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Abstract 

Wavelet decomposition problems have been modeled as linear programs – but only as extremely 

dense problems.  Both revised simplex and interior point methods have difficulty with dense 

linear programs. The question then is how to get around that issue. In our experiments the 

standard method outperforms a revised implementation for these problems. Moreover, the 

standard method can be easily and scalably distributed. Hence the standard simplex method 

should be useful in solving wavelet decomposition problems. 
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1. INTRODUCTION 

To date there have been numerous models for wavelet decomposition each with advantages and 

disadvantages [Daubechies, 1988; Mallat and Zhong, 1993; Coifman and Wickerhauser, 1992]. 

One method introduced by Chen et al [1998] is to model wavelet decomposition as a linear 

program. One major issue is that the resulting linear programs are very dense thus making both 

the revised and interior point methods unsuitable for solving these linear programs in an efficient 

manner. Chen et al finessed this issue by restricting the wavelet decomposition problems to those 
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with dictionaries having a special structure and by tailoring an implementation of an interior point 

method to take advantage of that special structure. 

 

Our research approaches this issue by refocusing attention on the simplex method. Dantzig's 

simplex algorithm for linear programming has two major variants: the original tableau, or 

standard method, and the revised method. Today, virtually all serious implementations are based 

on the revised method because it takes advantage of the sparsity that is inherent in most linear 

programming applications. The revised method is also advantageous for problems with a high 

aspect ratio; that is, for problems with many more columns than rows.  

 

However, the standard method has advantages as well. First, the standard method is effective for 

dense problems [Nash and Sofer, 1996 p. 115]. While dense problems are uncommon in general, 

they do occur frequently in some important applications within linear programming [Eckstein et 

al, 1995]. Included in these are wavelet decomposition [Chen et al, 1998], Image processing 

[Selesnick et al, 2004], and digital filter design [Hu & Rabiner, 1972; Steiglitz et al, 1992; 

Gislason et al, 1993]. All these problem groups are well suited to the standard  method.  Second, 

the standard method can be easily and effectively extended to parallel and coarse grained 

distributed algorithms. (There are no scalable distributed versions of the revised simplex method.) 

When the standard  method is distributed, aspect ratio becomes less of an issue. We simply divide 

the extra columns among more processors. If done properly, parallelization of the standard 

method pays off even on small problems [Yarmish, 2001]. 

Although we focus on the simplex method, it should be noted that it is difficult to deal with dense 

problems even with interior point methods [Bertsimas & Tsitsiklis, 1997, p. 440, pp. 536-537; 

Chen et al, 1998, p. 57]. 
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We have written a standard implementation of the simplex method (retroLP) and compared it to 

the commonly used revised method as implemented by the well-known MINOS optimization 

package [Murtagh, & Saunders, 1998].  The theoretical fact that the standard method is faster 

than the revised method for dense problems is well known [Hadley, 1962 p. 216; Nash and Sofer, 

1996, p.115].  We compare the efficiencies of the standard and revised simplex methods in 

solving wavelet decomposition problems. We empirically show that although for sparse problems 

the revised method is superior, the standard method is actually better suited and should be used. 

for the wavelet decomposition problems.  

 

Another motivation for applying the standard  method to wavelet decomposition problems is 

parallelization. It is relatively straightforward to distribute a linear program amongst multiple 

processors when employing the original standard method whereas it is not straightforward using 

modern implementations of the revised method [Yarmish, 2001].  

 

Section 2 provides a brief overview of the standard and revised simplex methods. In section 3 we 

provide a brief review of previous research. Section 4 describes our experimental configuration. 

Section 5 describes empirical results for dense Wavelet Decomposition applications. In particular 

we describe empirical tests comparing the two methods for varying problem densities. Section 6 

gives a brief summary and conclusion. 

 

2. THE REVISED AND STANDARD SIMPLEX METHODS 

We consider linear programs in the general form:  
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A = {aij} is a given m x n matrix, x is an n-vector of decision variables xj , each with given lower 

bound lj and upper bound uj. The m-vectors bl and bu are given data that define constraints. The 

lower bound, lj, may take on the value -∞ and the upper bound, uj, may take on the value +∞.  

Similarly, some or all of the components of bl may be -∞, and some or all of bu may be +∞. 

Table 1

Table 1: Comparison of Revised and Standard Forms of the Simplex Method 

 summarizes the main qualitative differences between the standard and revised simplex 

method that affect wavelet decomposition linear programming problems.  

 

Revised Simplex Method Standard Simplex Method 

Takes better advantage of sparsity in problems Is more effective for dense problems 

Is more efficient for problems with large aspect 
ratio (n/m) 

Is more efficient for problems with low aspect 
ratio. 

Is difficult to perform efficiently in parallel, 
especially, in loosely coupled systems. 

Very easy to convert to a distributed version 
with a loosely coupled system. 

 

3. PREVIOUS RESEARCH 

3.1 Wavelet Decomposition 
 
Chen, Donoho and Saunders [1998] have modeled Wavelet Decomposition as Linear Programs.  

Their goal was to improve on previous methods such as the method of Frames, the method of 

Matching Pursuits and the method of Best Orthogonal Basis. These methods, in the opinion of the 
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authors, produce dictionaries with sufficient computational speed but “lack qualities of sparsity 

preservation and of stable super-resolution.”  

 

In order to compensate for this, the authors introduced a new decomposition method called 

“Atomic Decomposition by Basis Pursuit.”  This method translates into large linear programs. 

For example, a typical wave signal of length 8192 results in an equivalent Linear Program of size 

8192 by 212,992. Unfortunately the Linear Programs produced are not only extremely large but 

are dense. In order to solve these problems they could use neither the revised algorithm nor a 

straightforward implementation of an interior-point method. To quote the authors [Chen et al, 

1998, p. 57] “However, the optimization problems we are interested in have a key difference from 

[other] successful large-scale applications…. The matrix A we deal with is not at all sparse; it is 

generally completely dense…”  

 

In order to deal with this the authors implemented a specialized interior point method to derive a 

unique wavelet dictionary from an over complete dictionary. (In particular they chose an 

algorithm based on the primal-dual log barrier interior point algorithm. In most implementations, 

the most computationally intensive step of interior point methods is solving large linear systems 

of equations using Cholesky factorization. Heuristics are used to take advantage of data sparsity 

to achieve sparse Cholesky factorizations. See, for example, Bertsimas & Tsitsiklis, 1997, p. 440, 

pp. 536-537.  Among other things they took advantage of fast implicit algorithms for 

representations in the dictionaries they considered. They used this to develop a substitute 

approach for efficiently solving the systems of equations and restricted the class of wavelet 

dictionaries used. 
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3.2 Standard Simplex Method for Dense Linear Programs  
 

It is well known that there are two factors that determine the efficiency of the standard  method vs 

the revised  method. These are density and aspect ratio (column/row ratio) [Hadley, 1962; Nash 

and Sofer, 1996; Chvátal, 1983].   Low density and high aspect ratio favor the revised method 

whereas high density and low aspect ratio favor the standard method. Most problems are 

extremely sparse and have a moderate aspect ratio. They are therefore much more efficiently 

solved via the revised method.  On the other hand, linear programs resulting from wavelet 

decomposition, although possessing a high aspect ratio, are also extremely dense, often 

approaching 100% density.   

 

3.3 Scalable Parallel Algorithms for the Standard Simplex Method 
 

Recently there has been much research on methods to parallelize the simplex method. The 

standard method has proven to be more amenable to distributed and parallel algorithms than the 

revised method. A number of parallel algorithms have been produced both for massively parallel 

machines and for distributed networks of workstations.  

 

Thomadakis & Liu [1996] worked on the standard method utilizing the MP-1 and MP-2 MasPar. 

Eckstein et al [1995] showed in the context of the parallel connection machine CM-2 that the 

iteration time for the parallel revised method tended to be significantly higher than for the parallel 

tableau algorithm even when the revised method is implemented very carefully. Stunkel [1988] 

worked on a way to parallelize both the revised and standard methods so that both would obtain a 

similar advantage in the context of the parallel Intel iPSC hypercube. Yarmish [2001] describes a 

coarse grained distributed standard simplex method, dpLP, especially optimized for loosely 

coupled workstations.  
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Dense applications, such as wavelet decomposition, for which the standard method yields lower 

iteration times, have particular potential for increased efficiency through the use of these parallel 

algorithms. We therefore propose that it is both possible and advantageous to use the general 

purpose standard method to solve these wavelet decomposition problems without having to be 

limited to wavelet dictionaries with fast representations. 

 

4. EXPERIMENTAL CONFIGURATION 

4.1 retroLP 

retroLP  is an implementation of the standard simplex method that directly implements linear 

programs of the form shown in Equations (1) and (2) in Section 2. retroLP accepts any file in the 

standard MPS format. It is quite stable; for example, it has successfully solved all linear 

programming problems in the Netlib repository. 

4.2 MINOS 

We use MINOS 5.5 [Murtagh & Saunders, 1998] as a representative implementation of the 

revised method. We installed it to run in the same environment as retroLP. This allowed us to 

make reasonable comparisons between the standard and revised methods. The purpose of these 

comparisons is not so much to compare running times but to examine the relative behavior of 

these approaches as the parameters of interest, primarily density, are varied. We chose the 

parameters for both solvers to try to eliminate factors extraneous to the direct comparison of the 

revised and standard methods.  

 

5. EXPERIMENTAL RESULTS  

Below we report on three separate groups of test runs. Data for these experiments were procured 

from the Wavelet and Atomizer packages provided by Chen at al [http://www-
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stat.stanford.edu/~atomizer/]. It is therefore important to point out a few issues to bear in mind 

while reviewing the results of our experiments. First, the ability to test problems with specific 

chosen densities on specific chosen problem sizes is severely hampered. In particular the 

Atomizer package will only provide wavelet dictionaries that are a power or two in height and 

width. Furthermore the dictionaries do not directly allow for control of densities.  

A second thing to keep in mind is the structure inherent in these wavelet dictionaries. As 

mentioned above the authors themselves noted that they are only working with wavelet 

dictionaries that have a structure that lend themselves to fast implicit algorithms to solve their 

systems of equations. We were automatically limited to dictionaries provided by the authors’ 

atomizer package which only gave these specially structured dictionaries. Nevertheless, by using 

the standard method as we have, other dictionaries without fast implicit algorithms could be used 

as well, since  neither retoLP nor MINOS take advantage of any special structure in the wavelet 

dictionaries.  

 

The first group of problems tested is listed in Table 2.  In it are listed seven Wavelet 

Decomposition problems with varying problem sizes. The denser problems are solved more 

efficiently by the standard simplex method. Note that the three 87.5% problems are comprised of 

the “Discrete Sine Transform” wavelet dictionary. The other problems are comprised of Wavelet 

Packet, Discrete Cosine and combinations of dictionaries made by using the MakeList command 

provided by the Atomizer package. The 512 x 2048 problem size implies an aspect ratio of 4. 

Figures 1 and 2 compare the revised and tableau methods as density varies for 20 separate Cosine 

Packet(CP) wavelet problems. We were able to get varying densities from a CP wavelet by 

combining high density basis parts of the CP dictionary with low density basis parts of the CP 

dictionary to get a medium density basis within the CP dictionary. 
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Results for the second and third groups of problems are shown in Figures 1 and 2 respectively. In 

the second group, all problems were size 512 x 1024, which implies an aspect ratio of 2. The 

wavelet dictionaries used are “cosine packet” dictionaries. The breakeven point for this problem 

group is at approximately 60% density.  

The third group of problems used a problem size of 512 x 2048. This has an aspect ratio of 4, 

double the aspect ratio of the last set of problems. As can be seen from Figure 2, the breakeven 

point of 75% is higher than the breakeven point of Figure 1 as expected.   

Problem M N Density 
Minos 

time/iter 
retroLP 
time/iter 

1 1024 4096 0.20% 0.0002637 0.0950439 
2 512 2048 0.39% 0.0003320 0.0464786 
3 256 1536 33.85% 0.0055506 0.0163869 
4 128 3246 34.37% 0.0015652 0.0034923 
5 512 2048 87.52% 0.0532897 0.0452119 
6 512 2048 87.52% 0.0553762 0.0450486 
7 512 2048 87.52% 0.0527936 0.0451510 

 

Table 2: Comparison of retroLP and MINOS for Wavelet Decomposition 
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Figure 1: Density Breakeven point for 512 x 1024 wavelet decomposition 
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Figure 2: Density Breakeven point for 512 x 2048 wavelet decomposition 
 
 
6. SUMMARY AND CONCLUSIONS 

In this paper we discussed Wavelet Decomposition problems modeled as linear programs. We 

focused in particular on the model offered by Chen et al [1998]. We provided empirical data and 

experiments that compare the standard algorithm with the revised algorithm and that show 

density breakeven points. Our experiments comparing MINOS and retroLP indicate that for 

moderate values of density the standard method is competitive, and that Wavelet Decomposition 

can take advantage of the  standard method as indicated by our results when using retroLP.  

 

An implementation of the standard method makes possible a natural Single Program Multiple 

Data (SPMD) approach for a distributed simplex method. Partition the columns among a number 

of workstations. Each iteration, each workstation prices out its columns, and makes a "bid" to all 
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the workstations. The winning bid defines a pivot column, then all the workstations pivot on their 

columns in parallel, and so on. This is important for such problems as Wavelet Decomposition 

that are suited to the standard  method.  
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