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Abstract

This document is an expanded version of [ABG05], with a detailed
convergence analysis. A general scheme for trust-region methods on
Riemannian manifolds is proposed and analyzed. Among the various
approaches available to (approximately) solve the trust-region subprob-
lems, particular attention is paid to the truncated conjugate-gradient
technique. The method is illustrated on problems from numerical linear
algebra.
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1 Introduction

Several problems related to numerical linear algebra can be expressed as optimizing a smooth
function whose domain is a differentiable manifold. Applications appear in various areas,
including computer vision [MKS01], machine learning [NA05], maximum likelihood estima-
tion [Smi05, XB05], electronic structure computation [LE00], system balancing [HM94], model
reduction [YL99], and robot manipulation [HHM02].

The simplest algorithms for solving optimization problems on manifolds are arguably
those based on the idea of steepest descent; see, e.g., [HM94, Udr94] and references therein.
These algorithms have good global convergence properties but slow (linear) local convergence.
Other methods achieve superlinear convergence by using second-order information on the cost
function. Among these methods, Newton’s method is conceptually the simplest. The history
of Newton’s method on manifolds can be traced back to Luenberger [Lue72], if not earlier.
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Gabay [Gab82] proposed a Newton method on embedded submanifolds of R
n. Smith [Smi93,

Smi94] and Udrişte [Udr94] formulated and analyzed the method on general Riemannian
manifolds. Related work includes [Shu86, EAS98, OW00, Man02, MM02, ADM+02, DPM03,
HT04].

A plain Newton method, on general manifolds as well as in R
n, has major drawbacks as

a numerical optimization method. The computational cost is often prohibitive, as a linear
system has to be solved at each iteration. Moreover, the method is locally attracted to any
stationary point, be it a local minimizer, local maxizer or saddle point. Finally, the method
may not even converge to stationary points, unless some strong conditions are statisfied (such
as convexity of the cost function).

In the case of cost functions on R
n, several techniques exist to improve the convergence

properties of Newton’s method. Most of these techniques fall into two categories: line-search
methods and trust-region methods; see [NW99]. The advantages of a trust-region method over
the pure Newton method are multiple. First, under mild conditions, trust-region schemes are
provably convergent to a set of stationary points of the cost functions for all initial conditions.
Moreover, the cost function is nonincreasing at each iterate which favors convergence to a local
minimizer. Finally, the presence of a trust-region gives an additional guideline to stop the
inner iteration early, hence reducing the computational cost, while preserving the fast local
convergence of the exact scheme. Line-search techniques have been considered on Riemannian
manifolds by Udrişte [Udr94] and Yang [Yan05].

The main purpose of this paper is to provide a theoretical and algorithmic framework
for trust-region methods on Riemannian manifolds, applicable to multiple problems. The
Riemannian trust-region (RTR) approach we propose works along the following lines. First,
much as in the work of Shub [Shu86, ADM+02], a retraction R (Definition 2.1) is chosen on
the Riemannian manifold M that defines for any point x ∈ M a one-to-one correspondence
Rx between a neighborhood of x in M and a neighborhood of 0x in the tangent space TxM
(see Figure 1). Using this retraction, the cost function f on M is lifted to a cost function
f̂x = f ◦ Rx on TxM . Since TxM is an Euclidean space, it is possible to define a quadratic
model of f̂x and adapt classical methods in R

n to compute (in general, approximately) a
minimizer of the model within a trust-region around 0x ∈ TxM . This minimizer is then
retracted back from TxM to M using the retraction Rx. This point is a candidate for the
new iterate, which will be accepted or rejected depending on the quality of the agreement
between the quadratic model and the function f itself.

It is this “lift-solve-retract” procedure that distinguishes the proposed RTR approach from
the standard trust-region methods; the standard methods, since they live in R

n, only require
the “solve” part. On a manifold, lifting the cost function makes it possible to locally fall
back to a friendly Euclidean world (the tangent space TxM) where classical techniques can
be applied, and the retraction brings the result back to the manifold. A difficulty, from an
analysis perspective, is that the RTR method does not deal with a unique cost function (as
in the classical case), but rather with a succession of different lifted cost functions f̂xk

, where
xk is the kth iterate. A main contribution of this paper is to show that, under reasonable
conditions, the nice properties of the standard trust-region schemes are preserved in their
Riemannian generalizations (see Section 4).

Notice that it is theoretically possible to choose once and for all the retraction as the Rie-
mannian exponential mapping. This corresponds to a strategy used by numerous Riemannian
optimization methods when they compute the exponential of a tangent update vector in order
to obtain a new iterate on the manifold; see [Smi94, Udr94, EAS98, Yan05]. However, as
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pointed out by Manton [Man02, Section IX], the exponential map may not always be the
most appropriate or computationally efficient way of performing the update. Our conver-
gence analysis shows that the good properties of the algorithms hold for all suitably defined
retractions (Definition 2.1) and not only for the exponential mapping.

The “lift-solve-retract” technique, as an aside, is not specific to trust-region methods, and
can be applied to generalize a wide variety of classical optimization methods to manifolds.
This approach, which finds its roots in the work of Shub [Shu86], seems to have received
little attention in the literature until recently [ADM+02, ABG04a]. Note that coordinate-
based approaches follow a similar pattern; in practice, however, lifting to the tangent space
tends to lead to more streamlined and computationally efficient algorithms (see discussion in
Section 2.1).

There is clearly a link between techniques of optimization on manifolds and standard
constrained optimization approaches. However, there are manifolds that are not defined as
constrained sets in R

n; an important example is the Grassmann manifold (see Section 5.3).
(Clearly, by Nash’s embedding theorem [Nas56], every Riemannian manifold can be smoothly
isometrically embedded in a Euclidean space; but this is only an existence theorem, and such
an embedding may be elusive or computationally intractable.) Also, there are constrained
sets that do not admit a regular manifold structure; a simple example is {x ∈ R

n : ‖x‖∞ = 1}.
The application areas thus overlap, but are not identical. On the problems that can be tackled
by both approaches, an interesting feature of manifold optimization schemes is that they are
feasible: each iterate belongs to the constrained set. Feasibility is advantageous, or even
essential, in several situations (see, e.g., [LT01]). For example, the cost function is sometimes
not defined outside the feasible set; or, the value of the cost function may have little if any
relevance outside the feasible set; moreover, if the algorithm runs out of time or computing
resources, it should be able to terminate and return a feasible point.

We assume throughout that it is computationally impractical to determine whether the
Hessian of the cost function is positive definite; trust-region subproblems are thus solved using
inner iterations, such as the truncated conjugate-gradient method, that improve on the so-
called Cauchy point by only using the Hessian of the model through its application to a vector.
As a consequence, convergence of the trust-region algorithm to stationary points that are not
local minima (i.e., saddle points and local maxima) cannot be ruled out. However, because
trust-region methods are descent methods (the value of the cost function never increases), the
situation is fundamentally different from the pure Newton case: convergence to saddle points
and local minima of the cost function is numerically unstable and is thus not expected to
occur in practice; and indeed, convergence to saddle points and local minima is only observed
on very specifically crafted numerical experiments.

The theory and algorithms can be adapted to exploit the properties of specific manifolds
and problems in several disciplines. Numerical linear algebra considers several problems that
can be analyzed and solved using this approach. A particularly illustrative and computa-
tionally efficient application is the computation of the rightmost or leftmost eigenvalue and
associated eigenvector of a symmetric/positive-definite matrix pencil (A, B). In this case, the
manifold can be chosen as the projective space and a possible choice for the cost function is
the Rayleigh quotient. The resulting trust-region algorithm can be interpreted as an inexact
Rayleigh quotient iteration; we refer to [ABG06] for details.

This paper makes use of basic notions of Riemannian geometry and numerical optimiza-
tion; background can be found in [dC92] and [NW99]. The general concept of trust-region
methods on Riemannian manifolds is presented in Section 2. Methods for (approximately)
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solving the trust-region subproblems are considered in Section 3. Convergence properties are
investigated in Section 4. The theory is illustrated on practical examples in Section 5. In
particular, a block algorithm for the computation of extreme eigenpairs, which evolves on
the Grassmann manifold, is derived in detail in Section 5.3. Conclusions are presented in
Section 6.

A preliminary version of the results presented in this paper appeared in the proceedings
of the 16th MTNS conference [ABG04a].

2 The general algorithm

We follow the usual conventions of matrix computations and view R
n as the set of column

vectors with n real components. The basic trust-region method in R
n for a cost function

f consists of adding to the current iterate x ∈ R
n the update vector η ∈ R

n solving the
trust-region subproblem

min
η∈Rn

m(η) = f(x) + ∂f(x)η +
1

2
ηT ∂2f(x)η ‖η‖ ≤ ∆ (1)

where ∂f = (∂1f, . . . , ∂nf) is the differential of f , (∂2f)ij = ∂2
ijf is the Hessian matrix—some

convergence results allow for ∂2f(x) in (1) to be replaced by any symmetric matrix, but we
postpone this relaxation until later in the development—and ∆ is the trust-region radius.
The quality of the model m is assessed by forming the quotient

ρ =
f(x) − f(x + η)

m(0) − m(η)
. (2)

Depending on the value of ρ, the new iterate will be accepted or discarded and the trust-
region radius ∆ will be updated. More details will be given later in this paper. Major
references on trust-region methods include the early work of Powell [Pow74] and Moré and
Sorensen [Sor82, MS84], and the textbook [CGT00]; see also [WD05] and references therein
for recent work on trust-region update strategies.

With a view towards extending the concept of trust-region subproblem to manifolds, we
first consider the case of an abstract Euclidean space, i.e., a vector space endowed with an
inner product (that is, a symmetric, bilinear, positive-definite form). This generalization to
an Euclidean space E of dimension d requires little effort since E may be identified with R

d

once a basis of E is chosen (we refer to [Boo75, Section I.2] for a discussion on the distinction
between R

n and abstract Euclidean spaces). Let g(·, ·) denote the inner product on E. Given
a function f : E → R and a current iterate x ∈ E, one can choose a basis (ei)i=1,...,d of E
(not necessarily orthonormal with respect to the inner product) and write a classical G-norm
trust-region subproblem (see, e.g., [GLRT99, Section 2])

min
η̄∈Rd

m(η̄) := f̄(x̄) + ∂f̄(x̄)η̄ +
1

2
η̄T ∂2f̄(x̄)η̄, η̄T Gη̄ ≤ ∆2

x (3)

where x =
∑

i x̄iei, η =
∑

i η̄iei, f̄(x̄) = f(
∑

i x̄iei) and Gij = g(ei, ej). It can be shown
that m(η) does not depend on the choice of basis (ei)i=1,...,d; therefore (3) can be written as
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a coordinate-free expression

min
η∈E

m(η) = f(x) + Df(x)[η] +
1

2
D2f(x)[η, η]

= f(x) + g(grad f(x), η) +
1

2
g(Hessf [η], η) s.t. g(η, η) ≤ ∆2

x (4)

for the trust-region subproblem in the Euclidean space E.
Now let M be a manifold of dimension d. Intuitively, this means that M looks locally like

R
d. Local correspondences between M and R

d are given by coordinate charts φα : Ωα ⊂ M →
R

n; see, e.g., [dC92] for details. How can we define a trust-region method for a cost function
f on M? Given a current iterate x, it is tempting to choose a coordinate neighborhood Ωα

containing x, translate the problem to R
d through the chart φα, build a quadratic model m,

solve the trust-region problem in R
d and bring back the solution to M through φ−1

α . The
difficulty is that there are in general infinitely many α’s such that x ∈ Ωα. Each choice will
yield a different model function m ◦ φα and a different trust region {y ∈ M : ‖φα(y)‖ ≤ ∆},
hence a different next iterate x+. This kind of situation is pervasive in numerics on manifolds;
it is usually addressed, assuming that M is a Riemannian manifold, by working in so-called
normal coordinates.

In order to explain the concept of normal coordinates, we now present a condensed
overview of Riemannian geometric concepts; we refer to [dC92, O’N83] for details. In what
follows, M will be a (C∞) Riemannian manifold, i.e., M is endowed with a correspondence,
called a Riemannian metric, which associates to each point x of M an inner product gx(·, ·)
on the tangent space TxM and which varies differentiably. The Riemannian metric induces
a norm ‖ξ‖ =

√

gx(ξ, ξ) on the tangent spaces TxM . Also associated with a Riemannian
manifold are the notions of Levi-Civita (or Riemannian) connection ∇, parallel transport,
geodesic (which, intuitively, generalizes the notion of straight line) and associated exponen-
tial map defined by Expxξ = γ(1) where γ is the geodesic satisfying γ(0) = x and γ′(0) = ξ,
with γ′(0) denoting the tangent vector to the curve γ at t = 0. Given a point x in M , there
is a ball Bǫ(0x) in TxM of radius ǫ around the origin 0x of TxM such that Expx is a diffeo-
morphism of Bǫ(0x) onto an open subset of M . Then Expx(Bǫ(0x)) = U is called a normal
neighborhood of x, and Expx defines a diffeomorphism between the Euclidean space TxM and
U . The supremum of these ǫ’s is the injectivity radius ix(M) at x, and i(M) := infx∈M ix is
the injectivity radius of M . Finally, normal coordinates are defined in a normal neighborhood
U by considering an orthonormal basis {ei} of TxM and taking (u1, . . . , ud) as the coordinates
of y = Expx (

∑n
i=1 uiei).

An important observation is that, for the purpose of defining a trust-region method, the
choice of a basis {ei} in TxM is immaterial, since trust-region subproblems on a Euclidean
space like TxM admit a coordinate-free expression (4). Therefore, the exponential mapping
makes it possible to uniquely define trust-region subproblems on Riemannian manifolds by
locally mapping the manifold to the Euclidean space TxM .

However, as pointed out in [Man02], the systematic use of the exponential mapping may
not be desirable in all cases: other local mappings to TxM may reduce the computational
cost while preserving the useful convergence properties of the considered method. Therefore,
in this paper, we relax the exponential to a class of mappings called retractions, a concept
that we borrow from [Shu86, ADM+02] with some modifications (see also the illustration on
Figure 1).
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Definition 2.1 (retraction) A retraction on a manifold M is a mapping R on the tangent
bundle TM into M with the following properties. Let Rx denote the restriction of R to TxM .

1. R is continuously differentiable.
2. Rx(0x) = x, where 0x denotes the zero element of TxM .
3. DRx(0x) = idTxM , the identity mapping on TxM , with the canonical identification

T0x
TxM ≃ TxM .

It follows from the inverse function theorem (see [dC92, Ch. 0, Th. 2.10]) that Rx is a local
diffeomorphism at 0x, namely, Rx is not only C1 but also bijective with differentiable inverse
on a neighborhood V of 0x in TxM . In particular, the exponential mapping is a retraction
(see Proposition 2.9 in [dC92, Ch. 3] and the proof thereof), and any other retraction can
be thought of as a first-order approximation of the exponential mapping. Notice that no
assumption is made on the second and higher derivatives of the retractions; in particular,
D2(Exp−1

x ◦ Rx)(0x) need not vanish (see also discussion in Section 2.1). Practical examples
of retractions on specific Riemannian manifolds, that may be more tractable computationally
than the exponential, are given in Section 5. We point out that the requirements in Defini-
tion 2.1 are stronger than needed to obtain the convergence results; in particular, we could
allow R to be defined only in a certain subset of TM . However, weaker assumptions would
make the forthcoming developments more complicated, and there is no evidence that they
would be more relevant in practical applications. For the same reason, we assume throughout
that the manifold M is complete, i.e., Exp ξ exists for all ξ in TM .

TxMx

ξ

Rxξ M

Figure 1: Illustration of retractions.

We can now lay out the structure of a trust-region method on a Riemannian manifold
(M, g) with retraction R. Given a cost function f : M → R and a current iterate xk ∈ M , we
use Rxk

to locally map the minimization problem for f on M into a minimization problem
for the cost function

f̂xk
: Txk

M → R : ξ 7→ f(Rxk
(ξ)). (5)

The Riemannian metric g turns Txk
M into a Euclidean space endowed with the inner product

gxk
(·, ·), and, following (4), the trust-region subproblem on Txk

M reads

min
η∈Txk

M
mxk

(η) = f̂xk
(0xk

) + Df̂xk
(0xk

)[η] +
1

2
D2f̂xk

(0xk
)[η, η]

= f̂xk
(0xk

) + gxk
(grad f̂xk

(0xk
), η) +

1

2
gxk

(Hessf̂xk
(0xk

)[η], η) s.t. gxk
(η, η) ≤ ∆2

k. (6)

For the global convergence theory it is only required that the second-order term in the
model be some symmetric form. Therefore, instead of (6), we will consider the following more
general formulation

min
η∈Txk

M
mxk

(η) = f(xk) + gxk
(grad f(xk), η) +

1

2
gxk

(Hxk
η, η) s.t. gxk

(η, η) ≤ ∆2
k, (7)
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where Hxk
: Txk

M → Txk
M is some symmetric linear operator, i.e., gxk

(Hxk
ξ, χ) = gxk

(ξ,Hxk
χ),

ξ, χ ∈ TxM . This is called the trust-region subproblem.
Next, an (approximate) solution ηk of the Euclidean trust-region subproblem (7) is com-

puted using any available method: if an iterative method is used, its iterations are called
inner iterations of the overall algorithm (see Section 3). The candidate for the new iterate is
then given by x+ = Rxk

(ηk).
The decision to accept or not the candidate and to update the trust-region radius is based

on the quotient

ρk =
f(xk) − f(Rxk

(ηk))

mxk
(0xk

) − mxk
(ηk)

=
f̂xk

(0xk
) − f̂xk

(ηk)

mxk
(0xk

) − mxk
(ηk)

. (8)

If ρk is exceedingly small, then the model is very inaccurate: the step must be rejected and
the trust-region radius must be reduced. If ρk is small but less dramatically so, then the step
is accepted but the trust-region radius is reduced. If ρk is close to 1, then there is a good
agreement between the model and the function over the step, and the trust-region radius can
be expanded.

This procedure can be formalized as the following algorithm; it reduces to [NW99, Alg. 4.1]
in the classical R

n case (see [CGT00, Ch. 10] for variants).

Algorithm 1 (RTR – basic Riemannian Trust-Region algorithm) Data: Complete
Riemannian manifold (M, g); real function f on M ; retraction R from TM to M as in
Definition 2.1.
Parameters: ∆̄ > 0, ∆0 ∈ (0, ∆̄), and ρ′ ∈ [0, 1

4).
Input: initial iterate x0 ∈ M .
Output: sequence of iterates {xk}.
for k = 0, 1, 2, . . .

Obtain ηk by (approximately) solving (7);
Evaluate ρk from (8);
if ρk < 1

4
∆k+1 = 1

4∆k

else if ρk > 3
4 and ‖ηk‖ = ∆k

∆k+1 = min(2∆k, ∆̄)
else

∆k+1 = ∆k;
if ρk > ρ′

xk+1 = Rx(ηk)
else

xk+1 = xk;
end (for).

In the sequel we will sometimes drop the subscript “k” and denote xk+1 by x+.

2.1 Discussion

The concept of retraction (Definition 2.1) is related to the notion of smooth family of param-
eterizations [HT04]. To any smooth family of parameterizations {µx}x∈M , one can associate
a retraction defined by Rx := µx ◦ (Dµx(0x))−1. Conversely, given smooth vector fields ei,
i = 1, . . . , d such that {ei(x)}i=1,...,d is a basis of TxM for all x in a neighbourhood U of x∗, to
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a retraction R one can associate the mappings µx : (u1, . . . , ud) 7→ Rx(
∑

uiei(x)) which form
a locally smooth family of parameterizations around x∗. Notice that in general this technique
cannot be applied globally: while a smooth basis {ei(x)}i=1,...,d always exists locally, there
are manifolds for which such a basis fails to exist globally. (An example is a sphere embedded
in a space of odd dimension: a result informally known as the “hairy ball theorem” states
that there is no nonvanishing smooth vector field on such a sphere, hence there is no glob-
ally smooth basis of vector fields.) Moreover, from a computational viewpoint, such a basis
of vector fields may be difficult or even impossible to deal with. The use of retractions in
the context of trust-region methods is thus particularly convenient, as it takes advantage of
the fact that trust-region methods (and optimization methods in general) can be defined on
general Euclidean spaces, devoid of a particular basis. We refer to Section 5 for illustrations
on concrete examples.

From the “first-order rigidity condition” DRx(0x) = idTxM satisfied by retractions (Defi-
nition 2.1), it follows that grad f̂xk

(0xk
) = grad f(xk), where grad f(x), the gradient of f at x,

is defined by gx(grad f(x), ξ) = dfx(ξ), ξ ∈ TxM (see [dC92, Ch. 3, Ex. 8]). Since no assump-
tion is made on the second and higher-order derivatives of the retraction (such conditions are
not necessary in the local and global convergence analyses carried out in Section 4), it follows
that in general Hess f̂(0x) 6= Hess f(x), where

Hess f(x) : TxM 7→ TxM : ξ 7→ Hess f(x)[ξ] := ∇ξgrad f(x), (9)

is the Hessian operator of f at x, as defined in [dC92, Ch. 6, Ex. 11]. In Lemma 4.11, second-
order conditions are given on the retraction such that Hess f̂xk

(0x) = Hess f(x). In the case of
embedded submanifolds, the Levi-Civita connection ∇ reduces to a directional derivative in
the embedding space followed by a projection onto the tangent space to the manifold [O’N83,
§4.3]; this facilitates the derivation of a formula for Hess f(x)[ξ]. (Notice that in the literature,
the word Hessian is sometimes used for the second covariant differential D2f , defined by

D2f(x) : TxM × TxM → R : (ξ, χ) 7→ ξχf − (∇ξχ)f,

which is related to the Hessian operator (9) by the identity D2f(ξ, χ) = gx(Hess f(x)[ξ], χ) [O’N83].)
In general, there is no assumption on the operator Hxk

in (7) other than being a sym-
metric linear operator. Consequently, even though mxk

was initially presented as a model of
f ◦Rxk

, the choice of the retraction Rxk
does not impose any constraint on mxk

. In order to
achieve superlinear convergence, however, Hxk

will be required to be an “approximate” Hes-
sian (Theorem 4.13). Obtaining an appropriate approximate Hessian in practice is addressed
in Section 5.1. A possible way of choosing Hxk

is to define mx as the quadratic model of
f ◦ R̃xk

, where R̃x is a retraction, not necessarily equal to Rxk
; a similar point of view was

adopted in [HT04] in the framework of Newton’s method.
We conclude this section by pointing out more explicitly the link between Algorithm 1

and the Riemannian Newton method. Assume that Hxk
in (7) is the exact Hessian of f at xk,

and assume that the exact solution η∗ of the trust-region subproblem (7) lies in the interior
of the trust region. Then η∗ satisfies

grad f + ∇η∗grad f = 0,

which is the Riemannian Newton equation of Smith [Smi93, Smi94] and Udrişte [Udr94, Ch. 7,
§5]. Note that both authors propose to apply the update vector η∗ using the Riemannian
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exponential retraction; namely, the new iterate is defined as x+ = Expxη∗. As shown by
Smith [Smi93, Smi94], the Riemannian Newton algorithm converges locally quadratically to
the nondegenerate stationary points of f . A cubic rate of convergence is even observed in
frequently encountered cases where some symmetry condition holds [Smi93, Smi94, EAS98,
AMS04]. We will see in Section 4 that the superlinear convergence property of Newton’s
method is preserved by the trust-region modification, while the global convergence properties
are improved: the accumulation points are guaranteed to be stationary points regardless of
the initial conditions, and among the stationary points only the local minima can be local
attractors.

3 Computing a trust-region step

We have seen in Section 2 that the use of retractions yields trust-region subproblems expressed
in Euclidean spaces TxM . Therefore, all the classical methods for solving the trust-region
subproblem can be applied.

As mentioned in the introduction, it is assumed here that for some reason, usually re-
lated to the large size of the problem under consideration or to the computational efficiency
required to outperform alternative methods, it is impractical to check positive-definiteness of
Hxk

; rather, Hxk
is only available via its application to a vector. The truncated conjugate-

gradient method of Steihaug [Ste83] and Toint [Toi81] is particularly appropriate in these cir-
cumstances. The following algorithm is a straightforward adaptation of the method of [Ste83]
to the trust-region subproblem (7). This algorithm is an inner iteration as it is an iteration
used within the RTR framework (Algorithm 1) to compute an approximate solution of the
trust-region subproblems. Note that we use indices in superscript to denote the evolution of
η within the inner iteration, while subscripts are used in the outer iteration.

Algorithm 2 (tCG – truncated CG for the trust-region subproblem) Set η0 = 0,
r0 = grad f(xk), δ0 = −r0;
for j = 0, 1, 2, . . . until a stopping criterion is satisfied, perform the iteration:

if gxk
(δj ,Hxk

δj) ≤ 0
Compute τ such that η = ηj + τδj minimizes mxk

(η) in (7)
and satisfies ‖η‖gx

= ∆;
return η;

Set αj = gxk
(rj , rj)/gxk

(δj ,Hxk
δj);

Set ηj+1 = ηj + αjδj;
if ‖ηj+1‖gx

≥ ∆
Compute τ ≥ 0 such that η = ηj + τδj satisfies ‖η‖gx

= ∆;
return η;

Set rj+1 = rj + αjHxk
δj;

Set βj+1 = gxk
(rj+1, rj+1)/gxk

(rj , rj);
Set δj+1 = −rj+1 + βj+1δj;

end (for).

The simplest stopping criterion for Algorithm 2 is to truncate after a fixed number of
iterations. In order to improve the convergence rate, a possibility is to stop as soon as an
iteration j is reached for which

‖rj‖ ≤ ‖r0‖min(‖r0‖
θ, κ). (10)
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Concerning the computation of τ , it can be shown that when g(δj ,Hxk
δj) ≤ 0, arg minτ∈R mxk

(ηj+
τδj) is equal to the positive root of ‖ηj + τδk‖gx

= ∆, which is explicitly given by

−gx(ηj , δj) +
√

gx(ηj , δj)2 − (∆2 − gx(ηj , ηj))gx(δj , δj)

gx(δj , δj)
.

Notice that the tCG algorithm is “inverse-free”, as it uses Hxk
in the computation of Hxk

δj

only. The reader interested in the underlying principles of the Steihaug-Toint truncated CG
method should refer to [Ste83], [NW99] or [CGT00].

Alternatives to tCG for approximately solving trust-region subproblems are mentioned
in [CGT00, Section 7.5.4]; see also [Hag01, HP05].

4 Convergence analysis

In this section, we first study the global convergence properties of the RTR scheme (Algo-
rithm 1), without any assumption on the way the trust-region subproblems (7) are solved,
except that the approximate solution ηk must produce a decrease of the model that is at least
a fixed fraction of the so-called Cauchy decrease. Under mild additional assumptions on the
retraction and the cost function, it is shown that the sequences {xk} produced by Algorithm 1
converge to the set of stationary points of the cost function. This result is well known in the
R

n case; in the case of manifolds, the convergence analysis has to address the fact that a
different lifted cost function f̂xk

is considered at each iterate xk.
We then analyze the local convergence of Algorithm 1-2 around nondegenerate local min-

ima. Algorithm 1-2 refers to the RTR framework where the trust-region subproblems are
approximately solved using the tCG algorithm with stopping criterion (10). It is shown that
the iterates of the algorithm converge to nondegenerate stationary points with an order of
convergence min{θ + 1, 2} (at least).

4.1 Global convergence

The objective of this section is to show that, under appropriate assumptions, the sequence
{xk} generated by Algorithm 1 satisfies limk→∞ ‖grad f(xk)‖ = 0; this generalizes a classical
convergence property of trust-region methods in R

n, see [NW99, Theorem 4.8]. In what
follows, (M, g) is a complete Riemannian manifold of dimension d, and R is a retraction on
M (Definition 2.1). We define

f̂ : TM 7→ R : ξ 7→ f(R(ξ)) (11)

and, in accordance with (5), f̂x denotes the restriction of f̂ to TxM . We denote by Bδ(0x) =
{ξ ∈ TxM : ‖ξ‖ < δ} the open ball in TxM of radius δ centered at 0x, and Bδ(x) stands
for the set {y ∈ M : dist(x, y) < δ} where dist denotes the Riemannian distance (i.e., the
distance defined in terms of the Riemannian metric; see, e.g., [O’N83, §5.15]). We denote by
P t←t0

γ v the vector of Tγ(t)M obtained by parallel transporting the vector v ∈ Tγ(t0)M along
a curve γ.

As in the classical R
n case, we first show that at least one accumulation point of {xk} is

stationary. The convergence result requires that mxk
(ηk) be a sufficiently good approximation

of f̂xk
(ηk). In [CGT00, Thm 6.4.5] this is guaranteed by the assumption that the Hessian of

the cost function is bounded. It is however possible to weaken this assumption, which leads
us to consider the following definition.
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Definition 4.1 (radially L-C1 function) Let f̂ : TM → R be as in (11). We say that f̂
is radially Lipschitz continuously differentiable if there exist reals βRL > 0 and δRL > 0 such
that, for all x ∈ M , for all ξ ∈ TxM with ‖ξ‖ = 1, and for all t < δRL, it holds

∣

∣

∣

∣

d

dτ
f̂x(τξ)|τ=t −

d

dτ
f̂x(τξ)|τ=0

∣

∣

∣

∣

≤ βRLt. (12)

For the purpose of Algorithm 1, which is a descent algorithm, this condition needs only to be
imposed for all x in the level set

{x ∈ M : f(x) ≤ f(x0)}. (13)

A key assumption in the classical global convergence result in R
n is that the approximate

solution ηk of the trust-region subproblem (7) produces at least as much decrease in the
model function as a fixed fraction of the Cauchy decrease; see [NW99, Section 4.3]. Since the
trust-region subproblem (7) is expressed on a Euclidean space, the definition of the Cauchy
point is adapted from R

n without difficulty, and the bound

mxk
(0) − mxk

(ηk) ≥ c1‖gradf(xk)‖min

(

∆k,
‖gradf(xk)‖

‖Hxk
‖

)

, (14)

for some constant c1 > 0, is readily obtained from the R
n case, where ‖Hxk

‖ is defined as

‖Hxk
‖ := sup{‖Hxk

ζ‖ : ζ ∈ Txk
M, ‖ζ‖ = 1}. (15)

In particular, the truncated CG method (Algorithm 2) satisfies this bound (with c1 = 1
2 ,

see [NW99, Lemma 4.5]) since it first computes the Cauchy point and then attempts to
improve the model decrease.

With these preliminaries in place, we can state and prove the first global convergence
result. Note that this theorem is presented under weak assumptions; stronger but arguably
easier to check assumptions are given in Proposition 4.5.

Theorem 4.2 Let {xk} be a sequence of iterates generated by Algorithm 1 with ρ′ ∈ [0, 1
4).

Suppose that f is C1 and bounded below on the level set (13), that f̂ is radially L-C1 (Defi-
nition 4.1), and that ‖Hxk

‖ ≤ β for some constant β. Further suppose that all approximate
solutions ηk of (7) satisfy the Cauchy decrease inequality (14) for some positive constant c1.
We then have

lim inf
k→∞

‖grad f(xk)‖ = 0.

Proof.
First, we perform some manipulation of ρk from (8). Notice that

|ρk − 1| =

∣

∣

∣

∣

∣

(f(xk) − f̂xk
(ηk)) − (mxk

(0) − mxk
(ηk))

mxk
(0) − mxk

(ηk)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

mxk
(ηk) − f̂xk

(ηk)

mxk
(0) − mxk

(ηk)

∣

∣

∣

∣

∣

. (16)
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Direct manipulations on the function t 7→ f̂xk
(t ηk

‖ηk‖
) yield

f̂xk
(ηk) = f̂xk

(0xk
) + ‖ηk‖

d
dτ

f̂xk
(τ ηk

‖ηk‖
)|τ=0

+

∫ ‖ηk‖

0

(

d
dτ

f̂xk
(τ ηk

‖ηk‖
)|τ=t −

d
dτ

f̂xk
(τ ηk

‖ηk‖
)|τ=0

)

dt

= f(xk) + gxk
(grad f(xk), ηk) + ǫ′

where |ǫ′| <
∫ ‖ηk‖
0 βRLt dt = 1

2βRL‖ηk‖
2 whenever ‖ηk‖ < δRL, and βRL and δRL are the

constants in the radially L-C1 property (12). Therefore, it follows from the definition (7) of
mxk

that

|mxk
(ηk) − f̂xk

(ηk)| =

∣

∣

∣

∣

1

2
gxk

(Hxk
ηk, ηk) − ǫ′

∣

∣

∣

∣

≤
1

2
β‖ηk‖

2 +
1

2
βRL‖ηk‖

2 ≤ β′‖ηk‖
2 (17)

whenever ‖ηk‖ < δRL, where β′ = max(β, βRL).
Assume for purpose of contradiction that the theorem does not hold; that is, assume there

exist ǫ > 0 and a positive index K such that

‖grad f(xk)‖ ≥ ǫ, for all k ≥ K. (18)

From (14), for k ≥ K, we have

mxk
(0) − mxk

(ηk) ≥ c1‖gradf(xk)‖min

(

∆k,
‖gradf(xk)‖

‖Hxk
‖

)

≥ c1ǫ min

(

∆k,
ǫ

β′

)

. (19)

Substituting (17), and (19) into (16), we have that

|ρk − 1| ≤
β′‖ηk‖

2

c1ǫ min
(

∆k,
ǫ
β′

) ≤
β′∆2

k

c1ǫ min
(

∆k,
ǫ
β′

) (20)

whenever ‖ηk‖ < δRL. We can choose a value of ∆̂ that allows us to bound the right-hand-side
of the inequality (20), when ∆k ≤ ∆̂. Choose ∆̂ as follows:

∆̂ ≤ min

(

c1ǫ

2β′
,

ǫ

β′
, δRL

)

.

This gives us min
(

∆k,
ǫ
β′

)

= ∆k. We can now write (20) as follows:

|ρk − 1| ≤
β′∆̂∆k

c1ǫ min
(

∆k,
ǫ
β′

) ≤
∆k

2 min
(

∆k,
ǫ
β′

) =
1

2
.

Therefore, ρk ≥ 1
2 > 1

4 whenever ∆k ≤ ∆̂, so that by the workings of Algorithm 1, it follows

(from the argument above) that ∆k+1 ≥ ∆k whenever ∆k ≤ ∆̂. It follows that a reduction of
∆k (by a factor of 1

4) can occur in Algorithm 1 only when ∆k > ∆̂. Therefore, we conclude
that

∆k ≥ min
(

∆K , ∆̂/4
)

, for all k ≥ K. (21)
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Suppose now that there is an infinite subsequence K such that ρk ≥ 1
4 > ρ′ for k ∈ K. If

k ∈ K and k ≥ K, we have from (19) that

f(xk) − f(xk+1) = fxk
− f̂xk

(ηk)

≥
1

4
(mxk

(0) − mxk
(ηk))

≥
1

4
c1ǫ min

(

∆k,
ǫ

β′

)

.

Since f is bounded below on the level set containing these iterates, it follows from this
inequality that

lim
k∈K,k→∞

∆k = 0,

clearly contradicting (21). Then such an infinite subsequence as K cannot exist. If follows
that we must have ρk < 1

4 for all k sufficiently large, so that ∆k will be reduced by a factor
of 1

4 on every iteration. Then we have, limk→∞∆k = 0, which again contradicts (21). Then
our original assumption (18) must be false, giving us the desired result. �

To further show that all accumulation points of {xk} are stationary points, we need to
make an additional regularity assumption on the cost function f . The global convergence
result in R

n, as stated in [NW99, Theorem 4.8], requires that f be Lipschitz continuously
differentiable. That is to say, for any x, y ∈ R

n,

‖gradf(y) − gradf(x)‖ ≤ β1‖y − x‖. (22)

A key to obtaining a Riemannian counterpart of this global convergence result is to adapt
the notion of Lipschitz continuous differentiability to the Riemannian manifold (M, g). The
expression ‖x− y‖ in the right-hand side of (22) naturally becomes the Riemannian distance
dist(x, y). For the left-hand side of (22), observe that the operation gradf(x) − gradf(y) is
not well-defined in general on a Riemannian manifold since grad f(x) and grad f(y) belong to
two different tangent spaces, namely TxM and TyM . However, if y belongs to a normal neigh-
borhood of x, then there is a unique geodesic α(t) = Expx(tExp−1

x y) such that α(0) = x and
α(1) = y, and we can parallel transport grad f(y) along α to obtain the vector P 0←1

α grad f(y)
in TxM , to yield the following definition.

Definition 4.3 (Lipschitz continuous differentiability) Assume that (M, g) has an in-
jectivity radius i(M) > 0. A real function f on M is Lipschitz continuous differentiable if it
is differentiable and if, for all x, y in M such that dist(x, y) < i(M), it holds that

‖P 0←1
α grad f(y) − grad f(x)‖ ≤ β1dist(y, x), (23)

where α is the unique geodesic with α(0) = x and α(1) = y.

Note that (23) is symmetric in x and y; indeed, since the parallel transport is an isometry, it
follows that

‖P 0←1
α grad f(y) − gradf(x)‖ = ‖gradf(y) − P 1←0

α gradf(x)‖.

Moreover, we place one additional requirement on the retraction R, that there exists some
µ > 0 and δµ > 0 such that

‖ξ‖ ≥ µd(x, Rx(ξ)), for all x ∈ M, for all ξ ∈ TxM, ‖ξ‖ ≤ δµ (24)
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Note that for the exponential retraction discussed in this paper, (24) is satisfied as an equality,
with µ = 1. The bound is also satisfied when R is smooth and M is compact (Corollary 4.6).

We are now ready to show that under some additional assumptions, the gradient of the
cost function converges to zero on the whole sequence of iterates. Here again we refer to
Proposition 4.5 for a simpler (but slightly stronger) set of assumptions that yield the same
result.

Theorem 4.4 Let {xk} be a sequence of iterates generated by Algorithm 1. Suppose that
all the assumptions of Theorem 4.2 are satisfied. Further suppose that ρ′ ∈ (0, 1

4), that f
is Lipschitz continuously differentiable (Definition 4.3), and that (24) is satisfied for some
µ > 0, δµ > 0. It then follows that

lim
k→∞

grad f(xk) = 0.

Proof.
Consider any index m such that grad f(xm) 6= 0. The Lipschitz property (23) yields

‖P 1←0
α grad f(x) − grad f(xm)‖ ≤ β1dist(x, xm)

for all x. Define scalars

ǫ =
1

2
‖gradf(xm)‖, r = min

(

‖gradf(xm)‖

2β1
, i(M)

)

= min

(

ǫ

β1
, i(M)

)

Define the ball Br(xm) := {x : dist(x, xm) < r}.
Then for any x ∈ Br(xm), we have

‖gradf(x)‖ = ‖P 0←1
α grad f(x)‖

= ‖P 0←1
α grad f(x) + grad f(xm) − grad f(xm)‖

≥ ‖grad f(xm)‖ − ‖P 0←1
α grad f(x) − grad f(xm)‖

≥ 2ǫ − β1dist(x, xm)

> 2ǫ − β1 min

(

‖gradf(xm)‖

2β1
, i(M)

)

≥ 2ǫ −
1

2
‖gradf(xm)‖

= ǫ.

If the entire sequence {xk}k≥m stays inside of the ball Br(xm), then we would have
‖gradf(xk)‖ > ǫ for all k ≥ m, which contradicts the results of Theorem 4.2. Then the
sequence eventually leaves the ball Br(xm).

Let the index l ≥ m be such that xl+1 is the first iterate after xm outside of Br(xm). Since
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‖gradf(xk)‖ > ǫ for k = m, m + 1, . . . , l, we have

f(xm) − f(xl+1) =
l

∑

k=m

f(xk) − f(xk+1)

≥
l

∑

k=m,xk 6=xk+1

ρ′ (mxk
(0) − mxk

(ηk))

≥

l
∑

k=m,xk 6=xk+1

ρ′c1‖gradf(xk)‖min

(

∆k,
‖gradf(xk)‖

‖Bk‖

)

≥
l

∑

k=m,xk 6=xk+1

ρ′c1ǫ min

(

∆k,
ǫ

β

)

.

We distinguish two cases. If ∆k > ǫ/β in at least one of the terms of the sum, then

f(xm) − f(xl+1) ≥ ρ′c1ǫ
ǫ

β
. (25)

In the other case, we have

f(xm) − f(xl+1) ≥ ρ′c1ǫ
l

∑

k=m,xk 6=xk+1

∆k ≥ ρ′c1ǫ
l

∑

k=m,xk 6=xk+1

‖ηk‖. (26)

If ‖ηk‖ > δµ in at least one term in the sum, then

f(xm) − f(xl+1) ≥ ρ′c1ǫδµ. (27)

Otherwise, (26) yields

f(xm) − f(xl+1) ≥ ρ′c1ǫ

l
∑

k=m,xk 6=xk+1

µd(xk, Rxk
(ηk))

= ρ′c1ǫµ
l

∑

k=m,xk 6=xk+1

d(xk, xk+1)

≥ ρ′c1ǫµr = ρ′c1ǫµmin

(

ǫ

β1
, i(M)

)

. (28)

It follows from (25), (27) and (28) that

f(xm) − f(xl+1) ≥ ρ′c1ǫ min

(

ǫ

β
, δµ,

ǫµ

β1
, i(M)µ

)

. (29)

Because {f(xk)}
∞
k=0 is decreasing and bounded below, we have

f(xk) ↓ f∗, (30)
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for some f∗ > −∞. It then follows from (29) that

f(xm) − f∗ ≥ f(xm) − f(xl+1)

≥ ρ′c1ǫ min

(

ǫ

β
, δµ,

ǫµ

β1
, i(M)µ

)

=
1

2
ρ′c1‖gradf(xm)‖min

(

‖gradf(xm)‖

2β
, δµ,

‖gradf(xm)‖µ

2β1
, i(M)µ

)

.

Assume for the purpose of contradiction that it is not the case that limm→∞ ‖gradf(xm)‖ =
0. Then there exists ω > 0 and an infinite sequence K such that

‖gradf(xk)‖ > ω, for all k ∈ K.

Then for k ∈ K, k ≥ m, we have

f(xk) − f∗ ≥
1

2
ρ′c1‖gradf(xk)‖min

(

‖gradf(xk)‖

2β
,
‖gradf(xk)‖µ

2β1
, i(M)µ

)

>
1

2
ρ′c1ω min

(

ω

2β
,

ωµ

2β1
, i(M)µ

)

which is a positive constant. This contradicts limk→∞(f(xk)−f∗) = 0, so that our hypothet-
ical assumption must be false, and

lim
m→∞

‖gradf(xm)‖ = 0.

�

Note that this theorem reduces gracefully to the classical R
n case, taking M = R

n endowed
with the classical inner product and Rx(ξ) := x + ξ. Then i(M) = +∞ > 0, R satisfies (24),
and the Lipschitz condition (23) reduces to the classical expression, which subsumes the
radially L-C1 condition.

The following proposition shows that the regularity conditions on f and f̂ required in
the previous theorems are satisfied under stronger but possibly easier to check conditions.
These conditions impose a bound on the Hessian of f and on the “acceleration” along curves
t 7→ R(tξ). Note also that all these conditions need only be checked on the level set {x ∈ M :
f(x) ≤ f(x0)}.

Proposition 4.5 Suppose that ‖grad f(x)‖ ≤ βg and ‖Hess f(x)‖ ≤ βH for some constants
βg, βH , and all x ∈ M . Moreover suppose that

‖D
dt

d
dt

R(tξ)‖ ≤ βD (31)

for some constant βD, for all ξ ∈ TM with ‖ξ‖ = 1 and all t < δD, where D
dt

denotes the
covariant derivative along the curve t 7→ R(tξ) (see [dC92, Ch. 2, Prop. 2.2]).
Then the Lipschitz-C1 condition on f (Definition 4.3) is satisfied with βL = βH ; the radially
Lipschitz-C1 condition on f̂ (Definition 4.1) is satisfied for δRL < δD and βRL = βH(1 +
βDδD) + βgβD; and the condition (24) on R is satisfied for values of µ and δµ satisfying
δµ < δD and 1

2βDδµ < 1
µ
− 1.
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Proof. By a standard Taylor argument (see Lemma 4.7), boundedness of the Hessian of f
implies the Lipschitz-C1 property of f .

For (24), define u(t) = R(tξ) and observe that

dist(x, R(tξ)) ≤

∫ t

0
‖u′(τ)‖ dτ

where
∫ t

0 ‖u
′(τ)‖ dτ is the length of the curve u between 0 and t. Using the Cauchy-Schwarz

inequality and the invariance of the metric by the connection, we have

∣

∣

d
dτ
‖u′(τ)‖

∣

∣ =
∣

∣

∣

d
dτ

√

gu(τ)(u′(τ), u′(τ))
∣

∣

∣
=

∣

∣

∣

∣

∣

gu(τ)(
D
dt

u′(τ), u′(τ))

‖u′(τ)‖

∣

∣

∣

∣

∣

≤
βD‖u′(τ)‖

‖u′(τ)‖
≤ βD

for all t < δD. Therefore

∫ t

0
‖u′(τ)‖ dτ ≤

∫ t

0
‖u′(0)‖ + βDτ dτ = ‖ξ‖t + 1

2βDt2 = t + 1
2βDt2,

which is smaller than t
µ

if 1
2βDt < 1

µ
− 1.

For the radially Lipschitz-C1 condition, let u(t) = R(tξ) and h(t) = f(u(t)) = f̂(tξ) with
ξ ∈ TxM , ‖ξ‖ = 1. Then

h′(t) = gu(t)(grad f(u(t)), u′(t))

and

h′′(t) = D
dt

gu(t)(grad f(u(t)), u′(t)) = gu(t)(
D
dt

grad f(u(t)), u′(t)) + gu(t)(grad f(u(t)),
D

dt
u′(t)).

Now, D
dt

grad f(u(t)) = ∇u′(t)grad f(u(t)) = Hess f(u(t))[u′(t)]. It follows that |h′′(t)| is
bounded on t ∈ [0, δD) by the constant βRL = βH(1 + βDδD) + βgβD. Then

|h′(t) − h′(0)| ≤

∫ t

0
|h′′(τ)| dτ ≤ tβRL.

�

In many practical cases, the cost function and the retraction are smooth and the Rie-
mannian manifold is compact. This is a comfortable situation, as the next result shows.

Corollary 4.6 (smoothness and compactness) If the cost function f and the retraction
R are smooth and the Riemannian manifold M is compact, then all the conditions in Propo-
sition 4.5 are satisfied.

Proof. This result comes from the fact that every continuous real function on a compact space
is bounded. The only nontrivial part is to show that the set {ξ ∈ TM : ‖ξ‖ = 1} is compact.
Compactness is a topological notion; recall that the topology of a manifold is the topology
induced by the topological basis formed by the collection of coordinate domains. First we need
to prove that every compact Riemannian manifold has a finite covering by compact subsets
of coordinate domains. This can be done via a result on paracompactness found in [Mun00,
Lem. 41.3]. Here we give a direct argument. Let M be a compact Riemannian manifold.
Since M is Riemannian, it is metrizable [O’N83, §5.18], thus it is a regular topological space.
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Let {Ai}i=1,...,n be an (open) covering of M by coordinate domains. Let C1 = M − ∪n
i=2Ai.

It is a closed—thus compact—set contained in A1. Since M is a regular space, it follows
that for all x in C1, there is an open set Vx containing x such that V x ⊂ A1. The collection
{Vx}x∈M is an open covering of the compact set C1, thus it admits a finite subcovering
{Vj}j=1,...,m. Let B1 = ∪m

j=1Vj . Then B1 is open, and B1 ⊂ A1, and {B1, A2, . . . , An} is still
an open covering of M . The same operation can now be performed on A2, to obtain an open
covering {B1, B2, . . . , An}. Finally, we have an open covering {Bi}i=1,...,n such that Bi ⊂ Ai,
i = 1, . . . , n. The collection {Bi}i=1,...,n is a covering of M by compacts such that Bi ⊂ Ai,
i = 1, . . . , n, as reqired.

Now let S := {ξ ∈ TM : ‖ξ‖ = 1}. We want to show that S is compact. Using the
construction above, let Si := {ξ ∈ TM : ‖ξ‖ = 1, πξ ∈ Bi}, where πξ denotes the foot of ξ,
and notice that S = ∪n

i=1Si. Since each Si is included in a coordinate domain, it is sufficient
to show that the coordinate expression of each Si is compact. Abusing notation, Si has the
coordinate expression {(x, ξ) : x ∈ Bi, ξ

igij(x)ξi = 1}. It is closed as the inverse image of a
closed set by a continuous function, and it is bounded by continuity and nondegeneracy of
the metric, hence it is compact, which completes the proof. �

4.2 Local convergence

We now state local convergence properties of Algorithm 1-2 (i.e., Algorithm 1 where the
trust-region subproblem (7) is solved approximately with Algorithm 2). We first state a few
preparation lemmas.

As before, (M, g) is a complete Riemannian manifold of dimension d, and R is a retraction
on M (Definition 2.1). The first lemma is a first-order Taylor formula for tangent vector fields.
(Similar Taylor developments on manifolds can be found in [Smi94].)

Lemma 4.7 (Taylor) Let x ∈ M , let V be a normal neighborhood of x, and let ζ be a C1

tangent vector field on M . Then, for all y ∈ V ,

P 0←1
γ ζy = ζx + ∇ξζ +

∫ 1

0

(

P 0←τ
γ ∇γ′(τ)ζ −∇ξζ

)

dτ, (32)

where γ is the unique minimizing geodesic satisfying γ(0) = x and γ(1) = y, and ξ =
Exp−1

x y = γ′(0).

Proof. Start from

P 0←1
γ ζy = ζx +

∫ 1

0

d

dτ
P 0←τ

γ ζ dτ = ζx + ∇ξζ +

∫ 1

0

(

d

dτ
P 0←τ

γ ζ −∇ξζ

)

dτ

and use the formula for the connection in terms of the parallel transport, see [dC92, Ch. 2,
Ex. 2], to obtain

d

dτ
P 0←τ

γ ζ =
d

dǫ
P 0←τ

γ P τ←τ+ǫ
γ ζ

∣

∣

∣

∣

ǫ=0

= P 0←τ
γ ∇γ′ζ.

� We use this lemma to show that in
some neighborhood of a nondegenerate local minimizer v of f , the norm of the gradient of f
can be taken as a measure of the Riemannian distance to v.
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Lemma 4.8 Let v ∈ M and let f be a C2 cost function such that grad f(v) = 0 and Hess f(v)
is positive definite with maximal and minimal eigenvalues λmax and λmin. Then, given c0 <
λmin and c1 > λmax, there exists a neighborhood V of v such that, for all x ∈ V , it holds that

c0dist(v, x) ≤ ‖grad f(x)‖ ≤ c1dist(v, x). (33)

Proof. From Taylor (Lemma 4.7), it follows that

P 0←1
γ grad f(v) = Hess f(v)[γ′(0)] +

∫ 1

0

(

P 0←τ
γ Hess f(γ(τ))[γ′(τ)] − Hess f(v)[γ′(0)]

)

dτ.

(34)
Since f is C2 and since ‖γ′(τ)‖ = dist(v, x) for all τ ∈ [0, 1], we have the following bound for
the integral in (34):

‖

∫ 1

0
P 0←τ

γ Hess f(γ(τ))[γ′(τ)] − Hess f(v)[γ′(0)] dτ‖

= ‖

∫ 1

0

(

P 0←τ
γ ◦ Hess f(γ(τ)) ◦ P τ←0

γ − Hess f(v)
)

[γ′(0)] dτ‖ ≤ ǫ(dist(v, x))dist(v, x)

where limt→0 ǫ(t) = 0. Since Hess f(v) is nonsingular, it follows that |λmin| > 0. Take V
sufficiently small so that λmin − ǫ(dist(v, x)) > c0 and λmax + ǫ(dist(v, x)) < c1 for all x in V .
Then, using the fact that the parallel translation is an isometry, (33) follows from (34). �

We need a relation between the gradient of f at Rx(ξ) and the gradient of f̂x at ξ.

Lemma 4.9 Let R be a retraction on M and let f be a C1 cost function on M . Then, given
v ∈ M and c5 > 1, there exists a neighborhood V of v and δ > 0 such that

‖grad f(R(ξ))‖ ≤ c5‖grad f̂(ξ)‖

for all x ∈ V and all ξ ∈ TxM with ‖ξ‖ ≤ δ, where f̂ is as in (11).

Proof. Consider a parameterization of M at v, and consider the corresponding parameteriza-
tion of TM (see [dC92, Ch. 0, Example 4.1]). Using Einstein’s convention (see, e.g., [Sak96]),
and denoting ∂if by f,i, we have

f̂x,i(ξ) = f,j(R(ξ))Aj
i (ξ),

where A(ξ) stands for the differential of Rx at ξ ∈ TxM . Then,

‖grad f̂x(ξ)‖2 = f̂x,i(ξ)g
ij(x)f̂x,j(ξ) = f,k(Rx(ξ))Ak

i (ξ)g
ij(x)Aℓ

j(ξ)f,ℓ(Rx(ξ))

and
‖grad f(Rx(ξ))‖2 = f,j(Rx(ξ))gij(Rx(ξ))f,j(Rx(ξ)).

The conclusion follows by a real analysis argument, invoking the smoothness properties of R
and g, compactness of the set {(x, ξ) : x ∈ V, ξ ∈ TxM, ‖ξ‖ ≤ δ}, and using A(0x) = id. �

Finally, we need the following result concerning the Hessian at stationary points.

Lemma 4.10 Let R be a C2 retraction, let f be a C2 cost function, and let v be a stationary
point of f (i.e., grad f(v) = 0). Then Hess f̂v(0v) = Hess f(v).
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Proof. Let A denote the differential of Rv at 0v. Working in a parameterization of M around
v and using Einstein’s convention, one obtains (see [Sak96] for the notation)

(

Hess f̂v

)i

j
= gik∂j∂kf̂v = gik∂j∂k (f ◦ Rv) = gik∂j

(

∂ℓfAℓ
k

)

= gik∂ℓf∂jA
ℓ
k + gik∂ℓ∂jfAℓ

k

and
(Hess f)i

j = gik∇k∂jf = gik∂k∂jf − gikΓℓ
kj∂ℓf

where Γℓ
kj are the Christoffel symbols. At v, one has ∂ℓf = 0 and Aℓ

k is the identity, hence

Hess f̂v(0v) = Hess f(v). � Away from the stationary
points, the Hessians Hess f(x) and Hess f̂x(0x) do not coincide. They do coincide if a “zero
acceleration” condition (35) is imposed on the retraction. This result will not be used in the
convergence analysis but it can be useful in applications, as explained after (9).

Lemma 4.11 Suppose that

D

dt

(

d

dt
R(tξ)

)

|t=0 = 0, for all ξ ∈ TM, (35)

where D
dt

denotes the covariant derivative along the curve t 7→ R(tξ) (see [dC92, Ch. 2,

Prop. 2.2]). Then Hess f(x) = Hess f̂(0x).

Proof. Observe that D2f(x)[ξ, ξ] = d2

dt2
f(Expxtξ)|t=0 and D2f̂(0x)[ξ, ξ] = d2

dt2
f(Rx(tξ))|t=0 =

d
dt

(df d
dt

Rx(tξ))|t=0 = ∇ξdfξ + df D
dt

( d
dt

Rx(tξ))|t=0. The result follows from the definitions
of the Hessians and the one-to-one correspondance between symmetric bilinear forms and
quadratic forms. � We now state and prove the local convergence results. The first result
states that the nondegenerate local minima are attractors of Algorithm 1-2. The principle of
the argument is closely related to the Capture Theorem, see [Ber95, Theorem 1.2.5].

Theorem 4.12 (local convergence to local minima) Consider Algorithm 1-2—i.e., the
Riemannian trust-region algorithm where the trust-region subproblems (7) are solved using
the truncated CG algorithm with stopping criterion (10)—with all the assumptions of Theo-
rem 4.2. Let v be a nondegenerate local minimizer of f , i.e., grad f(v) = 0 and Hess f(v) is
positive definite. Assume that x 7→ ‖H−1

x ‖ is bounded on a neighbourhood of v and that (24)
holds for some µ > 0 and δµ > 0. Then there exists a neighborhood V of v such that, for all
x0 ∈ V , the sequence {xk} generated by Algorithm 1-2 converges to v.

Proof. Take δ1 > 0 with δ1 < δµ such that Bδ1(v) is a neighborhood of v, which contains only
v as stationary point, and such that f(x) > f(v) for all x ∈ B̄δ1(v). Take δ2 small enough
that for all x ∈ Bδ2(v), it holds that ‖η∗(x)‖ ≤ µ(δ1−δ2), where η∗ is the (unique) solution of
Hη∗ = −grad f(x); such a δ2 exists because of Lemma 4.8 and the bound on ‖H−1

x ‖. Consider
a level set L of f such that V := L∩Bδ1(v) is a subset of Bδ2(v); invoke that f ∈ C1 to show
that such a level set exists. Then, V is a neighborhood of v and for all x ∈ V , we have

dist(x, x+) ≤
1

µ
‖ηtCG(x,∆)‖ ≤

1

µ
‖η∗‖ ≤ (δ1 − δ2),

where we used the fact that ‖η‖ is increasing along the truncated CG process [Ste83, Thm 2.1].
It follows from the equation above that x+ is in Bδ1(v). Moreover, since f(x+) ≤ f(x), it
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follows that x+ ∈ V . Thus V is invariant. But the only stationary point of f in V is v, so
{xk} goes to v whenever x0 is in V . � Now we study the order of convergence of the
sequences that converge to a nondegenerate local minimizer.

Theorem 4.13 (order of convergence) Consider Algorithm 1-2 with stopping criterion (10).
Suppose that R is a C2 retraction, that f is a C2 cost function on M , and that

‖Hxk
− Hess f̂xk

(0k)‖ ≤ βH‖grad f(xk)‖, (36)

that is, Hxk
is a sufficiently good approximation of Hess f̂xk

(0xk
). Let v ∈ M be a nondegen-

erate local minimizer of f , (i.e., grad f(v) = 0 and Hess f(v) is positive definite). Further
assume that Hess f̂x is Lipschitz-continuous at 0x uniformly in x in a neighborhood of v, i.e.,
there exist βL2 > 0, δ1 > 0 and δ2 > 0 such that, for all x ∈ Bδ1(v) and all ξ ∈ Bδ2(0x), there
holds

‖Hess f̂x(ξ) − Hess f̂x(0x)‖ ≤ βL2‖ξ‖, (37)

where ‖ · ‖ in the left-hand side denotes the operator norm in TxM defined as in (15).
Then there exists c > 0 such that, for all sequences {xk} generated by the algorithm converging
to v, there exists K > 0 such that for all k > K,

dist(xk+1, v) ≤ c (dist(xk, v))min{θ+1,2} (38)

with θ > 0 as in (10).

Proof. We will show below that there exist ∆̃, c0, c1, c2, c3, c
′
3, c4, c5 such that, for all

sequences {xk} satisfying the conditions asserted, all x ∈ M , all ξ with ‖ξ‖ < ∆̃, and all k
greater than some K, there holds

c0dist(v, xk) ≤ ‖grad f(xk)‖ ≤ c1dist(v, xk), (39)

‖ηk‖ ≤ c4‖gradmxk
(0)‖ ≤ ∆̃, (40)

ρk > ρ′, (41)

‖grad f(Rxk
(ξ))‖ ≤ c5‖grad f̂xk

(ξ)‖, (42)

‖gradmxk
(ξ) − grad f̂xk

(ξ)‖ ≤ c3‖ξ‖
2 + c′3‖grad f(xk)‖ ‖ξ‖, (43)

‖gradmxk
(ηk)‖ ≤ c2‖gradmxk

(0)‖θ+1, (44)

where {ηk} is the sequence of update vectors corresponding to {xk}. With these results at
hand the proof is concluded as follows. For all k > K, it follows from (39) and (41) that

c0dist(v, xk+1) ≤ ‖grad f(xk+1)‖ = ‖grad f(Rxk
(ηk))‖,

from (42) and (40) that

‖grad f(Rxk
(ηk))‖ ≤ c5‖grad f̂xk

(ηk)‖,

from (40) and (43) and (44) that

‖grad f̂xk
(ηk)‖ ≤ ‖gradmxk

(ηk) − grad f̂xk
(ηk)‖ + ‖gradmxk

(ηk)‖

≤ (c3c
2
4 + c′3c4)‖gradmxk

(0)‖2 + c2‖gradmxk
(0)‖1+θ,
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and from (39) that
‖gradmxk

(0)‖ = ‖grad f(xk)‖ ≤ c1dist(v, xk).

Consequently, taking K larger if necessary so that dist(v, xk) < 1 for all k > K, it follows
that

c0dist(v, xk+1)

≤ ‖grad f(xk+1)‖ (45)

≤ c5(c3c
2
4 + c′3c4)‖grad f(xk)‖

2 + c5c2‖grad f(xk)‖
θ+1 (46)

≤ c5((c3c
2
4 + c′3c4)c

2
1(dist(v, xk))

2 + c2c
1+θ
1 (dist(v, xk))

1+θ)

≤ c5((c3c
2
4 + c′3c4)c

2
1 + c2c

1+θ
1 )(dist(v, xk))

min{2,1+θ}

for all k > K, which is the desired result.
It remains to prove the bounds (39)-(44).
Equation (39) comes from Lemma 4.8 and is due to the fact that v is a nondegenerate

critical point.
We prove (40). Since {xk} converges to the nondegenerate local minimizer v where

Hess f̂v(0v) = Hess f(v) (see Lemma 4.10) and since Hess f(v) is positive definite with f ∈ C2,
it follows follows from the approximation condition (36) and from (39) that there exist c4 > 0
such that ‖H−1

xk
‖ < c4 for all k greater than some K. Given a k > K, let η∗ be the solution

of Hxk
η∗ = −gradmxk

(0). If follows that ‖η∗‖ ≤ c4‖gradmxk
(0)‖. Then, since the sequence

of ηj
k’s constructed by the tCG inner iteration (Algorithm 2) is strictly increasing in norm

(see [Ste83, Theorem 2.1]) and would eventually reach η∗ at j = d, it follows that (40) holds.
The second inequality in (40) comes for any given ∆̃ by choosing K larger if necessary.

We prove (41). Let γk denote ‖grad f(xk)‖. It follows from the definition of ρk that

ρk − 1 =
mxk

(ηk) − f̂xk
(ηk)

mxk
(0xk

) − mxk
(ηk)

. (47)

From Taylor’s theorem, there holds

f̂xk
(ηk) = f̂xk

(0xk
) + gxk

(grad f(xk), ηk) +

∫ 1

0
gxk

(Hess f̂xk
(τηk)[ηk], ηk)(1 − τ)dτ.

It follows that

∣

∣

∣
mxk

(ηk) − f̂xk
(ηk)

∣

∣

∣
=

∣

∣

∣

∣

∫ 1

0

(

gxk
(Hxk

[ηk], ηk) − gxk
(Hess f̂xk

(τηk)[ηk], ηk)
)

(1 − τ)dτ

∣

∣

∣

∣

≤

∫ 1

0

∣

∣

∣
gxk

((Hxk
− Hess f̂xk

(0xk
))[ηk], ηk)

∣

∣

∣
(1 − τ)dτ

+

∫ 1

0

∣

∣

∣
gxk

((Hess f̂xk
(0xk

) − Hess f̂(τηk))[ηk], ηk)
∣

∣

∣
(1 − τ)dτ

≤
1

2
βHγk‖ηk‖

2 +
1

6
βL2‖ηk‖

3.

It then follows from (47), using the Cauchy bound (14), that

|ρk − 1| ≤
(3βHγk + βL2‖ηk‖) ‖ηk‖

2

6γk min{∆k, γk/β}
,
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where β is an upper bound on the norm of Hxk
. Since ‖ηk‖ ≤ ∆k and ‖ηk‖ ≤ c4γk, it follows

that

|ρk − 1| ≤
(3βH + βL2c4) (min{∆k, c4γk})

2

6 min{∆k, γk/β}
. (48)

Either, ∆k is active in the denominator of (48), in which case we have

|ρk − 1| ≤
(3βH + βL2c4) ∆kc4γk

6∆k

=
(3βH + βL2c4) c4

6
γk.

Or, γk/β is active in the denominator of (48), in which case we have

|ρk − 1| ≤
(3βH + βL2c4) (c4γk)

2

6γk/β
=

(3βH + βL2c4) c2
4β

6
γk.

In both cases, since limk→∞ γk = 0 in view of (39), if follows that limk→∞ ρk = 1.
Equation (42) comes from Lemma 4.9.
We prove (43). It follows from Taylor’s formula (Lemma 4.7, where the parallel translation

becomes the identity since the domain of f̂xk
is the Euclidean space Txk

M) that

grad f̂xk
(ξ) = grad f̂xk

(0xk
) + Hess f̂xk

(0xk
)[ξ] +

∫ 1

0

(

Hess f̂xk
(τξ) − Hess f̂xk

(0xk
)
)

[ξ] dτ.

The conclusion comes by the Lipschitz condition (37) and the approximation condition (36).
Finally, equation (44) comes from the stopping criterion (10) of the inner iteration. More

precisely, the truncated CG loop (Algorithm 2) terminates if either g(δj ,Hxk
δj) ≤ 0, or

‖ηj+1‖ ≥ ∆, or the criterion (10) is satisfied. Since {xk} converges to v and Hess f(v) is
positive-definite, if follows that Hxk

is positive-definite for all k greater than a certain K.
Therefore, for all k > K, the criterion g(δj ,Hxk

δj) ≤ 0 is never satisfied. In view of (40)
and (41), it can be shown that the trust-region is eventually inactive. Therefore, increasing
K if necessary, the criterion ‖ηj+1‖ ≥ ∆ is never satisfied for all k > K. In conclusion, for
all k > K, the stopping criterion (10) is satisfied each time a computed ηk is returned by the
tCG loop. Therefore, the tCG loop behaves as a classical linear CG method; see, e.g., [NW99,
Section 5.1]. Consequently, gradmxk

(ηj) = rj for all j. Choose K such that for all k > K,
‖grad f(xk)‖ = ‖gradmxk

(0)‖ is so small—it converges to zero in view of (39)—that the
stopping criterion (10) yields

‖gradmxk
(ηj)‖ = ‖rj‖ ≤ ‖r0‖

1+θ = ‖gradmxk
(0)‖1+θ or k ≥ d. (49)

If the second condition in (49) is active, then it means that the linear CG process has been
completed, so gradmxk

(ηj
k) = 0, and (44) trivially holds. On the other hand, if the first

condition in (49) is active, then we obtain (44) with c2 = 1. �

The constants in the proof of Theorem 4.13 can be chosen as c0 < λmin, c1 > λmax,
c4 > 1/λmin, c5 > 1, c3 ≥ βL2, c′3 ≥ βH, c2 ≥ 1, where λmin and λmax are the smallest and
largest eigenvalue of Hess f(v) respectively. Consequently, the constant c in the convergence
bound (38) can be chosen as

c >
1

λmin

(

(

βL2/λ2
min + βH/λmin

)

λ2
max + λ1+θ

max

)

. (50)

A nicer-looking bound holds when convergence is evaluated in terms of the norm of the
gradient, as expressed in the theorem below which is a direct consequence of (45)-(46).
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Theorem 4.14 Under the assumptions of Theorem 4.13, if θ +1 < 2, then given cg > 1 and
{xk} generated by the algorithm, there exists K > 0 such that

‖grad f(xk+1)‖ ≤ cg‖grad f(xk)‖
θ+1

for all k > K.

Nevertheless, (45)-(46) suggests that the algorithm may not perform well when the relative
gap λmax/λmin is large. In spite of this, numerical experiments on eigenvalue problems have
shown that the method tends to behave as well, or even better than other methods in the
presence of a small relative gap [ABG06].

4.3 Discussion

The main global convergence result (Theorem 4.4) shows that RTR-tCG (Algorithm 1-2)
converges to a set of stationary points of the cost function for all initial conditions. This is
an improvement on the pure Newton method, for which only local convergence results exist.
However, the convergence theory falls short of showing that the algorithm always converges
to a local minimizer. This is not surprising: since we have ruled out the possibility of checking
positive-definiteness of the Hessian of the cost function, we have no way of testing whether
a stationary point is a local minimizer or not (note as an aside that even checking positive-
definiteness of the Hessian is not always sufficient for determining if a stationary point is a
local minimizer or not: if the Hessian is singular and nonnegative definite, then no conclusion
can be drawn). In fact, for the vast majority of optimization methods, only convergence
to stationary points can be secured unless some specific assumptions (like convexity) are
made; see, e.g., [Pol97, Ch. 1]. Nevertheless, it is observed in numerical experiments with
random initial conditions that the algorithm systematically converges to a local minimizer;
convergence to a saddle point is only observed on specifically crafted problems, for example
when the iteration is started on a point that is a saddle point in computer arithmetic. This is
due to the fact that the algorithm is a descent method, i.e., f(xk+1) < f(xk) whenever xk+1 6=
xk. Therefore, convergence to saddle points or local minima is unstable under perturbations.

Concerning the order of convergence to local minima, we point out that there are cases
where the bound (38) also holds with “min{θ + 1, 2}” replaced by “min{θ + 1, 3}”, i.e., cubic
convergence can be achieved. This is related to the cubic convergence of the Riemannian
Newton method when the cost function is symmetric around the local minimizer v, that is,
f(Expx(ξ)) = f(Expx(−ξ)). This issue is of theoretical importance in applications where
state-of-the-art methods converge cubically. Notice however that a cubic method may be
less efficient than a quadratic method, even as k goes to infinity (as pointed out in [DV00],
concatenating two steps of a quadratic method yields a quartic method).

5 Applications

In this section, we briefly review the essential “ingredients” necessary for applying the RTR-
tCG method (Algorithm 1-2) and we present two examples in detail. These examples are
presented as illustrations: comparing the resulting algorithms with existing methods and
conducting numerical experiments is beyond the scope of this paper. For the problem of
computing extreme eigenspaces of matrices, numerical experiments show that the RTR-tCG
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algorithm can match and sometimes dramatically outperform existing algorithms; experi-
ments, comparisons and further developments are presented in [ABG04b, ABG06, ABGS05].
Other applications that would lend themselves nicely to an RTR approach include reduced-
rank approximation to matrices, the Procrustes problem, nearest-Jordan structure, trace
minimization with a nonlinear term, simultaneous Schur decomposition, and simultaneous
diagonalization; see, e.g., [HM94, LE00].

5.1 Checklist

The following elements are required for applying the RTR method to optimizing a cost func-
tion f on a Riemannian manifold (M, g): (i) a tractable numerical representation for points
x on M , for tangent spaces TxM , and for the inner products gx(·, ·) on TxM ; (ii) choice
of a retraction Rx : TxM → M (Definition 2.1); (iii) formulas for f(x), grad f(x) and the
approximate Hessian Hx that satisfies the properties required for the convergence results in
Section 4.

Choosing a good retraction amounts to finding an approximation of the exponential
mapping that can be computed with low computational cost. Guidelines can be found
in [CI01, DN04]. This is an important open research topic.

Formulas for grad f(x) and Hess f̂x(0x) can be obtained by identification in a Taylor
expansion of the lifted cost function f̂x, namely

f̂x(η) = f(x) + gx(grad f(x), η) +
1

2
gx(Hess f̂x(0x)[η], η) + O(‖η‖3),

where grad f(x) ∈ TxM and Hess f̂x(0x) is a linear transformation of TxM . In order to obtain
an “approximate Hessian” Hx that satisfies the approximation condition (36), one can pick
Hx := Hess(f ◦ R̃x)(0x) where R̃x is any retraction. Then, assuming sufficient smoothness
of f , R and R̃, the bound (36) follows from Lemmas 4.8 and 4.10. In particular, the choice
R̃x = Expx yields Hx = ∇grad f(x). If M is an embedded submanifold of a Euclidean space,
then ∇ηgrad f(x) = πDgrad f(x)[η] where π denotes the orthogonal projector onto TxM .

5.2 Symmetric eigenvalue decomposition

Let M be the orthogonal group,

M = On = {Q ∈ R
n×n : QT Q = In}.

This manifold is an embedded submanifold of R
n×n. It can be shown that TQOn = {QΩ :

Ω = −ΩT }; see, e.g., [HM94]. The canonical Euclidean metric g(A, B) = trace(AT B) on
R

n×n induces on On the metric

gQ(QΩ1, QΩ2) = trace(ΩT
1 Ω2). (51)

A retraction RQ : TQOn → On must be chosen that satisfies the properties stated in
Section 2. The Riemannian geodesic-based choice is

RQ(QΩ) = ExpQ(QΩ) = Q exp(QT (QΩ)) = Q exp(Ω)

where exp denotes the matrix exponential. However, the matrix exponential is numerically
expensive to compute (the computational cost is comparable to solving an n × n eigenvalue
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problem!), which makes it essential to use computationally cheaper retractions. Given a Lie
group G (here the orthogonal group) and its Lie algebra g (here the set of skew-symmetric
matrices), there exist several ways of approximating exp(Ω), Ω ∈ g, by an R(Ω) such that
R(Ω) ∈ G if B ∈ g; these techniques are well known in geometric integration (see, e.g., [CI01]
and references therein) and can be applied to our case where G is the orthogonal group On.
For example, exp(Ω) can be approximated by a product of plane (or Givens) rotations [GV96]
in such a way that R is a second order approximation of the exponential; see [CI01]. This
approach has the advantage of being very efficient computationally.

Consider the cost function

f(Q) = trace(QT AQN)

where A and N are given n×n symmetric matrices. For N = diag(µ1, . . . , µn), µ1 < . . . < µn,
the minimum of f is realized by the orthonormal matrices of eigenvectors of A sorted in
increasing order of corresponding eigenvalue; see, e.g., [HM94, Section 2.1]. Assume that the
retraction R approximates the exponential at least to order 2. With the metric g defined as
in (51), we obtain

f̂Q(QΩ) := f(RQ(QΩ)) = trace((I + Ω +
1

2
Ω2 + O(Ω3))T QT AQ(I + Ω +

1

2
Ω2 + O(Ω3))N)

= f(Q) + 2trace(ΩT QT AQN) + trace(ΩT QT AQΩN − ΩT ΩQT AQN) + O(Ω3)

from which it follows

Df̂Q(0)[QΩ] = 2trace(QT AQΩN)

1

2
D2f̂Q(0)[QΩ1, QΩ2] = trace(ΩT

1 QT AQΩ2N −
1

2
(ΩT

1 Ω2 + ΩT
2 Ω1)Q

T AQN)

grad f̂Q(0)= grad f(Q) = Q[QT AQ, N ]

Hess f̂Q(0)[QΩ]= Hess f(Q)[QΩ] =
1

2
Q[[QT AQ,Ω], N ] +

1

2
Q[[N, Ω], QT AQ]

where [A, B] := AB − BA. It is now straightforward to replace these expressions in the
general formulation of Algorithm 1-2 and obtain a practical matrix algorithm.

An alternative way to obtain Hess f̂Q(0) is to exploit Lemma 4.11 which yields Hess f̂Q(0) =
∇grad f(Q). Since the manifold M is an embedded Riemannian submanifold of R

n×p, the
covariant derivative ∇ is obtained by projecting the derivative in R

n×p onto the tangent
space to M ; see [dC92, Ch. 2, sec. 1] or [Boo75, VII.2]. We obtain Hess f(Q)[QΩ] =
Qskew(Ω[QT QQ, N ] + [ΩT QT AQ + QT AQΩ, N ], which yields the same result as above.

5.3 Computing an extreme eigenspace of a symmetric definite matrix pen-

cil

We assume that A and B are n × n symmetric matrices and that B is positive definite.
An eigenspace Y of (A, B) satisfies B−1Ay ∈ Y for all y ∈ Y, which can also be written
B−1AY ⊆ Y or AY ⊆ BY. The simplest example is when Y is spanned by a single eigenvector
of (A, B), i.e., a nonvanishing vector y such that Ay = λBy for some eigenvalue λ. More
generally, an eigenspace can be spanned by a subset of eigenvectors of (A, B). For more
details we refer to the review of the generalized eigenvalue problem in [Ste01].
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Let λ1 ≤ . . . ≤ λp < λp+1 ≤ . . . ≤ λn be the eigenvalues of the pencil (A, B). We
consider the problem of computing the (unique) eigenspace V of (A, B) associated to the
p leftmost eigenvalues (in other words, V is characterized by V = colsp(V ) where AV =
BV diag(λ1, . . . , λp) and V T V = I). We will call V the leftmost p-dimensional eigenspace
of the pencil (A, B). Note that the algorithms we are about to present work equally well
for computing the rightmost eigenspace: replace A by −A throughout and notice that the
leftmost eigenspace of −A is the rightmost eigenspace of A.

It is well known (see, e.g., [SW82, ST00]) that the leftmost eigenspace V of (A, B) is the
minimizer of the Rayleigh cost function

f(colsp(Y )) = trace((Y T AY )(Y T BY )−1) (52)

where Y is full-rank n× p and colsp(Y ) denotes the column space of Y . It is readily checked
that the right-hand side only depends on colsp(Y ).

The domain M of the cost function f is the set of p-dimensional subspaces of R
n, called the

Grassmann manifold and denoted by Grass(p, n). A difficulty with the Grassmann manifold
is that it is not directly defined as a submanifold of a Euclidean space (in contrast to the
orthogonal group considered in Section 5.2). The first action to take is thus to devise a matrix
representation of the elements of Grass(p, n) and its tangent vectors. This can be done in
several ways.

A possibility is to rely on the one-to-one correspondence between subspaces and projectors;
this idea is detailed in [MS85]. Another possibility is to rely on the definition of Grass(p, n)
as a quotient of Lie groups; see [EAS98] and references therein. Yet another possibility is to
rely on coordinate charts on the Grassmannian (see, e.g., [HM94, Section C4]); this approach
is appealing because it uses a minimal set of variables, but it has the drawback of relying on
arbitarily fixed reference points.

A fourth way, which we will follow here, is to consider Grass(p, n) as the quotient R
n×p
∗ /GLp

of the locally Euclidean space R
n×p
∗ (the set of full-rank n×p matrices) by the set of transfor-

mations that preserve the column space. This approach was developed in [AMS04]. The
principle is to allow a subspace to be represented by any n × p matrix whose columns
span the subspace; that is, the subspaces are represented by bases (which are allowed to be
nonorthonormal, although in practical computations it is often desirable to require some form
of orthonormalization). This representation is particularly appropriate in the scope of numeri-
cal computations. The set of matrices that represent the same subspace as a matrix Y ∈ R

n×p
∗

is the fiber Y GLp = {Y M : det(M) 6= 0}. The vertical space at Y is VY = {Y M : M ∈ R
p×p}.

A real function h on Grass(p, n) is represented by its lift h↑(Y ) = h (colsp(Y )). To represent
a tangent vector ξ to Grass(p, n) at a point Y = colsp(Y ), first define a horizontal space HY

whose direct sum with VY is the whole R
n×p; then ξ is uniquely represented by its horizontal

lift ξ↑Y defined by the following two conditions: (i) ξ↑Y ∈ HY and (ii) Dh(Y)[ξ] = Dh↑(Y )[ξ↑Y ]
for all real functions h on Grass(p, n). Therefore, the horizontal space HY represents the tan-
gent space TYGrass(p, n).

In this section, with a view to simplifying the derivation of the gradient and Hessian of
the Rayleigh cost function (52), we define the horizontal space as

HY = {Z ∈ R
n×p : Y T BZ = 0},

which reduces to the definition in [AMS04] when B is the identity. We then define a non-
canonical metric on Grass(p, n) as

gY(ξ, ζ) = trace
(

(Y T BY )−1ξT
↑Y ζ↑Y

)

. (53)
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From now on, the definitions of the gradient, Hessian and Riemannian connection will be
with respect to the metric (53). We will use the retraction

RY(ξ) = colsp(Y + ξ↑Y ) (54)

where Y = colsp(Y ).
For the Rayleigh cost function (52), using the notation

PU,V = I − U(V T U)−1V T (55)

for the projector parallel to the span of U onto the orthogonal complement of the span of V ,
we obtain

f̂Y(ξ) = f(RY(ξ)) = trace
(

(

(Y + ξ↑Y )T B(Y + ξ↑Y )
)−1 (

(Y + ξ↑Y )T A(Y + ξ↑Y )
)

)

= trace
(

(Y T BY )−1Y T AY
)

+ 2trace
(

(Y T BY )−1ξT
↑Y AY

)

+ trace
(

(Y T BY )−1ξT
↑Y

(

Aξ↑Y − Bξ↑Y (Y T BY )−1(Y T AY )
))

+ HOT

= trace
(

(Y T BY )−1Y T AY
)

+ 2trace
(

(Y T BY )−1ξT
↑Y PBY,BY AY

)

+ trace
(

(Y T BY )−1ξT
↑Y PBY,BY

(

Aξ↑Y − Bξ↑Y (Y T BY )−1(Y T AY )
))

+ HOT,

(56)

where the introduction of the projectors do not modify the expression since PBY,BY ξ↑Y = ξ↑Y .
By identification, using the noncanonical metric (53), we obtain

(grad f(Y))↑Y =
(

grad f̂Y(0)
)

↑Y
= 2PBY,BY AY (57)

and
(

Hess f̂Y(0Y)[ξ]
)

↑Y
= 2PBY,BY

(

Aξ↑Y − Bξ↑Y (Y T BY )−1(Y T AY )
)

. (58)

Notice that Hess f̂Y(0Y) is symmetric with respect to the metric, as required.
We choose to take

HY = Hess f̂Y(0Y). (59)

Therefore, the approximation condition (36) is trivially satisfied. The model (7) is thus

mY(ξ) = f(Y) + gY(grad f(Y), ξ) +
1

2
gY(HYξ, ξ)

= trace
(

(Y T BY )−1Y T AY
)

+ 2trace
(

(Y T BY )−1ξT
↑Y AY

)

+ trace
(

(Y T BY )−1ξT
↑Y

(

Aξ↑Y − Bξ↑Y (Y T BY )−1Y T AY
))

.

(60)

Since the Rayleigh cost function (52) is smooth on Grass(p, n)—recall that B is positive
definite—and since Grass(p, n) is compact, it follows that all the assumptions involved in the
convergence analysis of the general RTR-tCG algorithm (Section 4) are satisfied. The only
complication is that we do not have a closed-form expression for the distance involved in
the superlinear convergence result (38). (Since the metric (53) is different from the canonical
metric, the formulas given in [AMS04] do not apply.) But since B is fixed and positive definite,
the distances induced by the noncanonical metric (53) and by the canonical metric—(53) with
B := I—are locally equivalent, and therefore for a given sequence both distances yield the
same rate of convergence.
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We have now all the required information to use the RTR-tCG method (Algorithm 1-
2) for minimizing the Rayleigh cost function (52) on the Grassmann manifold Grass(p, n)
endowed with the noncanonical metric (53). This yields the following matrix version of the
inner iteration. (We omit the horizontal lift notation for conciseness.) We use the notation

HY [Z] = PBY,BY (AZ − BZ(Y T BY )−1Y T AY ). (61)

Note that the omission of the factor 2 in both the gradient and the Hessian does not affect
the sequence {η} generated by the tCG algorithm.

Algorithm 3 (tCG for (A, B)) Given two symmetric n×n matrices A and B with B pos-
itive definite, and a B-orthonormal full-rank n × p matrix Y (i.e., Y T BY = I).
Set η0 = 0 ∈ R

n×p, r0 = PBY,BY AY , δ0 = −r0;
for j = 0, 1, 2, . . . until a stopping criterion is satisfied, perform the iteration:

if trace
(

δT
j HY [δj ]

)

≤ 0

Compute τ > 0 such that η = ηj + τδj

satisfies trace
(

ηT η
)

= ∆;
return η;

Set αj = trace
(

rT
j rj

)

/trace
(

δT
j HY [δj ]

)

;

Set ηj+1 = ηj + αjδj;

if trace
(

(

ηj+1
)T

ηj+1
)

≥ ∆

Compute τ ≥ 0 such that η = ηj + τδj satisfies trace
(

ηT η
)

= ∆;
return η;

Set rj+1 = rj + αHY [δj ];

Set βj+1 = trace
(

rT
j+1rj+1

)

/trace
(

rT
j rj

)

;

Set δj+1 = −rj+1 + βj+1δj;
end (for).

According to the retraction formula (54), the returned η yields a candidate new iterate

Y+ = (Y + η)M

where M is chosen such that Y T
+ BY+ = I. The candidate is accepted or rejected and the

trust-region radius is updated as prescribed in the outer RTR method (Algorithm 1), where
ρ is computed using m as in (60) and f̂ as in (56).

The resulting algorithm converges to eigenspaces of (A, B)—which are the stationary
points of the cost function (52)—, and convergence to the leftmost eigenspace V is expected
to occur in practice since the other eigenspaces are numerically unstable. Moreover, since V
is a nondegenerate local minimizer (under our assumption that λp < λp+1), it follows that
the rate of convergence is min{θ + 1, 2}, where θ is the parameter appearing in the stopping
criterion (10) of the inner (tCG) iteration.

This algorithm is further developed in [ABGS05]. Relations with other methods are
investigated in [ABG06].

6 Conclusion

We have proposed a trust-region approach for optimizing a smooth function on a Riemannian
manifold. The method improves on the well-known Riemannian Newton method of Smith and
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Udrişte in three ways. First, the exponential mapping is relaxed to general retractions with
a view to reducing computational complexity. Second, a trust-region safeguard is applied for
global convergence. Third, early stopping of the inner iteration (yielding inexact solutions of
the trust-region subproblems) is allowed under criteria that preserve the convergence proper-
ties of the overall algorithm. Taken independently, none of these concepts is new; the novelty
is their combination in a general algorithm for optimization on manifolds, aimed at numerical
efficiency with reliable global behavior, and supported by a detailed convergence analysis.
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