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Abstract 

 

 In this paper we extend in a simple way the transformation of Charnes and 

Cooper to the case where the functional ratio to be considered are of similar polynomial. 
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 Charnes and Cooper in [3] have introduced an important transformation. This 

regards the equivalence about programming with linear fractional functional and linear 

ones. Members of this class have been encountered in a variety of contexts. One such 

occurrence [3] involved situations in which the more usual sensitivity analyses were 

extended to problems involving plans for optimal data changes. In these instances, 

linear programming inequalities were to be considered relative to a functional 

formulated as a ratio of two variables wherein one variable, in the numerator, 

represented the volume changes that might attend the possible variations of a particular 

cost coefficient. Another example was dealt with by M. Klein in [8]. To handle the  

problem of the fractional function, Klein applied a square-root transformation (which be 

attributed to C. Derman [5]) in order to effect a reduction to an equivalent linear 

programming problem. Finally, a special instance of our general case was treated by J. 

R. Isbell and W. H. Marlow in their article on “Attrition Games, “[7]. In considering a 

ratio, Isbell and Marlow were able to establish a convergent iterative process which 

involved replacing the ratio by the problem of optimizing a sequence of different linear 

functionals. The linear functional at any stage in the iterations was determined by 

optimization of the linear functional at the preceding stage.  

 The objective of the present short paper is to extend the Charnes and Cooper 

transformation to some other problems where the functional involves are quotient  of 

linear ones. As a particular case of it we get the result that a general non- linear problem 

is equivalent to a linear one.  

 

General Fractional Models 

 

 Consider a general class of fractional models arising in programming, which are 

rendered in the following form: 

bx A ≤  

0x ≥  

where A is an mxn matrix and b is an mx1 vector so that the two sets of constants for the 

constrains are related by the nx1 vector of variables, x. 

)1.1(
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 It is assumed, unless otherwise noted, that the constraints of (1.1) are regular, so 

that the solution set  

}0x  ,bx A:Rx{F n
1 ≥≤∈=  

in nonempty and bounded. 

 Here R indicates the reals. 

 The general class of fractional models to be considered in this paper is of the 

form 
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subject to (1.1): 

bx A ≤  

0x ≥ . 

Where Tc , T
ic , Td , T

id , are transpose of the nx1 vectors of coefficients, where 

k , ,0:i L . If 0k =  we have the case studied by Charnes and Cooper [4]. 

 By reason of simplicity we assume that for each 1Fx ∈ , we have the last part of 

the denominator 
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 Thus since f(x) is a continuous function defined on a non-empty compact set 

( 1F ), it reaches its minimum. That is to say the problem )P( 1  is solvable.  

 Following the ideas presented by Charnes and Cooper in [4], we will prove that 

the guarantee the equivalence between )P( 1  and the programming program with n+1 

variables z ,y , ,y n1 K  and the feasible set ( 2F ): 
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.0z ,0y
1z y d
0b zy A
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 We now proceed to prove: 

 

Lemma 1: If 2F)z ,y( ∈ , then 0z > . 

Proof: Assume that 0z = , then 0y A ≤ . Take 1Fx̂ ∈  and 0>µ  and arbitrary, 

we obtain 

( ) bx̂ Ay x̂ A ≤≤+ µ . 

 But 0x̂ ≥  and 0y ≥ , 1F  contains the half straight line { }0/y x̂ ≥+ λλ  if 

0y ≠ . This is contradictory with the fact that 1F  is bounded. Then 0y = . But this last 

fact provides a contradiction with the second restriction of )P( 2 . Since 0z ≥  and 

0z ≠ , we have 0z > . (Q. E. D.). 

 As an immediate consequence of the previous fact, we have that, if 2F)z ,y( ∈  

then 1Fz
y :x ∈ . 

 

Lemma 2: If 1Fx ∈ , let us define  

( )β+
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x

 :y T  and ( )β+
=

xd
1

 :z T  

then 2F)z ,y( ∈ . 

 Proof: Since ( ) 0xd T >+ β , we get 0y ≥  and 0z ≥  for each 1Fx ∈ . 

 On the other hand, if we divide the inequality bx A ≤  by ( )β+xd T  we obtain 
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which is equivalent to  

0b zy A ≤− . 

 Finally 
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hence 2F)z ,y( ∈ . (Q. E. D.). 

)F( 2
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Theorem 3: 1P  and 2P  are solvable. Moreover, if x  is an optimal solution of 1P , 
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is an optimal solution of 2P , and reciprocally, if )z ,y(  is an optimal solution of 2P , 

then z
yx =  is an optimal solution of 1P . 

 Proof: We know that 1P  is solvable. Let x  an optimal solution of 1P . Giving a 

pair 2F)z ,y( ∈  then 0z >  and 1Fz
yx ∈=  by Lemma 1 and the comment after it. 

Since we assume that )x(f)x(f ≥  for each 1Fx ∈ , if we now associate to x  the 

vector 
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 Then we have proved that )z ,y(  is an optimal solution of 2P . Therefore 2P  is 

also solvable.  
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 Assume now that )z ,y(  is an optimal solution of 2P . Consider a vector 1Fx ∈  

and let the transformation 

β+
=

xd
x

y T  and 
β+

=
xd
1

z T . 

 Applying the result after the Lemma 1, we have 

)x(f)z ,y(f)z ,y(f)x(f =≥=  

which it says that x  is a solution of 1P . (Q. E. D.). 

Our result it turns out to be of important interest in the case of  0k = . In this 

instance it reduces to the important transformation of Charnes and Cooper [4]. 

In more general cases, it reduces the degree of complexity of the polynomial. 

 

Conclusions  

 

Here we have obtained an extension of the Charnes and Cooper transformation 

to the case when we have a polynomial form in the numerator and the denominator. The  

case when some id  and iβ  are equal it reduces the complexity in more degrees in the  

denominator. Furthermore, there exist some varieties of situations that the simplicity of 

the new programs appears naturally. 

For example the case where dd i = ?for NSi ⊂∈ . Then in such a case we 

obtain good reduction. Moreover if all 0ci =  and the dd i = , k , ,1i K=  we have 

obtained an interesting result, since the transformed program is linear. 

For further comments we subject the reader to refer to the original paper [4]. 

There are also further extensions which we shall treat elsewhere. 
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