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Abstract

Two-step MIR inequalities are valid inequalities derived from a facet of a simple mixed-
integer set with three variables and one constraint. In this paper we investigate how to
effectively use these inequalities as cutting planes for general mixed-integer problems. We
study the separation problem for single constraint sets and show that it can be solved in
polynomial time when the resulting inequality is required to be sufficiently different from the
associated MIR inequality. We discuss computational issues and present numerical results
based on a number of data sets.
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1 Introduction

A useful technique in generating cutting planes for mixed integer programs is to extract a single
implied constraint from the formulation of the problem and derive valid inequalities based on this
constraint. More precisely, let

P =
{

v ∈ R
|J|, x ∈ Z

|I| : Cv + Ax = d, x, v ≥ 0
}

where matrices C and A are of appropriate dimension. One can generate a relaxation of it

W =
{

v ∈ R
|J|, x ∈ Z

|I| :
∑

j∈J

cjvj +
∑

i∈I

ai xi ≥ b, x, v ≥ 0
}

(1)

where the single equation defining set W , called the base inequality, is obtained by taking a linear
combination of the equations defining P and relaxing it. Valid inequalities for W can be used as
cutting planes for P .
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A well-known valid inequality for W is the mixed integer rounding (MIR) inequality
∑

j∈J

max{cj , 0}vj +
∑

i∈I

(

b̂ baic+ min{b̂ , âi}
)

xi ≥ b̂ dbe, (2)

where b̂ = b−bbc and âi = ai−baic. The MIR inequality can be derived using the only non-trivial
facet of the set

Q1 =
{

v ∈ R, z ∈ Z : v + z ≥ β, v ≥ 0
}

see [19].

The Gomory mixed integer cut (GMIC) can be viewed as a two-step procedure where the first
step is to obtain the base inequality using the simplex tableau, and the second step is to write the
associated MIR inequality. This has been observed by Marchand and Wolsey[18].

In a recent paper, Dash and Günlük [8] studied the following simple set

Q2 =
{

v ∈ R, y, z ∈ Z : v + αy + z ≥ β, v, y ≥ 0
}

.

and derived a parametric family of valid inequalities for W based on a facet of Q2. More precisely,
they showed that for any α ≥ 0 that satisfies 1/α ≥ db̂/αe > b̂/α, the two-step MIR inequality with
parameter α
∑

j∈J

max{cj , 0}vj +
∑

j∈I

(

ρα τα baic+ min{ρα τα , kα
i ρα + âi − kα

i α , lαi ρα }
)

xi ≥ ρα τα dbe, (3)

where τα = db̂/αe, ρα = b̂− αbb̂/αc, kα
i = bâi/αc and lαi = dâi/αe, is valid for W . In the rest of

the paper we will write inequality (3) without the superscript α whenever possible. We note that
Q2 has other non-trivial facets, see [2] and [4], which might also lead to interesting inequalities for
W .

Our purpose in this paper is to investigate the computational effectiveness of two-step MIR inequal-
ities. Our motivation is partly due to the practical importance of MIR inequalities (including the
GMIC), which is now routinely used in MIP software and is considered one of the most important
classes of cutting planes, see [5] and [7].

There are strong similarities between the MIR inequality (2) and the two-step MIR inequality (3).
This is not only because their derivation is based on similar simple sets with a small number of
variables, but also because they have a very similar form when written in a certain way. In the
next section we discuss this in detail.

The rest of the paper is organized as follows: In Section 2, we study the separation problem for the
two-step MIR inequalities and show that it can be solved efficiently when parameter α is not allowed
to be very small. In Section 3, we describe how we construct the base inequality for the two-step
MIR inequalities and discuss other computational issues. In Section 4, we present computational
results using several data sets including MIPLIB problem library. Our computational results are
in general encouraging and suggest that two-step MIR inequality can be useful in solving mixed
integer programs.

1.1 Comparing MIR and two-step MIR inequalities

To see the similarities (and differences) between the two-step MIR inequality and the MIR inequal-
ity, we normalize them so that they both have a right-hand side of dbe. After this normalization,
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inequality (2) has the form

1

b̂

∑

j∈J

max{cj , 0}vj +
∑

i∈I

(baic+ f(âi))xi ≥ dbe, (4)

where f(âi) = (1/b̂) min{b̂ , âi}, and inequality (3) has the form

1

ρα τα

∑

j∈J

max{cj , 0}vj +
∑

i∈I

(baic+ gα(âi))xi ≥ dbe, (5)

where τα = db̂/αe, ρα = b̂− αbb̂/αc and

gα(âi) =
1

ρα τα
min{ρα τα , kα

i ρα + âi − kα
i α , lαi ρα }

where kα
i = bâi/αc and lαi = dâi/αe.

Functions f and gα both take values in [0, 1], they are subadditive and they are extreme in a
certain sense [9]. Notice that, written in this form, MIR and two-step MIR inequalities differ from
each other in (i) how they (linearly) increase the coefficients of the continuous variables that have
a positive coefficient in the original equation and (ii) how they change the fractional part of the
coefficients of integral variables.

Note that b̂ = ρ + (τ − 1)α and therefore b̂− ρτ = (α − ρ)(τ − 1) > 0 as α > ρ by definition and
τ ≥ 2 for all admissible α. In other words, the coefficient of the continuous variables in the MIR
inequality (4) is smaller than that of the two-step MIR inequality (5) and the difference between
the coefficients is large if (i) τ is large, and (ii) ρ is significantly smaller than α. For the coefficients
of the integral variables, however, there is no dominance relationship as both inequalities are facet
defining for the master cyclic group polyhedron [8].

We next give a numerical example, to demonstrate how functions f and gα behave.

Example 1 Let b̂ = 0.8 and α = 0.3, implying ρ = 0.2 and τ = 3. In this case the function gα

is piecewise linear with breakpoints at ρ, α, α + ρ, 2α and b̂ = 2α + ρ. The function f is also
piecewise linear with a single break point at b̂. In Figure 1 we plot g0.3(s) and f(s) for s ∈ [0, 1],
and in Figure 2, we plot the difference between the two functions, g0.3(s)− f(s) for s ∈ [0, 1].
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Figure 1: Two-step MIR function g0.3(·) and MIR function f(·)

Notice that the slope of the two-step MIR function g0.3(s) between 0 and ρ is (1/ρ τ) which is
precisely equal to the cut coefficient of continuous variables in inequality (5). Similarly, the slope
of the MIR function f(s) gives the cut coefficient of continuous variables in inequality (4).
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Figure 2: Difference between the two-step MIR function g0.3(·) and MIR function f(·)

Also notice that the difference between the functions shown in Figure 2 is symmetric around 0.4 =
b̂/2. In other words g0.3(s) − f(s) = f(0.8 − s) − g0.3(0.8 − s) for s ∈ (0.0, 0.8). See [9] for a
general discussion on the properties of these functions.

We next bound the difference between the cut coefficients of the two-step MIR inequality and the
MIR inequality .

Lemma 2 Let c ∈ [0, 1) be given. Then, 1/db̂/αe ≥ |gα(c)− f(c)|.

Proof. Let t = db̂/αe. For all c ∈ (b̂, 1), the claim is correct as gα(c) = f(c) = 1. When c ∈ [0, b̂],

we have f(c) = c/b̂ and gα(c) ≤ 1. Hence,

gα(c)− f(c) =
1

ρα t
min{bc/αcρα + c− bc/αcα , dc/αeρα } − c/b̂

which is a piecewise linear function on [0, b] with breakpoints at c = (k − 1)α + ρα and c = kα for

k = 1, · · · , t− 1. Furthermore gα(0)− f(0) = gα(b̂)− f(b̂) = 0. Therefore, it is suffices to consider
the remaining breakpoints. If c is a breakpoint, we have

gα(c)− f(c) =
dc/αe

t
−

c

b̂
=
dc/αe

t
−

c/α

b̂/α
≤
dc/αe

t
−

c/α

t
≤

1

t
.

Similarly,

gα(c)− f(c) =
dc/αe

t
−

c/α

b̂/α
≥
dc/αe

t
−
dc/αe

t− 1
= −

dc/αe

t(t− 1)
≥ −

1

t

where the last inequality follows from the fact that dc/αe ≤ t− 1 for any breakpoint c < b̂.

We note that this bound is tight, in the sense that, for each t ≥ d1/(1− b)̂e, it is possible to find

an α > 0, and c1, c2 ∈ (0, b̂) such that db̂/αe = t and both gα(c1) − f(c1) and f(c2) − gα(c2) are

arbitrarily close to 1/t. This is achieved by setting α = (b̂− ε)/(t− 1) and c1 = ε, c2 = b̂− ε for
some small ε > 0.

A simple observation based on Lemma 2 is the following:
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Corollary 3 Let c ∈ [0, 1), then limα→0+ gα(c) = f(c).

Therefore, if continuous variables are present, the two-step MIR inequality is dominated by the MIR
inequality as α becomes very small. If there are no continuous variables, however, the inequalities
become indistinguishable.

We next observe that the two-step MIR inequality becomes indistinguisable from the MIR inequal-
ity when ρα = b̂− αbb̂/αc is almost as large as α. We use ε → δ+ to denote that ε > δ as ε tends
to δ.

Lemma 4 Let c ∈ [0, 1) and t be a positive integer. Then, (i) lim
α→(b̂/t)

+ ρα τα = b̂, and (ii)

lim
α→(b̂/t)

+ gα(c) = f(c).

Proof. Notice that when α satisfies b̂/(t − 1) > α > b̂/t, we have db̂/αe = t and bb̂/αc = t − 1.
Therefore,

lim
α→(b̂/t)

+
ρα τα = lim

α→(b̂/t)
+

(

b̂− α(t− 1)
)

t = tb̂− b̂(t− 1) = b̂.

In addition, as observed above, lim
α→(b̂/t)

+ ρα = b̂− (b̂/t)(t− 1) = b̂/t and therefore,

lim
α→(b̂/t)

+
(kα

i ρα + c− kα
i α ) = c + lim

α→(b̂/t)
+

kα
i (ρα − α) = c.

Finally, lim
α→(b̂/t)

+ lαi ρα = lim
α→(b̂/t)

+dc/αeρα ≥ c. Therefore, gα(c) = min{b̂, c} = f(c).

2 Separating two-step MIR inequalities

In this section we discuss the separation problem for single constraint sets. Given a point (v̄, x̄) ∈
R
|J|+|I|, we define the separation problem to be the problem of identifying an admissible parameter

α that gives a most violated two-step MIR inequality (3).

For the set W , it is easy to show that parameter α ∈ R is an admissible parameter, that is,
(i) α ≥ 0, (ii) 1/α ≥ db̂/αe, and (iii) db̂/αe > b̂/α, if and only if α ∈ I = ∪∞d=2I

τ where

Iτ =











(b̂/τ, 1/τ ] if 2 ≤ τ <
⌈

1/(1− b̂)
⌉

(b̂/τ, b̂/(τ − 1)) if τ ≥
⌈

1/(1− b̂)
⌉

.

Notice that Iτ is the set of values of α such that db̂/αe = τ .

We start with showing that the coefficients of the integral variables in inequality (3) change con-
tinuously as α changes. Remember that ĉ denotes c− bcc for c ∈ R.

Lemma 5 Given a, b ∈ R and an integer d ≥ 2, the function

ha(α) = ρα d bac+ min{ρα d , bâ/αcρα + â− bâ/αcα , dâ/αeρα }

where ρα = b̂− α(d− 1) > 0 is continuous for α ∈ Id.

- 5 -
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Proof. Note that a function obtained by taking minimums or linear combinations of continuous
functions is still continuous. As the first term of ha(α) is a continiuos (linear) function of α,
we only need to show that the second term is also continuous. In addition, the first term in
the minimization is a linear function of α as well. Therefore, it suffices to show that v(α) =
min{bâ/αcρα + â− bâ/αcα , da/αeρα } is continuous.

As ρα is continuous and the terms in the minimization have discontinuities only when â/α ∈ Z,
we will only consider the case when α = â/t, for some t ∈ Z. More precisely, we need to show that
v(â/t) = limε→0+ v(â/t + ε) = limε→0+ v(â/t− ε), First note that v(â/t) = tρ(â/t).

In addition,

lim
ε→0+

v(
â

t
+ ε) = lim

ε→0+
min{(t− 1)ρ(â/t+ε) + â− (t− 1)(â/t + ε) , tρ(â/t+ε) }

= min{(t− 1)ρ(â/t) + â/t , tρ(â/t) } = tρ(â/t)

where the last equality follows form the fact that ρα ≤ α for all α ∈ Id.

Finally,

lim
ε→0+

v(
â

t
− ε) = lim

ε→0+
min{tρ(â/t−ε) + â− t(â/t + ε) , (t + 1)ρ(â/t−ε) }

= min{tρ(â/t) , (t + 1)ρ(â/t) } = tρ(â/t).

Therefore, the coefficients of the integral variables change without discontinuities as α ∈ Id

changes. Using this observation, we next show that for given a point the violation of the two-
step MIR inequality with parameter α is a continuous function of α and it can be minimized
efficiently.

Lemma 6 Given (v̄, x̄) ∈ R
|J|+|I|, let ∆(α) denote the violation of the two-step MIR inequality

generated by α ∈ I. Let I ′ = {i ∈ I : x̄i > 0}. For some ᾱ ∈ Id, if ∆(ᾱ) = supα∈Id{∆(α)}, then
one of the following statements hold:

a. ∆(ᾱ) = ∆(âi/t) for some i ∈ I ′ and t ∈ Z, or,

b. ᾱ = 1/d , or,

c. ∆(ᾱ) = ∆(α) for all α ∈ Id.

Proof. Notice that for α ∈ Id, db̂/αe = d. Define J ′ = {j ∈ J : v̄j > 0, cj > 0}. The violation of
the inequality generated by α is therefore

∆(α) = ρα d dbe −
∑

j∈J′

cj v̄j −
∑

j∈I′

hai(α)x̄i

where ρα = b̂− α(d − 1) > 0 for all α ∈ Id.

Let L be the set of numbers that divide some âi for i ∈ I ′. More precisely,

L = {α ∈ R : α = âi/t for some i ∈ I ′ and some t ∈ Z }.

- 6 -
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If ᾱ ∈ L or ᾱ = 1/d, the claim is correct, so we assume that ᾱ 6∈ L∪ {1/d}. Define α+ = min{α ∈
L ∪ {+∞} : α > ᾱ} and α− = max{α ∈ L ∪ {−∞} : α < ᾱ} so that α+ > α > α−.

Notice that ki = bâi/αc and li = dâi/αe are constant for all i ∈ I ′ when α ∈ (α−, α+). By
Lemma 5 , ∆(α) is continuous, and therefore, the violation of the inequality generated by α is:

∆(α) = ρα d dbe −
∑

j∈J′

cj v̄j −
∑

j∈I′

(

ρα d baic −min{ρα d , kiρ
α + âi − kiα , liρ

α }
)

x̄i

for all α ∈ [α−, α+] ∩ Id.

Next, define a lower bound on ∆(α)

∆̂(α) = ρα d dbe−
∑

j∈J′

cj v̄j −
∑

i∈I′

ρα d baic x̄i −
∑

i∈I0

ραd x̄i −
∑

i∈I1

(kiρ
α + âi − kiα) x̄i −

∑

i∈I2

liρ
α x̄i,

where I0 = {i ∈ I ′ : âi ≥ b̂}, I1 = {i ∈ I ′ \ I0 : âi− kiᾱ < ρ̄} and I2 = {i ∈ I ′ \ I0 : âi− kiᾱ ≥ ρ̄}.
Note that ∆(α) ≥ ∆̂(α) for α ∈ [α−, α+] ∩ Id, and ∆̂(ᾱ) = ∆(ᾱ).

Notice that for α ∈ [α−, α+] ∩ Id, the function ∆̂(α) is a linear function of α. Therefore for any
α′, α′′ ∈ [α−, α+] ∩ Id, such that α′ ≤ ᾱ ≤ α′′ we have,

∆(ᾱ) ≥ max{∆(α′), ∆(α′′)} ≥ max{∆̂(α′), ∆̂(α′′)} ≥ ∆̂(ᾱ) = ∆(ᾱ).

As ∆̂ is linear, max{∆̂(α′), ∆̂(α′′)} = ∆(ᾱ) implies that ∆̂(α′) = ∆̂(α′′) = ∆(ᾱ). In addition, by
assumption, ᾱ gives the largest violation, and therefore ∆(α′) = ∆(α′′) = ∆(ᾱ).

If α− ∈ Id, we can take α′ = α−, or, if α+ ∈ Id, we can take α′′ = α+, implying ∆(ᾱ) = ∆(âi/t) for
some i ∈ I ′ and t ∈ Z as claimed. On the other hand, if α+, α− 6∈ Id we have α ∈ [α−, α+]∩ Id =
Id, and ∆(ᾱ) = ∆(α) for all α ∈ Id.

Notice that Lemma 6 only analyzes the case when supα∈Id{∆(α)} = ∆(ᾱ) for some ᾱ ∈ Id. If
this condition does not hold, the violation function does not attain its supremum in Id. In this
case, first observe that

lim
α→(b̂/(t−1))

+
∆(α) = lim

α→(b̂/(t−1))
+

ρα = lim
α→(b̂/(t−1))

+
b̂− αbb̂/αc = 0,

and therefore the violation function is not positive. Next, note that by Lemma 4

lim
α→(b̂/t)

+
∆(α) = b̂ dbe −

∑

j∈J′

cj v̄j −
∑

j∈I

(

b̂ baic −min{b̂ , âi}
)

x̄i

which is the violation of the MIR inequality (2). Combining these observations, we conclude that
if (v̄, x̄), satisfies the MIR inequality, then a violated two-step MIR inequality, if it exists, can be
obtained using Lemma 6.

Also notice that for a given Id and i ∈ I , there is at most one t ∈ Z+ such that âi/t ∈ Id. Using

the fact that Id ⊆ (b̂/d, b̂/(d−1)), t has to satisfy b̂/d > âi/t > b̂/(d−1), implying (i) t > dâi/b̂ and

(ii) t < (d− 1)âi/b̂. Clearly, only one t ∈ Z+ can satisfy this condition. Therefore, for a given Id,

and âi, one has to consider only t = ddâi/b̂e. It is also possible that the resulting α = âi/ddâi/b̂e
would not be a valid parameter. Therefore, Lemma 6 leads to a linear-time separation algorithm
for two-step MIR inequalities for α ∈ Id and we have the following result.

- 7 -
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Lemma 7 Given (v̄, x̄) ∈ R
|J|+|I|, that satisfies the MIR inequality and a number k ∈ Z

+, a most
violated two-step MIR inequality can be separated in polynomial time for α ∈ ∪k

d=2I
d.

Proof. Let Ld denote the set of valid parameters for Id that divide some âi for i ∈ I ′ = {i ∈ I :

x̄i > 0}. Then we have Ld = ∪{âi/ddâi/b̂e : i ∈ I ′} ∩ Id. To find the most violated inequality for
α ∈ ∪k

d=2I
d, it suffices to consider α ∈ ∪k

d=2(L
d ∪ {1/d}), where |Ld| ≤ |I ′|. Clearly, there are at

most O(k · |I |) candidate parameters to consider.

We would like to emphasize that Lemma 7 does not give polynomial time separation algorithm
for α ∈ I ∪∞d=2 I

d. But based on the Lemma 2 and Corollary 3, in practice, it is not desirable to
use small α’s, or, in other words, one would not consider Id for large d.

3 Computational Framework

The purpose of our computational experiments is to determine if two-step MIR cuts help tighten
the continuous relaxations of general mixed-integer programs. As MIR cuts, which can be viewed
as a subclass of two-step MIR cuts, are already known to be computationally effective, we are
mainly interested in the additional gain due to two-step MIR cuts that are “sufficiently” different
from MIR cuts. Therefore, in our experiments we restrict the parameter α in such a way that
the resulting two-step MIR cuts are sufficiently different from MIR cuts. In our experiments, we
compare the improvement in the objective function at the root node due to MIR cuts with the
improvement due to both MIR and two-step MIR cuts.

In the rest of this section we describe how to create base inequalities from rows of the optimal
simplex tableau and from inequalities in the formulation. We also describe how we choose the
parameter α for two-step MIR cuts. Finally, we discuss the effect of different basis sequences when
several rounds of cuts are added.

3.1 Transforming base inequalities

Our main subroutine for generating violated MIR and two-step MIR cuts takes as input the current
fractional point (v∗, x∗) together with a valid base inequality

∑

j∈J

cjvj +
∑

i∈I

aixi ≥ b, (6)

and upper and lower bounds on the variables v and x:

lj ≤ vj ≤ uj ∀j ∈ J, li ≤ xi ≤ ui ∀i ∈ I.

If we start with an equality constraint, we simply relax it to obtain the inequality form in (6).
Recall that in our definition of MIR (2) and two-step MIR cuts (3), we assume all variables are
non-negative. Therefore, as a first step, we perform variable transformations to obtain a base
inequality with non-negative variables. These transformations are

x̄i = xi − li, or x̄i = ui − xi ∀i ∈ I, (7)

v̄j = vj − lj , or v̄j = u− vj ∀j ∈ J.

- 8 -
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We do not generate cuts from a base inequality with unbounded variables. After these transfor-
mations, our base inequality becomes:

∑

j∈J

c′j v̄j +
∑

i∈I

a′ix̄i ≥ b′, (8)

0 ≤ v̄j ≤ uj − lj ∀j ∈ J, 0 ≤ x̄i ≤ ui − li ∀i ∈ I,

where c′j , a
′
i and b′ depend on the specific variable transformations performed. Dropping the upper

bounds on the variables v̄j and x̄i, we have the set W in (1).

If a variable has just one bound, we use the appropriate transformation in (7). If it has both an
upper bound and a lower bound, we transform the integral variables, based on the value of (v∗, x∗):

x̄i =

{

xi − li if x∗i < (li + ui)/2,

ui − xi if x∗i ≥ (li + ui)/2.

We use the same rule for transforming the continuous variables vj for all j ∈ J . Note that in option
(a) of the bound substitution heuristic of Marchand and Wolsey [18], they transform continuous
variables by the above rule, but not integer variables. The justification for this rule is relatively
intuitive: when deriving inequalities (2) and (3), one uses the non-negativity of the variables to
relax inequality (8) to obtain an inequality with non-negative and/or integral coefficients. If v̄∗j
and x̄∗i are close to 0, this relaxation step does not increase the slack of inequality (8) too much
and the relaxed inequality is more likely to yield violated inequalities.

After obtaining (8) and dropping the upper bounds on variables, we use (2) to get an MIR cut, as

long as b̂ ≥ 10−5.

3.2 Choosing α for two-step MIR cuts

After we obtain inequality (8), we try a number of different values for the parameter α to generate
violated cuts. From among those, we retain only two cuts (those with the highest values of violation
divided by norm of cut coefficients) and add them to the formulation. We consider a candidate

α acceptable if it satisfies several numerical conditions. First, Lemma 2 suggests that b̂/α should
not be too large; we restrict this number to be at most 20. (Equivalently, we require α ∈ ∪20

d=2I
d.)

Corollary 3 suggests that α should not be too small; we insist that α ≥ .0005. Lemma 4 suggests
that α should not be too close to b̂/t from above; we insist that α ≥ b̂/t + .0005.

From Lemma 7, it suffices to try all âi/t as candidates for α, where i ∈ I ′ – the set of non-zero

integral variables, t ∈ Z and b̂/(âi/t) ≤ 20, to get the most violated two-step MIR inequality. In
other words, we should take the fractional parts of the coefficients in inequality (8) and divide them
with small integers to obtain different α. To reduce computation time, we choose at most one α
for every i ∈ I ′, namely âi/t where t is the smallest integer such that âi/t is a valid choice for α.
In addition, we only generate cuts from sufficiently different α. We consider two values α1 and α2

sufficiently different if |α1 − α2| ≥ .001. Lemma 7 also suggests that one should use 1/d for small
integers d, but the resulting two-step MIR inequalities are the same as scaled MIR inequalities [8]
and we choose not to use them as two-step MIR inequalities.

If the starting inequality is actually an equality, we also multiply it by −1 to obtain a second base
inequality (8). This way, we can obtain two additional two-step MIR cuts from the same base
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equality. Note that the MIR cuts from (8) are identical whether one first multiplies it by −1 or

not. This is not true for two-step MIR cuts. For example, assume b̂ = 0.2 and âi > 0.2 for all
i ∈ I . Then we cannot derive a two-step MIR cut from (8) different from the MIR cut. However,

after multiplying by −1, b̂ becomes 0.8, and âi < 0.8 for all i ∈ I , and we can generate several
two-step MIR cuts.

3.3 Formulation rows

One natural way to obtain base inequalities is to use rows of the original problem formulation.
There are two main advantages to using formulation rows as base inequalities: (i) there is little
loss of precision when generating cuts from these inequalities, and (ii) they are usually sparser
than the rows of the simplex tableau. It is also possible to aggregate several rows to obtain base
inequalities (as proposed by Marchand and Wolsey [18]) but we did not implement this.

Let the current fractional point be (v∗, x∗). To generate a base inequality (6), we pick a row
of the problem formulation, and divide it by the coefficient of an integer variable from the set
I ′ = {i ∈ I : li < x∗i < ui}. This way, from every row of the formulation, we obtain multiple base
inequalities from which we can generate MIR and two-step MIR cuts. We do not use coefficients
of all variables in I ′ in one round as this may lead to a very large number of base inequalities.
Instead, we randomly select a small number (e.g., 20%) of them. We then transform variables as
described in Section 3.1. Based on the resulting inequality, we then generate one MIR and multiple
two-step MIR cuts. Once we add the generated cuts and re-optimize, the new optimal solution
leads to different base inequalities due to the use of different coefficients for divisions and different
variable transformations. We call cuts generated using rows of the formulation “formulation cuts”.

Though the set of all formulation cuts is finite, it can still be very large. In a pure integer problem
instance with m rows, n bounded variables and k nonzero coefficients per row, one can have mk
base inequalities, each of which can be transformed (via variable complementation) in 2k possible
ways giving mk2k possible base inequalities. For each base inequality there are also a number of
different choices for the parameter α.

3.4 Tableau rows

Rows of an optimal simplex tableau are also natural sources of base inequalities of the form (6).
We use tableau rows in which the basic variable is an integer variable with a fractional value. For
such a row, let x1 stand for the basic variable. Clearly, a1 = 1, and the remaining variables are
at their upper or lower bounds. Therefore, after performing the variable transformation steps in
Section 3.1, all variables other than x1 have value 0. Let the right hand side of the base inequality
be b = bbc + b̂. In this case, any admissible parameter α will give a violated two-step MIR
inequality (3) with a left-hand side of ρτb, and a right-hand side of ρτdbe. Therefore the violation

of any two-step MIR cut is simply ρτ(1− b̂). Observe that for all α ∈ It, dbe and τ are constant,

and ρα = b̂− α(τ − 1), a decreasing function of α. Therefore, using Lemma 4, maximally violated
two-step MIR cuts (based on tableau rows) are simply MIR cuts.

This does not mean that two-step MIR cuts based on tableau rows are useless. Suppose base
inequality (6) is derived from a row of the optimal tableau and let x′ stand for the corresponding
optimal solution. After adding the MIR cut, we will obtain an optimal solution x′′. Clearly, x′′

satisfies the MIR cut based on inequality (6) but not necessarily all two-step MIR cuts based on
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inequality (6). Usually x′′ in fact violates some two-step MIR cuts. The above argument suggests
that maximally violated two-step MIR cuts should be computed after adding violated MIR cuts
and solving the strengthened LP, but without actually computing the new optimal tableau.

If the original formulation has inequalities, we implicitly append slacks before computing tableau
rows. A point to note is that computing the optimal tableau from an optimal basis is an expensive
operation.

3.5 Effect of basis sequences

A natural approach to measure the effectiveness of tableau based two-step MIR cuts would be to
compare the effect of k > 1 rounds of MIR cuts with the effect of k rounds of MIR and two-step
MIR cuts combined. Here a round of cutting means adding all cuts based on the current tableau
rows and reoptimizing. One problem with this approach is that the cuts added in one round
influence the subsequent tableau and resulting base inequalities and therefore the subsequent cuts.
In particular, for two classes of cuts C1 and C2 with C1 ⊆ C2 (say C1 = MIR, C2 = MIR and
two-step MIR combined), k rounds of cuts from C1 may yield a better bound than k rounds of C2.
This is somewhat unexpected behavior, but it does happen because generated cuts depend on the
basis sequences encountered during the process. Even if the class of cuts C2 gives a better bound
after the first round of cutting, the next optimal tableau and solution do not necessarily lead to
good cuts and therefore, two rounds of cutting with the smaller class C1 can indeed give a better
bound.

In Figure 3, we show the behavior of 5 rounds of MIR tableau cuts (denoted by the solid lines)
and MIR+two-step MIR tableau cuts (denoted by the dotted lines) on the problems lseu and rout.
These are two instances from the MIPLIB problem library [20]. For the first instance, MIR+two-
step MIR cuts consistently give better objective values than MIR cuts, for each round of cuts. This
is not true for the second instance where the gap closed by MIR cuts alone is consistently better
from the second round onwards. In Figure 3, we show the number of rounds on the horizontal axis,
and the percentage of the integrality gap closed on the other axis.
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Figure 3: Gap closed by MIR and MIR + two-step MIR cuts for two (lseu and rout) instances

A starker effect of differing basis sequences is illustrated in Figure 4. We consider fixnet6 from
the MIPLIB 3.0 problem set [6] and generate 4 rounds of MIR tableau cuts. We then permute
the rows of this instance (we move the first 10 rows to the end) and again generate 4 rounds of
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MIR tableau cuts. In other words, we apply the same procedure to the same problem instance
after changing the text representations slightly. As seen in Figure 4, the gap closed after the first
round is almost the same in both cases, but after this round, the difference between the gap closed
increases to approximately 5% .
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Figure 4: Effect of different basis sequences for fixnet6

This unexpected behavior occurs because most LP solvers terminate with a near-optimal basis – a
basis for which the primal and dual solution values are feasible within given feasibility tolerances.
Therefore, even if a problem has a unique optimal solution and basis, it usually has many near-
optimal bases and solutions. Different sequences of numerical operations, in this case triggered by
the row permutations, can therefore lead to different near-optimal bases and therefore to different
cuts.

We resolve this problem by using delayed cut generation which we call list cuts.

3.6 List cuts

One possible solution to the undesirable behavior described in the previous section is to generate
MIR and two-step MIR cuts in sequence. More precisely, we can delay the cut generation for
two-step MIR inequalities until after k rounds of MIR cuts are generated. While generating the
MIR cuts, we can save the associated tableau so that the same base inequalities can be used at
the end to generate the two-step MIR cuts. Using this approach, the objective value can only
improve and the selected two-step MIR cuts use the same sequence of bases as the MIR cuts. In
our computational experiments, we used a simplification of this approach and did not actually save
all intermediate tableaus.

When generating the MIR cuts, we only considered the ones that are violated by at least some
tolerance (10−6). For these cuts, we save the cut and the base inequality (tableau row) it is
generated from. At the end of k rounds of MIR cuts, we look at the cuts in the list , and generate
two-step MIR cuts only from the base inequalities of “almost tight” MIR cuts. Typically, a two-
step MIR cut is not violated if the associated MIR cut is satisfied with a significant slack (eg.,
0.7).

A well-known property of MIR cuts from the tableau is the following: even if many cuts are
generated in the different rounds, after the final round typically very few MIR cuts are active. The
number of “almost tight” cuts is more than the number of active cuts, but it is still smaller then
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the size of the list. This fact keeps our list cut computation cost relatively low.

One important implementation detail here is that, MIR cuts are not deleted from the formulation
once they are added even if some of them have large slacks in later iterations. Once a cut is added,
its slack can be used in the tableau cuts generated in later rounds and therefore we might have
base inequalities in the list that contain this slack variable. To write an associated two-step MIR
inequality in the original space of variables, we need to substitute out the slack variable later and
therefore we might need the original cut.

4 Numerical results

In the next three sections, we present numerical results obtained from several data sets. For the
problem instances in these data sets, we present tables which show the effect of adding two-step
MIR tableau cuts, and two-step MIR formulation cuts. The first group consists of the instances
randomly generated by Atamtürk to test lifted knapsack inequalities described in [3]. The second
group consists of 4 problem instances from a practical application that we encountered in steel
production. The last group consists of several publicly available mixed-integer test sets.

In the Appendix, we also show in detail the effect of multiple rounds of cutting based on tableau
rows. In each round we solve the (strengthened) LP relaxation to optimality and obtain the base
inequalities for that round of cutting from the current simplex tableau. For each problem instance
we display the gap closed by MIR cuts only, and MIR and two-step MIR cuts together for 1,...,5
rounds. The two-step MIR cuts are added as list cuts as described in Section 3.6 .

4.1 Atamturk instances

These instances are randomly generated mixed integer programs, with between 250 and 500 rows,
between 50 and 100 integral variables, and between 1 and 20 continuous variables. The notation
|I | : |J | : |R| denotes a set of 5 instances with |I | integral variables, |J | continuous variables and
|R| rows. The above instances are divided into two groups, one with upper bounds on variables
and the other without. All variables are non-negative. The problems have the form:

max
∑

j∈J

hjvj +
∑

i∈I

gi xi

∑

j∈J

crjvj +
∑

i∈I

ari xi ≤ br, ∀r ∈ R,

0 ≤ v ≤ w, 0 ≤ x ≤ u, x ∈ Z, v ∈ R

where, the upper bounds w and u are set to infinity for unbounded instances.

Atamturk instances are publicly available at [23]. Recently Fischetti and Saturni[14] also performed
computational tests using these instances to test the computational effectiveness of group cuts,
or cuts based on Gomory’s master cyclic group polyhedra. In their paper, they present results
with 1-50 scaled MIR cuts (based on the simplex tableau), and show that these simple cuts also
significantly reduce the integrality gap.

Tables 1 and 2 summarize our computational results with unbounded and bounded instances
respectively. In these tables, we display the percentage integrality gap closed by (i) MIR and

- 13 -
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two-step MIR cuts based on the simplex tableau (ii) MIR and two-step MIR formulation cuts,
and (iii) scaled MIR cuts based on the simplex tableau. We also present the number of cuts
added during the process. The numbers for the scaled MIR cuts are taken from [14]. Cuts based
on the tableau are added in one single round using the optimal simplex tableau of the initial
LP-relaxation. Formulation cuts, on the other hand, are added in several rounds until no more
violated inequalities can be found. Each row represents the average over 5 instances. For example,
in Table 1, the integrality gap closed by one round of MIR cuts for the 5 unbounded instances with
|I | = 250, |J | = 1 and |R| = 50 is on the average 50.08%. We note that results in [3] and [14] for
MIR cuts are consistent with our results.

Looking at the bounds obtained after one round of tableau cuts, it is clear that MIR and two-step
MIR cuts together close the integrality gap significantly more than MIR cuts alone. For example,
in Table 1, for |I | : |J | : |R| = 250:1:75, the corresponding numbers are 54.82% and 79.16%,
respectively for the tableau cuts. For the formulation cuts, note that MIR cuts are significantly
stronger and therefore the difference between MIR and two-step MIR cuts is less dramatic. To
generate base inequalities for MIR and two-step MIR cuts in this dataset, we scale the rows of the
original formulation by every variable coefficient to get base inequalities.

Tableau cuts Formulation cuts Scaled MIRs

|I| : |J | : |R| MIR +2MIR No. cuts MIR +2MIR No. cuts 1-50 MIR No. cuts

250:1:50 50.08 83.38 136.0 78.52 83.26 162.00 78.52 2185.4
250:1:75 54.82 79.16 203.8 76.12 79.14 228.40 76.14 3014.4
250:1:100 63.26 75.54 226.0 74.28 75.24 297.60 74.55 3187.2
500:1:50 50.68 80.40 136.0 76.66 80.26 176.40 76.67 2117.2
500:1:75 55.14 77.44 203.8 74.92 77.32 245.60 74.92 2932.4
500:1:100 63.50 75.96 269.4 75.12 75.92 316.20 75.13 3293.2

Average 56.25 78.65 195.83 75.94 78.52 237.70 75.99 2788.30

Table 1: Atamtürk’s unbounded instances

Tableau cuts Formulation cuts Scaled MIRs

|I| : |J | : |R| MIR +2MIR No. cut MIR +2MIR No. cuts 1-50 MIR No. cuts

250:5:100 61.32 72.34 256.2 71.16 72.30 297.60 71.17 3196.0
250:10:50 50.88 80.02 136.0 76.32 79.90 161.60 76.34 2100.6
250:10:75 56.20 74.50 203.8 72.12 74.04 227.40 72.54 2795.8
250:10:100 67.40 75.38 245.4 74.70 75.38 295.20 74.69 2948.4
250:20:50 51.58 77.86 136.0 74.76 77.74 160.00 74.77 2049.6
250:20:75 61.26 75.62 202.8 74.36 75.60 225.20 74.37 2586.6
250:20:100 70.44 75.66 228.2 75.26 75.64 297.60 75.27 2689.8

Average 59.87 75.91 201.20 74.10 75.80 237.80 74.16 2623.83

Table 2: Atamtürk’s bounded instances

When compared with the scaled MIR cuts, the two-step MIR cuts also compare favorably. For
example, on 250:1:50, 1 round of MIR cuts close 50.08% of the integrality gap in our experiments
(the number reported in [14] is 50.07%). Scaled MIR cuts, as reported in [14], close 78.52% of the
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integrality gap, whereas one round of MIR and two-step MIR cuts close 83.38% of the integrality
gap, with much fewer cuts added. We note that, in our experiments we add at most four violated
two-step MIR cuts per tableau or formulation row, whereas, the number of cuts reported in these
tables are taken from [14], where the authors seem to add all violated 1-50 scaled MIR cuts.

We also note that the integrality gap closed by two-step MIR cuts is very similar for tableau and
formulation cuts. This is a quite surprising observation especially because the gap closed by MIR
cuts are very different for tableau and formulation cuts. As this behavior is not seen in other
datasets, it is clearly not due to the nature of two-step MIR cuts, but due to how these problem
instances were constructed. In addition, two-step MIR cuts based on the tableau appear to be as
strong as as the lifted knapsack cuts for unbounded instances (as reported in [3]) and weaker for
the bounded instances.

We also performed experiments to see how the integrality gap changed when several rounds of
tableau cuts are added. Our main observation in these experiments is that one round of MIR
and two-step MIR cuts closes the same amount of integrality gap that can be closed by many
rounds of MIR cuts. In Figure 5 we show how the average integrality gap changes for unbounded
Atamtürk instances. The left axis denotes the integrality gap closed and the horizontal axis gives
the number of rounds. The dashed line is for MIR and two-step MIR cuts together and the solid
line shows the MIR cuts alone. Typically, at least five rounds of MIR cuts are necessary to exceed
the improvement obtained after one round of MIR and two-step MIR cuts.
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Figure 5: Multiple rounds of MIR and two-step MIR tableau cuts

4.2 Steel instances

These are real-life instances from the steel industry, and are essentially two-dimensional cutting
stock problems with additional constraints. The problem consists of selecting the minimum “cost”
set of two-dimensional patterns of rectangular plates such that the number of plates of a given
“order” (with a given dimension, and desired minimum and maximum number of plates) do not
exceed the maximum for that order. There are additional constraints on usage of manufacturing
resources for the selected patterns. There are additional variables to count the number of completed
orders (the selected patterns contain more than the minimum number of plates for the order).
Finally, the objective function combines the goals of maximizing completed orders and reducing
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Dash, Goycoolea, Günlük Two step MIR inequalities July 10, 2006

waste on the selected patterns. We try out our two-step MIR code on four instances having 3,000
to 7,000 constraints and 4,000 to 7,000 variables.

Tableau cuts Formulation cuts

Instance MIR +2MIR ∆ MIR +2MIR ∆

Steel 1 69.3 70.1 0.8 50.0 50.9 0.9
Steel 2 55.9 58.8 2.9 38.9 47.0 8.1
Steel 3 54.3 55.7 1.4 46.5 48.1 1.6
Steel 4 58.0 60.7 2.7 67.2 68.1 0.9

Average 59.4 61.3 1.9 50.65 53.53 2.88

Table 3: Steel instances

As seen in Table 3, in all four cases, two-step MIR cuts close a relatively small but non-trivial part
of the remaining integrality gap. The average remaining integrality gap closed by two-step MIR
cuts is about 5% for both tableau and formulation cuts.

4.3 General mixed-integer test instances

We also investigated the performance of two-step MIR cuts on the following data sets: (i) MIPLIB
3.0 [6], (ii) MIPLIB 2003 [1], (iii) MILPLib, collected by Hans Mittelmann, and, (iv) a set of
instances collected by Fischetti and Lodi [12, 13]. All of these data sets are publicly available:
MIPLIB 3.0 and 2003 at [20], MILPLib at [22], and, Fischetti/Lodi instances at [21].

Tableau cuts Formulation cuts

Instance MIR +2MIR ∆ MIR +2MIR ∆

arki001 29.26 43.07 13.81 12.93 12.93 -
bell5 14.53 14.86 0.33 - - -
cap6000 41.65 42.27 0.62 - 12.43 12.43
dcmulti 47.65 48.45 0.80 - - -
fiber 63.09 66.42 3.33 88.45 90.08 1.63
gen 60.69 61.32 0.63 90.55 93.77 3.22
gesa2 28.53 28.72 0.19 68.91 70.29 1.38
gesa3 47.53 47.53 - 38.44 46.20 7.76
gt2 69.71 70.63 0.92 89.71 89.68 -0.03
harp2 23.11 26.74 3.63 51.38 57.62 6.24
l152lav 8.47 9.17 0.70 0.01 0.01 -
lseu 41.59 41.71 0.12 64.59 68.55 3.96
mas74 6.67 7.48 0.81 - - -
mas76 6.42 7.09 0.67 - - -
mitre 83.29 84.33 1.04 94.95 97.65 2.70
mkc 2.41 2.41 *0.00 4.35 11.87 7.52
mod008 20.11 20.35 0.24 47.38 63.77 16.39
mod010 93.24 93.72 0.48 18.34 18.34 -
p0033 56.82 57.08 0.26 56.86 57.65 0.79
p0282 3.70 3.70 *0.00 92.94 95.01 2.07
p0548 39.20 40.00 0.80 39.90 40.01 0.11
p2756 0.54 0.61 0.07 0.21 0.21 -
qnet1 8.81 8.88 0.07 36.85 45.96 9.11
qnet1-o 34.19 34.19 *0.00 76.58 77.24 0.66
swath 8.42 26.08 17.66 - - -

Average 33.59 35.47 1.89 38.93 41.97 3.04

Table 4: 25 MIPLIB 3.0 instances where two-step MIR cuts make a difference
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Table 4 lists all the problems (25/65) in MIPLIB 3.0 where two-step MIR cuts make a difference
(either as tableau cuts after one round of cuts, or as formulation cuts). To emphasize the instances
where cuts do not make any difference, we show “-” instead of 0.00. If the difference is small but
non-zero we indicate this by a ‘*0.00’.

In MIPLIB 3.0 instances two-step MIR cuts do not make as big a difference as in the Atamtürk
test set. When there is an improvement, the average additional gap closed by two-step MIR cuts
is about 1.9% for tableau based cuts and about 3.0% for formulation cuts. For several instances,
however, the improvement is substantial: for example, for arki001 gap closed increases from 29%
to 43% with tableau cuts and for mitre, even though formulation cuts close only 2.7% of the total
integrality gap, it is more than half of the remaining gap after MIR cuts are added.

Tableau cuts Formulation cuts

Instance ∆ MIR ∆ +2MIR Ratio ∆ MIR ∆ +2MIR Ratio

atlanta-ip 0.11 - 1.00 *0.00 0.01 3.30
momentum3 32.26 - 1.00 5.29 87.78 17.58
msc98-ip 160260.35 - 1.00 6597.72 2843.32 1.43
mzzv11 145.94 23.75 1.16 - - -
nsrand-ipx 790.28 173.79 1.22 1100.62 1.87 1.00
protfold 0.35 0.12 1.35 - - -
roll3000 101.74 104.27 2.02 896.59 202.15 1.23
sp97ar 842872.11 318.29 1.00 133617.85 65386.22 1.49

neos2 219.77 - 1.00 262.16 48.41 1.18
neos21 0.36 0.05 1.14 - - -
neos3 302.55 - 1.00 307.32 106.10 1.35
nug08 0.61 2.08 4.42 - - -
qap10 0.93 0.07 1.07 - - -
ran14x18-1 53.36 11.35 1.21 - - -
swath1 0.05 4.18 90.21 - - -
swath2 0.14 4.18 30.02 - - -
swath3 0.30 4.18 14.97 - - -

NSR8K (*) (*) (*) 53.39 9.48 1.18
blp-ic98 43.99 0.63 1.01 53.03 5.78 1.11
rail507 0.04 0.01 1.16 - - -
siena1 241.23 - 1.00 2186.83 776.07 1.35
sp97ic 689746.71 171.82 1.00 91361.17 57344.11 1.63
sp98ar 934305.62 23128.51 1.02 811453.58 81201.76 1.10
sp98ic 313420.27 305.46 1.00 150362.60 142333.21 1.95

Table 5: MIPLIB 2003/MILPLIB/F-L instances where two-step MIR cuts make a difference

In Table 5 we report on the performance of two-step MIR cuts on the remaining problem instances
(MIPLIB 2003, MILPLib and Fischetti-Lodi instances) where they make a noticeable difference
either as tableau or formulation cuts. The table is divided into three parts and the first part
contains the problem instances from MIPLIB 2003, the second part from MILPLIB and the last
one from the Fischetti/Lodi problem set. The format of this table is different from the previous
ones as the optimal values of most of the instances listed in this table are not known. Instead of
reporting integrality gap closed by MIR and two-step MIR cuts, we first report the improvement
in the objective function value due to MIR cuts and then we report the additional improvement
after two-step MIR cuts are added. These numbers clearly depend on how the data is scaled. To
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show the relative impact of the two-step MIR cuts, we next present the ratio of total improvement
due to MIR and two-step MIR cuts to the improvement due to MIR cuts alone. We only report on
the instances where this ratio is 1.1 which means that improvement due to two-step MIR cuts is at
least 10% of the improvement due to MIR cuts. This is not necessarily a very good criterion (ex:
mitre of MIPLIB 3.0 does not satisfy it even though two-step MIR cuts on this instance do well)
but in the absence of optimal values, we decided to use it. Table 4, we again report “-” instead of
“0.00”. We also note that when solving the LP relaxation of NSR8K strengthened with MIR cuts,
we exceeded memory limits (4 GB) and we do not report on tableau cuts for this instance.

5 Concluding remarks

In this paper we study how to effectively use two-step MIR inequalities as cutting planes for general
mixed-integer problems. Our results are in general encouraging as these cuts make a noticeable
difference in many problem instances. We are however surprised to observe that there are a
number of instances for which we can not find any violated two-step MIR inequalities once the
MIR cuts are added. For these instances MIR inequalities, in practical sense, dominate two-step
MIR inequalities. Motivated by this observation, in a follow-up paper [10] we investigate whether
this is due to the weakness of the two-step MIR inequalities, or due to the strength of the MIR
inequalities for these instances. Both MIR cuts and two-step MIR cuts belong to a large family
of cuts called group cuts that are derived from single constraint relaxation of mixed integer sets.
Combining our observations in this paper and in [10], we conclude that for the 156 mixed-integer
programming instances (MIPLIB, MILPLib, and Fischetti-Lodi instances) considered in this paper:

• For 82 instances, there are violated tableau-based two-step MIR cuts,

• For 55 instances there are no violated tableau-based group cuts [10],

• For 19 instances, we can not show either case.

In other words, for most of the problem instances (74%) discussed in Section 4.3 where we can not
find violated two-step MIR cuts based on the tableau rows, there are actually no violated group
cuts. On the other hand, if there might be a violated group cut, then for most of the instances
(82%), we can find a violated two-step MIR cut. Therefore when MIR cuts do not (practically)
dominate all other group cuts, there usually is a violated two-step MIR cut. This observation also
strengthens the evidence [9] that two-step MIR cuts are quite important from among non-GMI
group cuts.
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Appendix

|I| : |J | : |R| Round 1 Round 2 Round 3 Round 4 Round 5

250:1:100 MIR 63.06 72.2 72.66 74.78 75
+list 75.24 75.44 75.72 75.84 76

∆ 12.18 3.24 3.06 1.06 1

250:1:50 MIR 50.08 67.26 78.86 81.04 83.28
+list 83.38 83.38 83.44 83.7 83.86

∆ 33.3 16.12 4.58 2.66 0.58

250:1:75 MIR 54.82 69.44 73.42 77.46 79.24
+list 79.16 79.16 79.42 79.64 79.86

∆ 24.34 9.72 6 2.18 0.62

500:1:100 MIR 63.5 73.5 73.78 73.98 74.38
+list 75.96 75.96 76.16 76.28 76.56

∆ 12.46 2.46 2.38 2.3 2.18

500:1:50 MIR 50.68 67.74 77.04 77.6 81.04
+list 80.4 80.4 80.44 80.94 81.16

∆ 29.72 12.66 3.4 3.34 0.12

500:1:75 MIR 55.14 69.64 70.8 75.76 76.04
+list 77.44 77.44 77.58 77.68 77.9

∆ 22.3 7.8 6.78 1.92 1.86

Averages MIR 56.21 69.96 74.43 76.77 78.16
+list 78.6 78.63 78.79 79.01 79.22

∆ 22.38 8.67 4.37 2.24 1.06

Table 6: Multiple rounds of Tableau Cuts on Atamtürk’s unbounded instances

Tableau Cuts

Instance Round 1 Round 2 Round 3 Round 4 Round 5

Steel 1 MIR 69.28 86.46 88.83 89.57 90.06
+list 70.11 87.08 88.96 89.63 90.12

∆ 0.83 0.62 0.13 0.06 0.06

Steel 2 MIR 55.86 68.66 70.41 71.22 71.57
+list 58.76 70.76 71.67 72.46 72.71

∆ 2.9 2.1 1.26 1.24 1.14

Steel 3 MIR 54.31 66.02 67.66 68.65 70.81
+list 55.71 67.44 69.99 70.61 72.02

∆ 1.4 1.42 2.33 1.96 1.21

Steel 4 MIR 57.99 70.18 74.66 76.47 78.23
+list 60.65 72.47 76.74 78.18 79.47

∆ 2.66 2.29 2.08 1.71 1.24

Average MIR 59.36 72.83 75.39 76.48 77.67
+list 61.31 74.44 76.84 77.72 78.58

∆ 1.95 1.61 1.45 1.24 0.91

Table 7: Multiple rounds of Tableau Cuts on Steel instances
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|I| : |J | : |R| Round 1 Round 2 Round 3 Round 4 Round 5

250:10:100 MIR 67.4 73.26 74.28 74.64 75.46
+list 75.38 75.4 75.88 76.02 76.68

∆ 7.98 2.14 1.6 1.38 1.22

250:10:50 MIR 50.88 68.16 74.18 77 79
+list 80.02 80.02 80.06 80.64 80.96

∆ 29.14 11.86 5.88 3.64 1.96

250:10:75 MIR 55.88 68.26 68.54 70.38 70.62
+list 74.06 74.06 74.18 74.54 74.66

∆ 18.18 5.8 5.64 4.16 4.04

250:20:100 MIR 70.44 74.18 74.9 75.16 75.42
+list 75.66 75.68 76.06 76.16 76.4

∆ 5.22 1.5 1.16 1 0.98

250:20:50 MIR 51.58 68.5 71.06 74.24 76.28
+list 77.86 77.86 78.16 78.42 78.68

∆ 26.28 9.36 7.1 4.18 2.4

250:20:75 MIR 61.26 71.68 72.66 73.26 74.06
+list 75.62 75.62 75.8 76.1 76.68

∆ 14.36 3.94 3.14 2.84 2.62

250:5:100 MIR 61.32 69.52 69.86 72.6 73.22
+list 72.34 72.36 72.44 73.92 74.38

∆ 11.02 2.84 2.58 1.32 1.16

250:5:50 MIR 50.4 67.68 76.84 81.56 82.16
+list 81.42 81.42 81.46 81.86 82.5

∆ 31.02 13.74 4.62 0.3 0.34

250:5:75 MIR 55.62 68.94 70.96 71.46 73.08
+list 75.5 75.5 76 76.16 76.24

∆ 19.88 6.56 5.04 4.7 3.16

500:10:100 MIR 66.42 72.64 73.62 75.02 75.34
+list 74.96 75 75.78 76.74 76.92

∆ 8.54 2.36 2.16 1.72 1.58

500:10:50 MIR 51.52 68.58 70.34 75.12 77.36
+list 77.56 77.56 77.7 77.8 78.22

∆ 26.04 8.98 7.36 2.68 0.86

500:10:75 MIR 56 67.9 71.88 73.2 74.28
+list 74.24 74.24 75.78 76.26 76.7

∆ 18.24 6.34 3.9 3.06 2.42

500:20:100 MIR 71.44 74.1 75.04 75.38 75.68
+list 75.4 75.4 75.92 76.22 76.5

∆ 3.96 1.3 0.88 0.84 0.82

500:20:50 MIR 51.74 68.46 70.34 73.7 75.56
+list 77 77 77.22 77.46 77.74

∆ 25.26 8.54 6.88 3.76 2.18

500:20:75 MIR 58.98 70.62 71.08 71.26 71.44
+list 74.42 74.42 74.6 74.7 74.78

∆ 15.44 3.8 3.52 3.44 3.34

500:5:100 MIR 62.02 69.02 72.58 73.68 73.96
+list 72.9 72.92 74.88 75.6 76

∆ 10.88 3.9 2.3 1.92 2.04

500:5:50 MIR 51.48 68.52 69.28 75.02 80.18
+list 78.14 78.14 78.28 78.38 80.54

∆ 26.66 9.62 9 3.36 0.36

500:5:75 MIR 55.36 67.74 71.34 72.1 72.36
+list 73.9 73.9 75.42 75.8 75.9

∆ 18.54 6.16 4.08 3.7 3.54

Averages MIR 58.22 69.77 71.9 73.95 75.06
+list 75.69 75.69 76.23 76.63 77.05

∆ 17.47 5.92 4.33 2.69 1.99

Table 8: Multiple rounds of Tableau Cuts on Atamtürk’s bounded instance
s
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Instance Round 1 Round 2 Round 3 Round 4 Round 5

blend2.mps MIR 15.98 17.27 22.64 24.43 24.85
+list 16.07 17.27 22.64 25.13 25.53

∆ 0.09 0 0 0.7 0.68

mod011.mps MIR 37.26 41.74 42.93 43.82 44.88
+list 37.28 41.74 42.96 43.84 44.89

∆ 0.02 0 0.03 0.02 0.01

dcmulti.mps MIR 47.65 55.45 61.68 64.31 68.35
+list 48.5 56.08 62.22 64.58 68.82

∆ 0.85 0.63 0.54 0.27 0.47

set1ch.mps MIR 39.16 75.08 87.78 92.96 93.94
+list 39.16 75.08 87.81 92.99 93.95

∆ 0 0 0.03 0.03 0.01

p0201.mps MIR 26.71 39.72 46.98 51.08 55.25
+list 26.71 40.64 47.3 52.04 57.16

∆ 0 0.92 0.32 0.96 1.91

qnet1-o.mps MIR 42.99 45.66 48.55 49.61 50.11
+list 43.1 45.68 48.92 49.84 50.16

∆ 0.11 0.02 0.37 0.23 0.05

vpm2.mps MIR 10.93 17.19 22.55 31.45 39.1
+list 10.93 17.21 22.57 31.53 39.1

∆ 0 0.02 0.02 0.08 0

gesa3.mps MIR 47.53 50.3 53.78 56.19 57.9
+list 47.53 50.3 53.78 56.19 57.92

∆ 0 0 0 0 0.02

harp2.mps MIR 24.07 30.16 31.11 31.9 31.9
+list 27.08 32.5 32.79 33.01 33.01

∆ 3.01 2.34 1.68 1.11 1.11

vpm1.mps MIR 24.73 34.09 39.2 40.46 54.55
+list 24.73 34.09 39.2 40.47 54.88

∆ 0 0 0 0.01 0.33

modglob.mps MIR 17.28 42.38 52.93 58.75 60.25
+list 17.28 42.38 52.93 58.88 60.32

∆ 0 0 0 0.13 0.07

gesa2.mps MIR 28.53 59.98 69.31 74.48 77.38
+list 28.72 60.01 69.65 74.96 77.78

∆ 0.19 0.03 0.34 0.48 0.4

gen.mps MIR 60.69 64.61 65.53 67.64 68.63
+list 61.48 64.65 65.57 67.76 68.72

∆ 0.79 0.04 0.04 0.12 0.09

fixnet6.mps MIR 12.88 24.85 56.4 67.98 75.73
+list 12.88 24.85 56.41 67.98 75.78

∆ 0 0 0.01 0 0.05

rgn.mps MIR 3.15 8.16 16 16 16
+list 3.15 8.16 16 16 16

∆ 0 0 0 0 0

cap6000.mps MIR 41.65 57.87 60.16 61.51 61.82
+list 42.27 59.02 61.65 62.05 62.27

∆ 0.62 1.15 1.49 0.54 0.45

pp08a.mps MIR 54.42 69.77 76.92 81.6 83.18
+list 54.42 69.77 76.92 81.6 83.18

∆ 0 0 0 0 0

Average MIR 31.51 43.19 50.26 53.77 56.7
+list 31.84 43.5 50.55 54.05 57.03

∆ 0.33 0.3 0.29 0.28 0.33

Table 9: Multiple rounds of Tableau Cuts on MIPLIB instances
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