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Abstract

The minimization of an objective function over a constraint set can often be sim-
plified if the “active manifold” of the constraints set can be correctly identified. In this
work we present a simple subproblem, which can be used inside of any (convergent)
optimization algorithm, that will identify the active manifold of a “prox-regular partly
smooth” constraint set in a finite number of iterations.
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1 Introduction

The ideas and inspiration behind the study of active manifold identification can largely
be traced back to the following problem:

min{f(x) : gi(x) ≤ 0, i = 1, 2, ...N} (1)

where each function gi is twice continuously differentiable. Clearly it would be of great
advantage to optimizers to know exactly which of the functions gi were “active” at the
minima of the problem. That is, if for a minima of the problem x̄ one had access to
the active set

I := {i : gi(x̄) = 0},

one could simplify the problem by focusing on optimizing over the corresponding active
manifold

MI := {x : gi(x) = 0, i ∈ I, gi(x) < 0, i /∈ I}.
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Before motivating further, let us recall that for a convex set C the convex normal
cone to C at the point x̄ ∈ C is

{n : 〈n, x− x̄〉 ≤ 0 for all x ∈ C}.

Using the normal cone notation, the first order optimality conditions for the minimiza-
tion problem minx{f(x) : x ∈ C} can be written −∇f(x̄) ∈ NC(x̄). As such, points
where this holds are refereed to as critical points. We call x̄ a nondegenerate critical
point to the problem if −∇f(x̄) ∈ rint NC(x̄), where rint represents the relative interior
of a set (the interior relative to the smallest affine set containing the set in question).
A strict critical point is a point x̄ with −∇f(x̄) ∈ intNC(x̄), where int represents the
interior of a set.

It is well known that, if the constraint set C and the objective function f are convex,
then any strict critical point is the unique minimizer to f over C (see [12, Thm 6.12]
for example). Furthermore, one can easily show that, if C is defined by a finite number
of smooth constraints, C := {x : gi(x) ≤ 0, i = 1, 2, ...N} then the active manifold
for C is the singleton {x̄} (see Example 2.3 below); so identifying the active manifold
is equivalent to solving the minimization problem. In 1991, Al-Khayyal and Kyparisis
proposed the following rather elegant method for identifying the active manifold in this
case:

Theorem 1.1 [1, Thm 2.1] Suppose the point x̄ is a strict critical point to the min-
imization problem minx{f(x) : x ∈ C} where C := {x : gi(x) ≤ 0, i = 1, 2, ...N} and
the functions f and gi all convex continuously differentiable. If xk converges to x̄, then
for all k sufficiently large

argmin p{〈∇f(xk), p〉} = {x̄}. (2)

The proof is straight forward and can be argued as follows (for details see [1]):

Since ∇f(xk) → ∇f(x̄) (as xk → x̄ and ∇f is continuous) and −∇f(x̄) ∈
intNC(x̄), eventually −∇f(xk) ∈ intNC(x̄). At this time x̄ becomes a strict
critical point for Subproblem (2), and hence its unique minimizer. 2

In reviewing the proof of [1, Thm 2.1] it is immediately clear that many of the
theorem’s conditions can be relaxed. Al-Khayyal and Kyparisis do exactly that in [1,
Thm 3.1], replacing ∇f(xk) with an arbitrary convergent sequence and generalizing to
any convex constraint set. However, Al-Khayyal and Kyparisis were unable to remove
the requirement that x̄ is a strict critical point to the problem, nor the requirement
that the constraint set is convex.

In this paper we alter Subproblem (2) by adding a quadratic barrier function and
show how this allows active manifold identification on a much broader collection of
constraint sets. In particular, we successfully replace the strict critical point assump-
tion with the weaker assumption that x̄ is a nondegenerate critical point, remove all
conditions on the objective function, and reduce the restrictions on the constraint set
from convex to prox-regular (see [10]; Definition 1.2 in this work). To do this we make
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use of the framework of partly smooth sets (see [7]; Definition 2.1 in this work), and
the recent manifold identification results found in [4].

The remainder of this paper is organized as follows. In the next subsection we
outline our notation, as well as provide the required definitions and background for this
work. In Section 2 we formally define the framework for the active manifolds which we
use in this paper, partly smooth sets, and show that a small alternation to Subproblem
(2) allows us to identify the active manifold of partly smooth sets. In particular,
Theorem 2.7 shows how to achieve active manifold identification in a general framework,
while Example 2.8 returns this result to an optimization setting. We conclude, in
Section 3, with two examples showing that the active manifold identification results
cannot be achieved without the rewriting of Subproblem (2).

1.1 Notation and Definitions

In general we shall follow the notation laid out by Rockafellar and Wets in [12].
In particular, a vector n is considered normal to a set S at a point x̄ ∈ S in the

regular sense if

lim inf
x→x̄, x∈S\x̄

〈n, x− x̄〉
|x− x̄|

≤ 0,

we denote the cone of all such vectors by N̂S(x̄). The limiting normal cone (a.k.a. the
Clarke normal cone) to S at x̄ is the collection

NS(x̄) := lim sup
x→x̄,x∈S

N̂S(x).

We say the set S is regular at x̄ if N̂S(x̄) = NS(x̄) [12, Def 6.3 & 6.4]. If the set S is
convex, then S is regular at all points x ∈ S, and the regular normal cone reduces to the
convex normal cone described in Section 1 of this work [12, Thm 6.9]. Critical points,
nondegenerate critical points, and strict critical points are all defined for nonconvex
sets in terms of the limiting normal cone in the obvious manner.

The concept of a normal vector is closely related to the projection of a point x̄ onto
a closed set S: PS (x̄) := argmin {|y − x̄| : y ∈ S}. A vector n̄ is a proximal normal
vector to S at x̄ if for some r̄ > 0 the projection of x̄ + 1

r̄ n̄ onto S is equal to x̄. In this
case, the projection of x̄ + 1

r n̄ onto S will be x̄ for any r > r̄, and the infimum of all
such r̄ is called the projection threshold for n̄ [12, Ex 6.16].

It is clear that any normal vector to a convex set is a proximal normal vector
with a projection threshold of 0. A similar result holds for the much broader class of
sets deemed prox-regular. Although prox-regularity was first introduced in terms of
functions [10] [9] and generalized to sets via indicator functions, in [11] it was shown
that for sets the following definition suffices.

Definition 1.2 (Prox-regular sets) A closed set S ⊆ Rn is prox-regular at a point
x̄ ∈ S if the projection mapping is single valued near x̄.

The definition of prox-regular sets makes it clear that all convex sets are prox-
regular. Moreover, in [11, Cor 2.2] it was shown that if the set S is prox-regular at the
point x̄, then any normal vector to S at x̄ is a proximal normal vector.
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2 Identifying Partly Smooth Manifolds

Recent years have seen a good deal of research which extends the idea of the active
manifold for finitely constrained sets to a broader more manageable class. For example,
[2] explores the idea of open facets, a generalization of polyhedral faces to any surface
of a set that locally appears flat; while [13] develops the idea of Cp-identifiable surfaces,
surfaces of sets which can be nicely described via a finite number of constraint even
when the set cannot. In [7] the idea of a partly smooth function is developed, and from
it the notion of a partly smooth set (see Definition 2.1 below). In this work we chose
to focus on partly smooth sets for three main reasons.

First, in [3] it was shown that the class of partly smooth sets contains many of the
recently developed classes of sets containing active manifolds (such as open facets and
identifiable surfaces). Second, unlike many of the most other classes, partial smoothness
does not invoke convexity in its definition. As such, partial smoothness provides a very
broad framework for our results.

Our third reason lies in the recent results of [4], which describes exactly what is
required to identify the active manifold of a partly smooth set [4, Thm 4.1]. For the
reader’s convenience we restate this result in Theorem 2.4 below.

Next we formally define partly smooth sets.

Definition 2.1 (Partly smooth) A set S ⊂ Rm is partly smooth at a point x̄ ∈ S
relative to a set M ⊆ S if M is a smooth (C2) manifold about x̄ and the following
properties hold:

(i) S ∩M is a neighbourhood of x̄ in M;

(ii) S is regular at all points in M near x̄;

(iii) NM(x̄) ⊆ NS(x̄)−NS(x̄); and

(iv) the normal cone map NS(·) is continuous at x̄ relative to M.

We then refer to M as the active manifold (of partial smoothness).

Before examining our method of identifying the active manifold for a partly smooth
constraint set, we provide two simple examples which draw connections between prox-
regular partly smooth sets and constrained optimization. Our first example examines
sets formed via a finite number of smooth constraints.

Example 2.2 (Finitely constrained sets) Consider the set

S := {x : gi(x) ≤ 0, i = 1, 2, . . . , n},

where gi ∈ C2.
For any point x̄ ∈ S define I(x̄) := {i : gi(x̄) = 0}. If the active gradients of S at x̄,

{∇gi(x̄) : i ∈ I(x̄)}, form a linearly independent set, then S is prox-regular at x̄ and
partly smooth there relative to the active manifold

Mg := {x : gi(x) = 0, i ∈ I, gi(x) < 0, i /∈ I}

([10, Cor 2.12] and [7, 6.3]). 2
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A second example of prox-regular partial smoothness is generated by examining
strict critical points.

Example 2.3 (Strict critical points) If the set S ⊆ Rn is regular at the point
x̄ ∈ S and the normal cone NS(x̄) has interior, then S is partly smooth at x̄ relative
to the manifold {x̄}.

Indeed, as {x̄} is a singleton conditions (i) and (iv) hold true. Condition (ii) is
given, while condition (iii) follows from NM(x̄) = Rn and NS(x̄) having interior. 2

The primary goal of this work is examine a new method to identify the active
manifold of a partly smooth constraint set. In order to maintain a general setting, we
shall consider the following situation. Consider:

a constraint set S,
a sequence of points xk ∈ S which converge to the point x̄ ∈ S, and
a sequence of vectors dk which converge to the normal vector n̄ ∈ −NS(x̄).

In an optimization sense, the points xk might represent a sequence of iterates generated
from an optimization algorithm. In this case, the point x̄ would be the minima (or
maxima) of the function, the vectors dk would be a sequence of gradient or subgradient
vectors, while n̄ would represent the first order optimality conditions for the problem.
Notice that, in our general framework, we make no assumptions about how these
iterates are generated, nor about the objective function of the optimization problem.

Using the points xk and vectors dk we create the following subproblem,

pk ∈ argmin p{〈dk, p〉+ r
1
2
|p− xk|2 : p ∈ S}. (3)

In the main result of this paper we show that, not only does pk converge to x̄, but pk

identifies the active manifold of the constraint set in a finite number of iterations.
Assuming that the vectors dk represent gradient or subgradient vectors, Subproblem

(3) can be thought of in several manners. In some sense, pk represents a proximal point
for the linear function 〈dk, ·〉. As such, pk could be seen as the result of taking exactly
one “null step” of a bundle method applied to the objective function [6]. In another
sense, by rewriting r 1

2 |p − xk|2 as 〈p − xk, rI(p − xk)〉, the points pk could be seen
as quasi-Newton steps using the approximate Hessian matrix Hk ≡ rI for all k [8,
Chpt 6 & 8]. We prefer to think of pk in the first sense, as in quasi-Newton methods
one expects the approximate Hessian to somehow represent the correct Hessian of the
objective function at the point xk.

In order to show Subproblem (3) correctly identifies the active manifold, we shall
make use of the following result by Hare and Lewis.

Theorem 2.4 Consider a set S that is partly smooth at the point x̄ relative to the
manifold M and prox-regular at x̄. If the vector n̄ satisfies −n̄ ∈ rint NS(x̄) and the
sequences {xk} and {dk} converge to x̄ and n̄ respectively, then

dist(−dk, NS(xk)) → 0 ⇔ xk ∈M for all large k.
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Proof: (⇒) See [4, Thm 4.1].
(⇐) (From [5, Thm 2.1]) Note if xk ∈ M for all k large, then condition (iv) of

partial smoothness implies NS(xk) → NS(x̄). Applying regularity (condition (ii) of
partial smoothness) and [12, Cor 4.7] we see

dist(dk, NS(xk)) = dist(0, NS(xk)− dk) → dist(0, NS(x̄)− n̄) = 0.

2

In order to apply [4, Thm 4.1] we first require a lemma which bounds the points
Subproblem (3) creates.

Lemma 2.5 (Bounding pk) Consider a closed set S, a point x ∈ S, direction d and
a parameter r > 0. If p̄ is defined via Subproblem (3) (with xk, dk and pk replaced with
x, d, and p̄), then

|p̄− x + d/(2r)| ≤ |d|
2r

.

Proof: For a given point x and direction d, consider the problem

argmin p{〈d, p〉+ r 1
2 |p− x|2 : p ∈ S}

= argmin p=x+αw{〈d, x + αw〉+ r 1
2 |αw|2 : |w| = 1, α ≥ 0, p ∈ S}

= argmin p=x+αw{〈d, αw〉+ r 1
2α2 : |w| = 1, α ≥ 0, p ∈ S}.

For a given w ∈ Rn with |w| = 1, the function

〈d, w〉α + r
1
2
α2

is a one dimensional quadratic function which is decreasing from α = 0 to α =
〈−d,w〉/r. Therefore

argmin p{〈d, p〉+ r 1
2 |p− x|2 : p ∈ S} ⊆ {x + αw : |w| = 1, 0 ≤ α ≤ 〈−d, w〉/r}

= {x + y : |y| = α, 0 ≤ α2 ≤ 〈−d, y〉/r}
= {x + y : |y|2 ≤ 〈−d, y〉/r}
= {x + y : |y|2 + 〈d/r, y〉+ | d

2r |
2 ≤ | d

2r |
2}

= {x + y : |y + d/(2r)|2 ≤ | d
2r |

2}
= {p : |p− x + d/(2r)| ≤ |d|

2r },

which proves the lemma. 2

Now that we have a bound for the points pk created by Subproblem (3), we can
show that all feasible points within this bound must converge to x̄.

Lemma 2.6 Let −n̄ be a proximal normal to the closed set S at the point x̄. Consider
any two sequences xk → x̄ and dk → n̄, a parameter r > 0. If r is sufficiently large
that PS (x̄− n̄/(2r)) = {x̄}, then

max
p
{|x̄− p| : |xk − dk/(2r)− p| ≤ |dk|/2r, p ∈ S} → 0.
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Proof: We begin by noting that the max is well defined as for each k the set

Sk := {p : |xk − dk/(2r)− p| ≤ |dk|/2r, p ∈ S}

is closed and bounded. We may therefore for each k find some

pk ∈ argmaxp{|x̄− p| : |xk − dk/(2r)− p| ≤ |dk|/2r, p ∈ S}.

Note that pk forms a bounded sequence as

|x̄− pk| ≤ |x̄− xk|+ |xk − dk/(2r)− p|+ |dk/(2r)|
≤ |x̄− xk|+ 2|dk/(2r)|,

and |x̄− xk|+ 2|dk/(2r)| converges to |n̄|/r.
Dropping to a subsequence as necessary we assume that pk converges to a point

p̄. By definition we know that |(xk − dk/(2r) − pk| ≤ |dk|/(2r) and pk ∈ S for all k.
Passing to the limit, noting S is closed, we find

|x̄− n̄/(2r)− p̄| ≤ |n̄|/(2r) and p̄ ∈ S.

By our assumptions on n̄ we know that

min{|x̄− n̄/(2r)− y| : y ∈ S} = |n̄|/(2r)
argmin {|x̄− n̄/(2r)− y| : y ∈ S} = {x̄}.

Therefore x̄ = p̄, and we conclude that

max
p
{|x̄− p| : |xk − dk/(2r)− p| ≤ |dk|/2r, p ∈ S} → 0.

2

Before continuing it is worth remarking on the use of proximal normals in Lemma
2.6. In order to ensure the existence of a parameter r sufficiently large to control the
projection of x̄− n̄/(2r) onto the constraint set, Lemma 2.6 assumes −n̄ is a proximal
normal to the constraint set S at x̄. In the case of S being a prox-regular set, all
normals are proximal normals, so we no longer need to state “−n̄ is a proximal normal
to the constraint set S at the point x̄.” If the constraint set S is convex then all normals
are proximal normals with threshold 0, so “r sufficiently large” reduces to “r > 0”.

We now turn to the major result in this work, which states that Subproblem (3)
identifies the active manifold.

Theorem 2.7 (Identifying the active manifold) Consider a constraint set S that
is partly smooth at the point x̄ relative to the manifold M and prox-regular at x̄.
Suppose the vector n̄ satisfies −n̄ ∈ rint NS(x̄), and the sequences {xk} and {dk}
converge to x̄ and n̄ respectively. Fix a parameter r > 0 and define a sequence

pk ∈ argmin p{〈dk, p〉+ r
1
2
|p− xk|2 : p ∈ S}.

If r sufficiently large then
pk ∈M for all k large.
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Proof: First note that, by prox-regularity, the vector −n̄ is a proximal normal vector
to S at x̄; therefore we may assume r is sufficiently large for PS (x̄− n̄/(2r)) = {x̄} to
hold.

We begin the proof by showing that pk converges to x̄. Indeed by Lemma 2.5 we
have for all k that

pk ∈ {p : |xk − dk/(2r)− p| ≤ |dk|/2r, p ∈ S}.

By Lemma 2.6 we know that

max{|x̄− p| : |xk − dk/(2r)− p| ≤ |dk|/2r, p ∈ S} → 0.

Thus we must have |x̄− pk| → 0.
For each k define the vector nk := dk + r(pk − xk). Passing to a limit on nk we see

−nk → −n̄− r(x̄− x̄) = −n̄.

By the optimality of pk we know that −nk ∈ NS(pk) for each k. Therefore we have

dist(−nk, NS(pk)) ≡ 0.

Applying Theorem 2.4 completes the proof. 2

It is now an easy exercise to see how our result on active manifold identification
relates to a specific instance of optimization.

Example 2.8 (Identifying active constraints) Consider a minimization problem,

min{f(x) : gi(x) ≤ 0, i = 1, 2, ...N}, (4)

where f ∈ C1 and gi ∈ C2 for i = 1, 2, ...N . Define S := {x : gi(x) ≤ 0, i = 1, 2, ...N},
and suppose at the point x̄ ∈ S. If the active gradients,

{∇gi(x̄)}i∈I where I = {i : g(x̄) = 0}

form a linearly independent set, then Example 2.2 shows that S is prox-regular at x̄
and partly smooth there relative to the active manifold

M := {x : gi(x) = 0 for i ∈ I, and gi(x) < 0 for i /∈ I}.

Therefore, if x̄ is a nondegenerate critical point of (4) (i.e. −∇f(x̄) ∈ rint NS(x̄)) and
the sequence xk converges to x̄, then for r sufficiently large

argmin p{〈∇f(xk), p〉+ r
1
2
|p− xk|2 : p ∈ S} ∈ M for all k large.

In Corollary 2.9 we shall see, if the set S is convex, then “r sufficiently large” reduces
to “r > 0”. 2
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We conclude this section with two corollaries showing how the conditions of The-
orem 2.7 can be simplified if the constraint set S is convex (Corollary 2.9) or if the
vector n̄ is a strict critical point (Corollary 2.10).

Corollary 2.9 (Convex case) Consider a convex set C that is partly smooth at the
point x̄ relative to the manifold M. Suppose the vector n̄ satisfies −n̄ ∈ rint NC(x̄),
and the sequences {xk} and {dk} converge to x̄ and n̄ respectively. Fix a parameter
r > 0 and define a sequence pk via Subproblem (3). Then

pk ∈M for all k large.

Proof: Convexity shows n̄ is a proximal normal vector with threshold 0, and also
provides the prox-regularity needed to apply Theorem 2.4. 2

Corollary 2.10 (Strict critical point case) Consider a set S which is prox-regular
at the point x̄. Suppose the vector n̄ satisfies −n̄ ∈ intNS(x̄), and the sequences {xk}
and {dk} converge to x̄ and n̄ respectively. Fix a parameter r > 0 and define a sequence
pk via Subproblem (3). If r sufficiently large then

pk = x̄ for all k large.

Proof: Example 2.3 shows that the set is partly smooth at x̄ relative to the manifold
{x̄}, and Theorem 2.7 completes the proof. 2

3 Two Examples

As mentioned, a large inspiration for this work was the earlier results of [1]. Theorem
1.1 of this work restates and gives a brief proof of their main result.

It is worth noting that, it is possible to reestablish the results of [1] via the Lemmas
and Theorems in this work. In doing this, one would have to rewrite Lemma 2.5 with
r = 0, which results in bounding pk in a half space instead of a ball. Lemma 2.6 can
then be rewritten for r = 0 by making strong use of x̄ being a strict critical point.
Finally, Theorem 2.7 would have to be rewritten for r = 0, which would yield [1, Thm
3.1]. However, given the elegance of the original proof, we shall not go through the
details here. Instead we shall show that without the strict critical point assumption,
this active manifold identification technique cannot work for r = 0.

We do this via two examples. The first shows that, when x̄ is not a strict critical
point, the identified constraints may include constraints that are inactive at x̄. In
the second we show that, again when x̄ is not a strict critical point, the identified
constraints may fail to include the actual active constraints at x̄.

Our first example also shows that without r > 0, Subproblem (3) can actually move
iterates off of the correct active manifold.
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Example 3.1 (False positive identification) Consider the convex box set

C = {(x, y) : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1},
= {(x, y) : gi(x, y) ≤ 0, i = 1, 2, 3, 4},

where g1(x, y) = −x − 1, g2(x, y) = x − 1, g3(x, y) = −y − 1 and g4(x, y) = y − 1.
Then C is partly smooth at the point x̄ = (1, 0) relative to the manifold M = {(x, y) :
g2(x, y) = 0, gi(x, y) < 0 i = 1, 3, 4}. That is, the only active constraint at the point
x̄ is g2.

Consider now the nondegenerate normal vector−n̄ = (1, 0) ∈ NC(x̄), (n̄ = (−1, 0)),
along with the sequence of points xk = (1, 1/k) which converge to x̄ and the sequence
of direction vectors dk = (−1, 1/k) which converge to n̄. These points and direction
vectors satisfy the conditions of Corollary 2.9, so the solution to

pk ∈ argmin {〈dk, p〉+ r/2|p− xk|2 : p ∈ C},

eventually lies on M for any r > 0. Indeed, one finds pk = (1, r−1
rk ) ∈ M for all k.

However, the problem
pk ∈ argmin {〈dk, p〉 : p ∈ C},

is solved at pk = (1,−1) /∈M for all k. At this point both g2 and g3 are active. 2

Example 3.2 (False negative identification) Consider the convex set

C = {(x, y) : −1 ≤ x ≤ 1, y ≤ +
√

1− x2},
= {(x, y) : gi(x, y) ≤ 0, i = 1, 2, 3, 4},

where g1(x, y) = −x − 1, g2(x, y) = x − 1 and g3(x, y) = y − +
√

1− x2. Then C is
partly smooth at the point x̄ = (1,−1) relative to the manifoldM = {(x, y) : g2(x, y) =
0, gi(x, y) < 0 i = 1, 3}. That is, the only active constraint at the point x̄ is g2.

Consider now the nondegenerate normal vector−n̄ = (1, 0) ∈ NC(x̄), (n̄ = (−1, 0)),
along with the sequence of points xk = (1,−1 + 1/k) which converge to x̄ and the
sequence of direction vectors dk = (−1,−1/k) which converge to n̄. These points and
direction vectors satisfy the conditions of Corollary 2.9, so the solution to

pk ∈ argmin {〈dk, p〉+ r/2|p− xk|2 : p ∈ C},

eventually lies on M for any r > 0. Indeed, one finds pk = (1, r+1
rk − 1) for all k > r+1

r .
However the problem

pk ∈ argmin {〈dk, p〉 : p ∈ C},

is solved at pk = ( 1√
1+k−2

, 1
k
√

1+k−2
) /∈ M for all k. At this point g3 is active instead

of g2. 2
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