =
∫

B

q1(A | z) q2(C | z) ν(dz),

for every Borel rectangle

A×B × C ∈ B(Y1)× B(Z)× B(Y2).

Taking A = Y1 yields q1(A | z) = 1, ν-a.e. and so

µ(Y1 ×B × C) =
∫

B

q2(C | z) ν12(dz) = ν2(B × C).

Therefore, ν2 is the marginal of µ on Z×Y2 (and so on K2). With similar argument,
ν1 is the marginal of µ on Y1 × Z (and so on K1). Finally, taking A = Y1, C = Y2

and using qk(Yk | z) = 1, ν-a.e., yields

µ(Y1 ×B × Y2) =
∫

B

ν(dz) = ν(B),

which shows that ν is the marginal of µ on Z, i.e. with respect to the variables Xi,
i ∈ I1∩ I2. It remains to prove that µ(K) = 1. But notice that from the definitions
of K1,K2 and ν,

q1({ y : (y, z) ∈ K1} | z) = q2({ y′ : (z, y′) ∈ K2} | z) = 1, ν-a.e.

So, writing (6.4) as

K = {(y, z, y′) ∈ Rn : (y, z) ∈ K1 ; (z, y′) ∈ K2 },
yields

µ(K) =
∫

Z

q1({y : (y, z) ∈ K1} | z) q2({y′ : (z, y′) ∈ K2} | z) ν(dz) = 1.

Therefore, νk is the marginal of µ on Kk = πk(K) for k = 1, 2, and ν is the marginal
of µ on π12(K). �

6.3. Probability measures with given marginals. General case. Let Ik, Jk,
k = 1, . . . , p, be as in §2, and let K ⊂ Rn be as defined in (1.2), with Kk ⊂ Rnk as
in (3.4), k = 1, . . . , p. Let νk be a given probability measure on Kk, k = 1, . . . , p.

Given a set I ⊂ Ik denote by X(I) the vector of variables {Xi}i∈I ∈ R|I|, and
denote by νkI the marginal of νk on R|I| (i.e., with respect to the variables Xi,
i ∈ I), so that νk can be disintegrated into qk(. | z)dνkI(dz) for a stochastic kernel
q on Rnk−|I| given R|I| (see Proposition 6.1)

We say that the family of probability measures {νk}p
k=1 is consistent with respect

to marginals, if whenever l, k ∈ {1, . . . , p} and Ik ∩ Il 6= ∅,
I ⊆ Ik ∩ Il ⇒ νkI = νlI .

Equivalently, when νk and νl have compact support,∫
Xα dνk =

∫
Xα dνl ∀α : sup (α) ⊆ Ik ∩ Il.
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For every k = 1, . . . , p, let Wk :=
⋃k

l=1 Il, sk := |Wk|, and

(6.5) Ωk := {x ∈ Rsk | gj(x) ≥ 0, j ∈
k⋃

l=1

Jl}.

Notice that Ωn ≡ K ⊂ Rn.

Lemma 6.4. Let νk be a probability measure on Kk ⊂ Rnk , k = 1, . . . , p, and
assume that the family {νk}p

k=1 is consistent with respect to marginals. If (1.3)
holds then :

(a) There exists a probability measure µ on Rn such that νk is the marginal of µ
with respect to Ik, for all k = 1, . . . , p.

(b) µ is supported on K ⊂ Rn.

Proof. The proof is by induction on p. With p = 1 it is trivial. Let p = 2. Observe
that the condition (1.3) is automatically satisfied. If I1∩I2 = ∅ just let µ := ν1⊗ν2,
the product measure on K1 ×K2, i.e.,

µ(A×B) =: ν1(A) ν2(B), ∀ (A,B) ∈ B(K1)× B(K1).

If I1 ∩ I2 6= ∅ then the result follows from Lemma 6.3.
Next, suppose that the results holds for 1 ≤ m < p. That is, let Ωm be as in

(6.5), and let νk be given probability measures on Kk, k = 1, . . . ,m, consistent
with marginals, i.e., whenever l, k ∈ {1, . . . ,m}, and Il ∩ Ik 6= ∅,

I ⊆ Ik ∩ Il ⇒ νlI = νkI .

Then there exists a probability measure µm on Ωm, such that νk is the marginal of
µm on Kk (i.e., with respect to the variables Xi, i ∈ Ik), for every k = 1, . . . ,m.
We next whow that it holds true for m + 1.

Set ∆ := Im+1 ∩Wm. If ∆ = ∅ then just take µm+1 := µm ⊗ νm+1, the product
measure on Ωm × Km+1, and the induction is trivially satisfied for m + 1. (As
∆ = ∅, one has Ωm+1 = Ωm ×Km+1.)

Consider the case ∆ 6= ∅, and let δ := |∆|, sm+1 := |Wm+1|. Let π∆ : Ωm → Rδ,
and π′∆ : Km+1 → Rδ be the natural projection with respect to the variables
Xi, i ∈ ∆. Similarly, let π∆c : Ωm → Rsm−δ, and π′∆c : Km+1 → Rnm+1−δ be
the natural projections with respect to the variables Xi, i ∈ Wm \ ∆, and Xi,
i ∈ Im+1 \ ∆, respectively. So consider µm and νm+1 as probability measures on
the Borel spaces

Y × Z := π∆c(Ωm)× π∆(Ωm), and Z ′ × Y ′ := π′∆(Km+1)× π′∆c(Km+1),

respectively. Next, consider the marginals µm∆ and ν(m+1)∆ of µm and νm+1 on Z
and Z ′ respectively, and the corresponding disintegrations

µm = qm(. | z) µm∆(dz) ; νm+1 = q′m(. | z) ν(m+1)∆(dz).

From (1.3), ∆ ⊆ Is for some s ∈ {1, . . . ,m}. Therefore, ν(m+1)∆ = νs∆ because
{νk}m+1

k=1 are consistent with marginals, and µm∆ = νs∆ =: ν by the induction
hypothesis. Hence, one may take Z = Z ′, and notice that

(6.6) qm(Y | z) = q′m(Y ′ | z) = 1, ν-a.e.

Then define the probability measure µm+1 on Y × Z × Y ′ ⊂ Rsm+1 by:

(6.7) µm+1(A×B × C) :=
∫

B

qm(A |z) q′m(C |z) ν(dz),
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for all Borel rectangles A×B × C ∈ B(Y )× B(Z)× B(Y ′).
We claim that µm+1 has the required properties of the induction hypothesis.

First consider the marginal µ(m+1)Im+1 of µm+1 on Z × Y ′. It is obtained from
(6.7) with A = Y . But from (6.6),

µ(m+1)Im+1(B × C) = µm+1(Y ×B × C) =
∫

B

q′m(C |z) ν(dz)

=
∫

B

q′m(C |z) ν(m+1)∆(dz)

= νm+1(B × C),

for all B × C in B(Z)× B(Y ′), which proves that µ(m+1)Im+1 = νm+1, the desired
result. Next, consider the marginal µ(m+1)Wm

of µm+1 with respect to the variables
Xi, i ∈ Wm. It is obtained from (6.7) with C = Y ′. So, using (6.6) again,

µ(m+1)Wm
(A×B) = µm+1(A×B × Y ′) =

∫
B

qm(A |z) ν(dz)

=
∫

B

qm(A |z) µm∆(dz)

= µm(A×B),

for all A × B in B(Y ) × B(Z), which proves that µ(m+1)Wm
= µm. But then,

µ(m+1)Ik
= µmIk

for all k ≤ m, and so, by the induction hypothesis, µ(m+1)Ik
=

µmIk
= νk for all k ≤ m.

Hence, we have constructed a probability measure µm+1 on Y × Z × Y ′, such
that for all k = 1, . . . ,m + 1, νk is the marginal of µ(m+1)Ik

with respect to the
variables Xi, i ∈ Ik. It remains to show that µm+1(Ωm+1) = 1.

But from the definition of Km+1, Y ′, ν and νm+1(Km+1) = 1,

q′m(B(z) | z) = 1 ν-a.e. with B(z) := {y : gj(z, y) ≥ 0, ∀ j ∈ Jm+1}.
Similarly, from the definitions of Ωm, Y , ν, and µm(Ωm) = 1,

qm(A(z) | z) = 1 ν-a.e. with A(z) := {y : gj(y, z) ≥ 0, ∀ j ∈ ∪m
k=1Jk}.

Therefore, (6.7) together with the definition (6.5) of Ωm+1, yields

µm+1(Ωm+1) =
∫

Z

qm(A(z) | z) q′m(B(z) | z)× ν(dz) = 1.

Therefore, the induction hypothesis is also true for m + 1.
(b) From µ(Ωn) = 1, and Ωn = K, we obtain µ(K) = 1, the desired result. �
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