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Abstract

The paper deals with an optimal control problem with a scalar first-
order state constraint and a scalar control. In presence of (nonessen-
tial) touch points, the arc structure of the trajectory is not stable. We
show how to perform a sensitivity analysis that predicts which touch
points will, under a small perturbation, become inactive, remain touch
points or switch into boundary arcs. The main tools are the study of
a quadratic tangent problem and the notion of strong regularity. The
results can be interpreted as an extension of the shooting algorithm to
the case when touch points occur for first-order state constraints. An
illustrative example is given.
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Introduction

This paper deals with an optimal control problem (of an ordinary differential
equation) with a scalar first-order state constraint and a scalar control. It is
well-known that for first-order state constraints, touch points (locally unique
times where the constraint is active) are nonessential (the associated jump
of the multiplier is null) (see e.g. [10, 9]). Situations where touch points
are present may be encountered, for instance, when solving the optimal
control problem by indirect approaches using an homotopy method in order
to guess the arc structure of the trajectory, see e.g. the famous example in
[1]. Therefore it is of interest to study sensitivity of solutions around touch
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points, when the constraint becomes active. Under a small perturbation,
several events may occur. Among them, the constraint may locally become
inactive, the touch point may remain a touch point, or it may give rise to
a boundary arc. Our main result is that, under natural hypotheses, these
are the only three possibilities, and that the boundary arcs have a length of
order of the perturbation, and satisfy a “strict complementarity” hypothesis.
In addition, we show how to compute a first-order expansion of the solution.
The analysis uses in a critical way a certain tangent quadratic problem,
and at the same time is in the spirit of the shooting approach, in the sense
that touch points are converted into boundary arcs of zero length, and we
compute the first-order expansion of all entry and exit points. The proof
applies the notion of “strong regularity” in the sense of Robinson [16] to a
system that happens to be equivalent to the optimality conditions of the
tangent quadratic problem. Our formulation of the corresponding shooting
formulation (of which all entry and exit times are variables, in addition to
the initial costate and jumps of the alternative multiplier at entry times)
allows exit times to be lower than entry times; however, we check that the
solution of the shooting formulation is such that entry times are lower than
or equal to corresponding exit times.

This paper is related to our previous work: the study of no-gap second-
order optimality conditions in [2], and the shooting formulation, allowing
nonessential touch points for state constraints of order greater than one,
and for which we also use the notion of strong regularity [3]. In both papers
we assume also the state constraint and the control to be scalar-valued. In
a forthcoming paper we will extend all these results to the case of vector-
valued state constraints and control.

Two ways have been explored to obtain stability results for optimal con-
trol problems: on the one hand, implicit mapping theorems in infinite di-
mensional spaces (see e.g. [17, 11]), and one the other hand, shooting for-
mulations that reduce locally the problem into a finite-dimensional one (a
two-(or multi) point boundary value problem; see e.g. [18, 15]). With first-
order state constraints, L2-stability of solutions was obtained, under strong
second-order sufficient conditions, by Malanowski [12], using an infinite-
dimensional implicit function theorem based on two-norms approach, and
by Dontchev and Hager [6], using an implicit function theorem in metric
spaces. In Malanowski [12], directional differentiability of solutions in L2

was established, using the results on differentiability of projection onto a
closed convex cone in Hilbert spaces [8]. In Dontchev and Hager [6], L∞-
stability of solutions was derived, under an additional assumption on the
contact set (“contact separation”). As for finite dimensional approaches,
Malanowski and Maurer obtained in [13] differentiability of solutions in L∞

by application of the implicit function theorem to the shooting mapping,
under stronger assumptions (finitely many nontangential junction points,
and strict complementarity). The present work can be seen as an extension

2



of [13], to the case when (nonessential) touch points are present. We obtain
Fréchet directional derivatives as solution of an inequality-constrained lin-
ear quadratic problem, under a minimal second-order sufficient condition,
weakening that of [13].

The paper is organized at follows. Section 1 recalls basic definitions and
the alternative formulation. In section 2, the main result is stated. In section
3, the problem is reduced to a generalized finite-dimensional equation, with a
complementarity constraint. Robinson’s strong regularity theory is applied
to the latter in section 4, where the main result is proved. Section 5 deals
with directional differentiability of solutions. In section 6, a basic illustrative
example is presented. Finally, in the Appendix, a complement of proof is
given.

1 Preliminaries and Optimality Conditions

Let U := L∞(0, T ) (resp. Y := W1,∞(0, T ; Rn)) denote the control (resp.
state) space. Let M be a Banach space (the space of perturbations param-
eter) and, for µ ∈ M , the cost function `µ : R×R

n → R, final cost function
φµ : R

n → R, dynamics fµ : R × R
n → R

n, state constraint gµ : R
n → R,

initial condition yµ
0 ∈ R

n, and (fixed) final time T > 0. We consider the
following optimal control problem:

(Pµ) min
(u,y)∈U×Y

∫ T

0
`µ(u(t), y(t))dt + φµ(y(T )) (1)

subject to ẏ(t) = fµ(u(t), y(t)) for a.a. t ∈ [0, T ] ; y(0) = yµ
0 , (2)

gµ(y(t)) ≤ 0, for all t ∈ [0, T ]. (3)

We study perturbations of problem (Pµ) around a given value of parameter
µ0 ∈ M , and we sometimes omit the superscript µ when we refer to the
problem and data associated with µ0, i.e. (P) := (Pµ0) and (`, φ, f, g, y0) :=
(`µ0 , φµ0 , fµ0 , gµ0 , yµ0

0 ).
We assume throughout the paper that the assumptions below hold:

(A0) The mappings `µ0 , φµ0 , fµ0 and gµ0 are of class C2, with locally Lip-
schitz continuous second order derivatives, and the dynamics f µ0 is
Lipschitz continuous;

(A1) the initial condition satisfies gµ0(yµ0

0 ) < 0.

These assumptions will not be repeated in the various results of the paper.
A parametrization (`µ, φµ, fµ, gµ, yµ

0 ), identified with problem (Pµ), is
an stable extension of (P), if there exists a neighborhood M0 of µ0, such
that (i) there exists C2 mappings ˆ̀ : R × R

n × M0 → R; φ̂ : R
n × M0 → R;

f̂ : R × R
n × M0 → R

n; ĝ : R
n × M0 → R and ŷ0 : M0 → R

n, such
that `µ(u, y) = ˆ̀(u, y, µ) for all (u, y) ∈ R × R

n and all µ ∈ M0 (and
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similarly for φµ, fµ, gµ, and yµ
0 ); (ii) the mappings `µ, fµ, φµ, gµ have

Lipschitz continuous second-order derivatives and f µ is Lipschitz continuous,
uniformly over µ ∈ M0.

In this paper, we always consider stable extensions (Pµ).

1.1 Definitions and Notations

The space of row vectors is denoted by R
n∗, and the adjoint and transpo-

sition operator in R
n are denoted by a star ∗. Fréchet derivatives of f , `,

etc. w.r.t. arguments u ∈ R, y ∈ R
n, are denoted by a subscript, for in-

stance fu(u, y) = Duf(u, y). The space Lr(0, T ), r ∈ [1,∞], is the Lebesgue

space of functions such that ‖u‖r := (
∫ T
0 |u(t)|r)1/r < ∞ for 1 ≤ r < ∞

and ‖u‖∞ := supesst∈[0,T ] |u(t)| < ∞, and W1,r(0, T ) is the Sobolev space of
functions in Lr(0, T ) with a weak derivative in Lr(0, T ). The space of con-
tinuous functions and its dual space, the space of bounded Borel measures,
are denoted respectively by C[0, T ] and M[0, T ]. The cone of nonnega-
tive measures is denoted by M+[0, T ], and BV([0, T ]; Rn) denotes the space
of vector-valued functions of bounded variation over [0, T ]. The elements of
M[0, T ] are identified with functions of bounded variation vanishing at zero.

Given µ ∈ M0, a trajectory of (Pµ) is an element (u, y) ∈ U×Y satisfying
the state equation (2).

The first-order time derivative of the state constraint is the function de-
fined by (gµ)(1) : R × R

n → R, (u, y) 7→ gµ
y (y)fµ(u, y). In this paper, we

consider state constraints of first order, that is, the function (gµ)(1)(u, y) de-
pends explicitly on the control variable u in the neighborhood of the contact
set of the constraint, see assumption (A3).

The classical (resp. augmented) Hamiltonian functions Hµ : R × R
n ×

R
n∗ → R (resp. H̃µ : R × R

n × R
n∗ × R → R) are defined by:

Hµ(u, y, p) := `µ(u, y) + pfµ(u, y) (4)

H̃µ(u, y, p1, η1) := Hµ(u, y, p1) + η1(g
µ)(1)(u, y). (5)

For (u, y) an admissible trajectory of (Pµ), i.e. satisfying the constraint
(3), define the contact set by:

I(gµ(y)) := {t ∈ [0, T ] ; gµ(y(t)) = 0}. (6)

A boundary arc (resp. interior arc) is a maximal interval of positive mea-
sure I such that gµ(y(t)) = 0 (resp. gµ(y(t)) < 0), for all t ∈ I. Left
and right endpoints of a boundary arc [τen, τex] are called entry and exit
point, respectively. A touch point τto is an isolated contact point, satisfying
gµ(y(τto)) = 0 and gµ(y(t)) < 0, for t 6= τto in the neighborhood of τto.
Entry, exit and touch points are called junction points.

When a trajectory (u, y) of (Pµ) has a finite set of junction times, the
latter is denoted by

T =: Ten ∪ Tex ∪ Tto,
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with Ten, Tex and Tto the disjoint (and possibly empty) subsets of respec-
tively regular entry, exit and touch points. We denote by Ib the union of
boundary arcs, i.e. Ib := ∪Nb

i=1[τ
en
i , τ ex

i ] for Ten := {τ en
1 < . . . < τ en

Nb
} and

similar definition of Tex, and we have I(gµ(y)) = Tto ∪Ib. The arc structure
of a trajectory is the (finite) number of boundary arcs and touch points, and
the order in which they occur.

Given a finite subset S of (0, T ), we denote by PCk
S [0, T ] the set of

functions over [0, T ] that are of class Ck outside S, and have, as well as their
first k derivatives, a left and right limit over S∪{0, T}. For all ϕ ∈ PCk

S [0, T ],
we denote left-and right limits at τ ∈ S by ϕ(τ±) := limt→τ± ϕ(t), and jump
by [ϕ(τ)] := ϕ(τ+) − ϕ(τ−). The subset of functions in PCk

S [0, T ] having

continuous derivatives on [0, T ] until order r ≥ 0 is denoted by PCk,r
S [0, T ] :=

PCk
S [0, T ] ∩ Cr[0, T ]. We also use the notation νS := (ντ )τ∈S ∈ R

CardS .

1.2 Alternative Formulation of Optimality Conditions.

Let us first recall the definition of Pontryagin extremals.

Definition 1.1. A trajectory (u, y) a Pontryagin extremal for (Pµ), if there
exists α ∈ R+, η ∈ M[0, T ] and p ∈ BV([0, T ]; Rn∗), (η, p, α) 6= 0, such that:

ẏ(t) = fµ(u(t), y(t)) a.e. on [0, T ] ; y(0) = yµ
0 (7)

dp(t) = {α`µ
y (u(t), y(t))+p(t)fµ

y (u(t), y(t))}dt+gµ
y (y(t))dη(t) on [0, T ] (8)

p(T ) = αφµ(y(T )) (9)

u(t) ∈ argminû∈R{α`µ
u(û, y(t)) + p(t)fµ

u (û, y(t))} a.e. on [0, T ] (10)

0 ≥ gµ(y(t)) ; dη ≥ 0 ;

∫ T

0
gµ(y(t))dη(t) = 0. (11)

When α > 0, dividing p and η by α, we can take α = 1 in the above equa-
tions, and in that case we say that (u, y) is a normal Pontryagin extremal.

It is well known that optimal solutions of (Pµ) are Pontryagin extremals.
In presence of pure state constraints, a reformulation of the optimality
conditions is needed to apply shooting methods. Our results are based
on the following alternative formulation of optimality conditions, see e.g.
[5, 10, 9, 14, 3].

Definition 1.2. A trajectory (u, y) having finitely many junction times T , is
solution of the alternative formulation, if there exists p1 ∈ PC1

T ([0, T ], Rn∗),
η1 ∈ PC1

T [0, T ], and alternative jump parameters ν1
Ten

and νTto, such that
the following relations are satisfied (time dependence is omitted):

ẏ = fµ(u, y) on [0, T ] ; y(0) = yµ
0 (12)

−ṗ1 = H̃µ
y (u, y, p1, η1) on [0, T ] \ T (13)

0 = H̃µ
u (u, y, p1, η1) on [0, T ] \ T (14)
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(gµ)(1)(u, y) = 0 on Ib (15)

η1(t) = 0 on [0, T ] \ Ib (16)

p1(T ) = φµ
y (y(T )) (17)

gµ(y(τen)) = 0, τen ∈ Ten (18)

gµ(y(τto)) = 0, τto ∈ Tto (19)

[p1(τen)] = −ν1
τen

gµ
y (y(τen)), τen ∈ Ten (20)

[p1(τex)] = 0, τex ∈ Tex (21)

[p1(τto)] = −ντtog
µ
y (y(τto)), τto ∈ Tto. (22)

A solution of the alternative formulation satisfies the additional conditions,
if the conditions below hold:

gµ(y(t)) < 0 on [0, T ] \ (Ib ∪ Tto) (23)

η̇1(t) ≤ 0 on Int Ib (24)

ν1
τen

= η1(τ
+
en), τen ∈ Ten ; η1(τ

−
ex) = 0, τex ∈ Tex (25)

ντto = 0 τ ∈ Tto. (26)

We assume that problem (P) has a local optimal solution, denoted in the
sequel by (ū, ȳ), and that the latter satisfies, with p̄1, η̄1 and T̄ its associated
multipliers in the alternative formulation and junction times, the following
assumptions:

(A2) Uniform strong convexity of the Hamiltonian w.r.t. the control vari-
able, i.e. there exists α > 0, such that

H̃µ0

uu(û, ȳ(t), p̄1(t
±), η̄1(t

±)) ≥ α, for all û ∈ R and all t ∈ [0, T ]. (27)

(A3) Uniform regularity of the state constraint near the contact set, i.e.,
there exists β, ε > 0 such that

|(gµ0)(1)u (û, ȳ(t))| ≥ β, for a.a. t, dist(t; I(gµ0 (y))) ≤ ε and all û ∈ R.
(28)

(A4) The trajectory (ū, ȳ) has a finite set of junction times T̄ , and we
suppose that g(ȳ(T )) < 0.

Proposition 1.3 (See e.g. [10, 9, 13]). Let (ū, ȳ) be an optimal solu-
tion of (Pµ0), satisfying (A2)-(A4). Then (ū, ȳ) is solution of alternative
formulation (12)-(22), and satisfies additional conditions (23)-(26).

Remark 1.4. It can be shown (see [3, Prop. 2.10]) that under (A2)-(A4), re-
lations (12)-(26) characterize Pontryagin extremals. When (A3) (and (A1))
hold, the extremal is normal (α = 1), and the (unique) classical multipliers
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η ∈ M+[0, T ] and p ∈ BV([0, T ]; Rn∗) of Def. 1.1, are given by (recall that
we adopted the convention η(0) = 0):

η(t) =
∑

τ∈Ten

ν1
τ1t≥τ (t) − η1(t

+) ; p(t) = p1(t) + η1(t)g
µ
y (y(t)), (29)

with 1t≥τ (t) = 1 if t ≥ τ and zero otherwise. Equivalently, η is given by
dη(t) = −η̇1(t)dt.

Classical multipliers (p, η) and alternative ones (p1, η1) can be recovered
from each other by (29) and (25). By (20)-(22) and additional conditions
(25)-(26), we have (p, η) ∈ PC1,0

T ([0, T ], Rn∗)×PC1,0
T [0, T ]. It is also easy to

see that, when (29) holds,

H̃µ(·, y, p1, η1) = Hµ(·, y, p),

and hence, (A2) is equivalent (with p̄ the classical costate associated with
ū) to:

Hµ0

uu(û, ȳ(t), p̄(t±)) ≥ α, for all û ∈ R and all t ∈ [0, T ].

Remark 1.5. By (24)-(25), the following necessary condition holds:

ν1
Ten

≥ 0. (30)

Remark 1.6. If (u, y) satisfies the alternative formulation and (A2)-(A4),
then (25) is equivalent to the condition below (see [13] and [3, Prop. 2.15]):

(gµ)(1)(u(τ−
en), y(τen)) = 0, τen ∈ Ten ; (gµ)(1)(u(τ+

ex), y(τex)) = 0, τex ∈ Tex.
(31)

Also (25) or (31) is equivalent to the continuity of the control at entry/exit
points. By (26), (14) and (A2), we see that the control is also continuous at
touch points. It follows that (u, y) ∈ PC1,0

T [0, T ] × PC1,1
T ([0, T ]; Rn).

Remark 1.7. At a touch point τto, the function t 7→ gµ(y(t)) has a local
isolated maximum, and a continuous derivative at τto (due to the continuity
of u), hence the condition below is satisfied (compare to (31)):

(gµ)(1)(u(τto), y(τto)) = 0, τ ∈ Tto. (32)

2 Statement of the main result

We make in addition to (A2)-(A4) the following assumptions:

(A5) Uniform strict complementarity on boundary arcs:

∃β > 0
d

dt
η̄1(t) ≤ −β for all t ∈ Int Īb; (33)
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(A6) Non tangentiality at second order at touch points: for all τto ∈ T̄to,

d2

dt2
g(ȳ(t))|t=τto < 0. (34)

Note that (34) makes sense, since d2

dt2
g(y(t)) is a function of (y, u, u̇) and u

and u̇ are continuous at a touch point (since ντto = 0). This condition is
similar to the reducibility hypothesis when the state constraint is of order
q ≥ 2. The proof of the next lemma can be found in [3, Lemma 3.1].

Lemma 2.1. Let (ū, ȳ) be a Pontryagin extremal for (P) satisfying (A2)-
(A4). Then assumption (A5) implies that the following non-tangentiality at
second-order holds at entry/exit points:

d2

dt2
g(ȳ(t))|t=τ−

en
< 0, τen ∈ T̄en ;

d2

dt2
g(ȳ(t))|t=τ+

ex
< 0, τex ∈ T̄ex. (35)

Let the linearized control and state spaces be respectively V := L2(0, T )
and Z := H1(0, T ; Rn), where H1(0, T ) is the Sobolev space of functions
in L2(0, T ) with a weak derivative in L2(0, T ). Define the quadratic cost
function over V × Z

J1(v, z) :=

∫ T

0
H̃(u,y),(u,y)(ū, ȳ, p̄1, η̄1)((v, z), (v, z))dt

+ z(T )∗φyy(ȳ(T ))z(T ) +
∑

τ∈T̄en

ν̄1
τ z(τ)∗gyy(ȳ(τ))z(τ),

(36)
where H̃ is the augmented Hamiltonian (5), and the set of constraints:

ż = fy(ū, ȳ)z + fu(ū, ȳ)v on [0, T ] ; z(0) = 0 (37)

gy(ȳ(τ))z(τ) = 0 τ ∈ T̄en (38)

g
(1)
(u,y)(ū(t), ȳ(t))(v(t), z(t)) = 0 t ∈ Īb (39)

gy(ȳ(τ))z(τ) ≤ 0 τ ∈ T̄to. (40)

We consider the following second-order condition:

J1(v, z) > 0, for all (v, z) ∈ V × Z, (v, z) 6= 0, satisfying (37)-(39). (41)

Remark 2.2. (i) We know by [3, Lemma 3.6] that we can express the quadratic
cost J1, using (p̄, η̄) defined by (29) instead of (p̄1, η̄1), over the space of lin-
earized trajectories (v, z) satisfying (37), by:

J1(v, z) =

∫ T

0
H(u,y),(u,y)(ū, ȳ, p̄)((v, z), (v, z))dt + z(T )∗φyy(ȳ(T ))z(T )

+

∫ T

0
z(t)∗gyy(ȳ(t))z(t)dη̄(t).
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(ii) Condition (41) is stronger than the no-gap second-order sufficient con-
dition, characterization of the second-order growth condition (see [2]):

J1(v, z) > 0, for all (v, z) ∈ V × Z, (v, z) 6= 0, satisfying (37)-(40). (42)

Remark 2.3. The second-order sufficient condition (41) used in the stability
and sensitivity analysis is weaker than the one given in [13], where the entry
point constraint (38) is omitted. The authors present a numerical method,
based on Riccati equations, allowing to check the coercivity of the quadratic
form J1 over the subspace defined by (37) and (39), which if of interest in
applications, while the verification of (41) in practice remains open.

Given (µ, u) ∈ M0 × U , denote by yµ
u the state solution in Y of:

ẏµ
u(t) = fµ(u(t), yµ

u(t)) for a.a. t ∈ [0, T ] ; yµ
u(0) = yµ

0 , (43)

and the cost function J : U → R, u 7→
∫ T
0 `µ(u(t), yµ

u(t))dt + φµ(yµ
u(T )).

Since strict complementarity does not hold at touch points, the arc struc-
ture of the trajectory (in the sense of number and order of boundary arcs
and touch points) is not stable under a small perturbation. However, we will
see that by (A5), boundary arcs are locally preserved, and that by (A6), the
only three possibilities for a touch point is to become a boundary arc, re-
main a touch point or become inactive at local solutions of the perturbed
problems. That is what we call having a neighboring arc structure of active
constraints to that of (ū, ȳ), in a sense made precise in section 4.

Below is our main result, that will be proved later.

Theorem 2.4. Let (ū, ȳ) be a Pontryagin extremal of (P) satisfying (A2)-
(A6). Then the following assertions are equivalent:
(i) For all stable extensions (Pµ) of (Pµ0), there exists neighborhoods (Vu, Vµ)
of (ū, µ0), such that for all µ ∈ Vµ, there exists locally a unique local opti-
mal solution (uµ, yµ) of (Pµ) with uµ ∈ Vu satisfying the uniform quadratic
growth condition: there exists c, r > 0, such that

Jµ(u) ≥ Jµ(uµ)+c‖u−uµ‖2
2, ∀u ; ‖u−ū‖∞ < r, gµ(yµ

u) ≤ 0 on [0, T ]; (44)

(ii) The strong second-order sufficient condition (41) holds.
In addition, if either point (i) or (ii) is satisfied, denote by (pµ, ηµ)

the (unique) classical multipliers associated with the local solution (uµ, yµ).
Then (uµ, yµ) is the unique Pontryagin extremal of (Pµ) with uµ in the
neighborhood of ū, and the mapping

µ 7→ (uµ, yµ, pµ, ηµ) ∈ U × Y × L∞(0, T ; Rn∗) × L∞(0, T )

is Lipschitz continuous on a neighborhood of µ0.

9



In fact there is another main result behind Th. 2.4. We prove in Th. 4.4
that under (A2)-(A6), all Pontryagin extremals, i.e. stationary points (u, y)
of (Pµ), with (u, µ) in a neighborhood of (ū, µ0) have a neighboring structure
of active constraints to that of (ū, ȳ) (and in particular, have finitely many
junction points). This is clearly a stronger result than the existence of a
unique local optimal solution of (Pµ) as in e.g. Th. 8.3 in [13] (where only
the implication “(ii) ⇒ (i)” was investigated), and than the uniqueness of
Pontryagin extremals satisfying some restrictions on the arc structure, as in
[3, Th. 4.2]. Uniqueness of stationary points, in a certain sense, is needed
to obtain the implication (i) ⇒ (ii) in the above theorem.

In section 5, we will provide the first-order expansion of the local optimal
solution and associated multipliers of the perturbed problem.

3 Shooting Formulation

By (A2)-(A4), applying the implicit function theorem to (14)-(16), we may
express the algebraic variables (u, η1) on each arc as C1 functions of the
differential variables (y, p1). Denote by Fµ

b and Fµ
i the flows on (y, p1)

obtained respectively on boundary and interior arcs, by eliminating the al-
gebraic variables, and write (y, p1)(t) = (y(t), p1(t)). On each arc (t1, t2),
we have that

(y, p1)(t
−
2 ) = Fµ

a ((y, p1)(t
+
1 ), t2 − t1) (45)

where Fµ
a equals Fµ

b for a boundary arc, and Fµ
i for an interior arc. So we

can (and this is precisely the idea of shooting methods) describe the alterna-
tive optimality system (12)-(22) as a sequence of applications of mappings
Fµ

b and Fµ
i , combined with junction conditions. Note that the mappings

(x, t1, t2) → Fµ
a (x, t2 − t1), a = i, b, are (locally) C1 w.r.t. all arguments,

and allow in particular t2 − t1 to be nonpositive.
Now let us view a touch point as a boundary arc of zero length. This

makes sense since, as we will see later, under a small perturbation, a touch
point may switch into a boundary arc. So we have an entry point and an
exit point, τen and τex, whose common value is the one of the touch point.
The jump ν1

τen
at entry point τen equals ντto (i.e., zero). There is a zero

jump of p1 at the entry (and exit) time τen.
Assume that we have Nba boundary arcs and Nto touch points. Let

N := Nba + Nto. We have now N entry and N exit points. Denote by ten

(resp. tex) the N dimensional vector of entry (resp. exit) points, taken in
the chronological order. We use the notation tex

0 := 0 and tenN+1 := T . We
may rewrite the alternative formulation as follows, taking into account the
continuity of state and costate at exit points:

(y, p1)(0) = (y0, p0) (46)

(y, p1)(t
en−
i ) = Fµ

i ((y, p1)(t
ex
i−1), t

en
i − texi−1), i = 1, . . . , N + 1, (47)

10



(y, p1)(t
ex
i ) = Fµ

b ((y, p1)(t
en+
i ), texi − teni ), i = 1, . . . , N, (48)

[p1(t
en
i )] = −ν1

i gµ
y (teni ), i = 1, . . . , n, (49)

p1(T ) = φµ
y (y(T )) (50)

gµ(y(teni )) = 0, i = 1, . . . , n, (51)

where p0 ∈ R
n∗ denotes the initial value of the costate.

We come now to the definition of the shooting mapping. Let Θ :=
R

n × R
N × R

N × R
N be the space of shooting parameters, of dimension

N̄ := n + 3N . A vector of shooting parameters is denoted by

θ = (p∗0, ν
1, ten, tex) ∈ Θ. (52)

The shooting mapping F is defined over a neighborhood Vθ × Vµ of (θ0, µ0)

in R
N̄ × M0 into R

N̄ , by

F (θ, µ) =













p1(T ) − φµ
y (y(T ))

gµ(y(ten))

(gµ)(1)(u(ten−), y(ten))

(gµ)(1)(u(tex+), y(tex))













, (53)

where the values of (y, p1, u) at times ten±i , tex±i , T are given by (46)-(49),
and where we used e.g. the notation

(gµ)(1)(u(ten−), y(ten)) :=
(

(gµ)(1)(u(ten−i ), y(teni ))
)

1≤i≤N
∈ R

N .

Being a composition of C1 mappings, the shooting mapping is itself of class
C1.

Let (ū, ȳ) be a Pontryagin extremal for (P), satisfying (A2)-(A4), with
finite set of junction times T̄ . Define Iba and Ito as the (disjoint) sets of
index in {1, . . . , N} corresponding respectively to boundary arcs and touch
points of the trajectory (ū, ȳ). Split F into two components:

F (θ, µ) = (Φ(θ, µ)∗,Ψ(θ, µ)∗)∗,

where Ψ corresponds to the components gµ(y(teni )) for i ∈ Ito, denoted
by the vector gµ(y(tento )) ∈ R

Nto . Consider the following complementarity
problem, for µ close to µ0:

Find θ ∈ Θ such that Φ(θ, µ) = 0 and Ψ(θ, µ) ∈ N(θ), (54)

where

N(θ) :=

{

R
Nto
− ∩ (ν1

to)
⊥ if ν1

to ∈ R
Nto
+ ,

∅ otherwise,
(55)
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with ν1
to the vector of components ν1

i , for i ∈ Ito.
Note that by (50)-(51) and (31)-(32), θ0 := (p̄1(0)

∗, ν̄1, t̄en, t̄ex) is solution
of (54) for µ = µ0, with t̄en and t̄ex the vectors of times in T̄en ∪ T̄to and
T̄ex ∪ T̄to respectively, in increasing order, ν̄1

i = ν̄1
t̄en
i

if i ∈ Iba, and ν̄1
i = 0 if

i ∈ Ito.
It should be underlined that we allow, in formulation of problem (54),

entry times variables to be greater than exit times ones. However, we will
check in the next section, after having shown that (54) has a unique solution,
that the constraint ν1

to ≥ 0 in (54) (compare with (30)) is sufficient, with
assumption (A6), to ensure locally for µ in the neighborhood of µ0 that the
solution of (54) is such that teni ≤ texi for all i ∈ Ito, and that in addition,
strict complementarity η̇1 < 0 holds on the boundary arc (teni , texi ) whenever
teni < texi .

As we will see, the formulation (54) is strongly related with the associ-
ated linear-quadratic tangent problem min(v,z)∈V×Z J1(v, z) subject to the
equality constraints (37)-(39) and the inequality constraint (40).

Remark 3.1. When the state constraint is of higher order, under small per-
turbations, a nonessential touch point satisfying (34) either becomes an
essential one (with a nonzero jump of the costate), remains a non essential
one, or becomes inactive, excluding the case when a boundary arc appears,
see [3]. Consequently, the duplication of reducible touch points (i.e., satis-
fying (34)) into entry and exit points is unnecessary for state constraints of
order greater than one.

4 Stability Analysis

Our stability analysis is based on the notion of strong regularity, introduced
by Robinson in [16], applied to the complementarity problem (54). The point
θ0 solution of (54) for µ = µ0 is strongly regular, if there exists neighborhoods
(Vθ, Vδ) in R

N̄ × R
N̄ of (θ0, 0), such that, for all δ ∈ Vδ, δ = (δ1, δ2) ∈

R
N̄−Nto × R

Nto, there exists a unique solution θ ∈ Vθ of:

{

DθΦ(θ0, µ0)(θ − θ0) − δ1 = 0

DθΨ(θ0, µ0)(θ − θ0) − δ2 ∈ N(θ)
(56)

and the mapping Ξ : δ → θ(δ) is Lipschitz continuous over Vδ.
If θ0 is strongly regular, then by [16], there exists neighborhoods (V ′

θ , Vµ)
of (θ0, µ0), such that for each µ ∈ Vµ, (54) has in V ′

θ a unique solution θµ,

θµ = (pµ∗
0 , νµ,1, tµ,en, tµ,ex), (57)

and there exists κ > 0 such that for all µ, µ′ ∈ Vµ,

|θµ − θµ′

| ≤ κ‖µ − µ′‖. (58)
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In addition, the following expansion of θµ holds:

θµ = θ0 + Ξ(−DµF (θ0, µ0)(µ − µ0)) + o(‖µ − µ0‖). (59)

Lemma 4.1. Under assumptions of Th. 2.4, (41) implies that θ0 is a
strongly regular solution of (54) for µ = µ0. More precisely, given δ =
(δ1, δ2) ∈ R

N̄−Nto × R
Nto, δ1 = (aT , b1

ba, c
en, cex) ∈ R

n × R
Nba × R

N × R
N ,

δ2 = b1
to, there exists a unique ω ∈ Θ, ω = (π0, γ

1, σen, σex), solution of the
following relation, equivalent to (56) with ω = θ − θ0:

{

DθΦ(θ0, µ0)ω − δ1 = 0

DθΨ(θ0, µ0)ω − δ2 ∈ N(ω),
(60)

and ω is given as follows. Let (vδ , zδ, πδ, ζδ, λ
1
δ) be the unique solution and

associated multipliers of the following linear-quadratic problem:

(Pδ) min
(v,z)∈V×Z

1
2J1(v, z) + a∗T z(T ) (61)

subject to (37), (39),

gy(y(teni ))z(teni ) = b1
i , i ∈ Iba (62)

gy(y(teni ))z(teni ) ≤ b1
i , i ∈ Ito, (63)

where the multipliers πδ, ζδ and λ1
δ are associated, respectively, with the

constraint (37), (39) and (62)-(63). Then ω is given by: π0 = πδ(0), γ1 =
λ1

δ, and

σen
i =

cen
i − g

(1)
(u,y)(u(teni ), y(teni ))(vδ(t

en−
i ), zδ(t

en
i ))

d
dtg

(1)(u, y)|t=ten−

i

, i = 1, . . . , N, (64)

σex
i =

cex
i − g

(1)
(u,y)(u(texi ), y(texi ))(vδ(t

ex+
i ), zδ(t

ex
i ))

d
dtg

(1)(u, y)|t=tex+

i

, i = 1, . . . , N. (65)

Proof. We only recall the main ideas of the proof, the latter being similar to
that of Lemma 4.2 in [3], see also [13] where the block-decoupling property of
the Jacobian of the shooting mapping was established for state constraints
of first-order. We have that a part of (56) matches the first-order optimality
conditions of (Pδ), and the other part gives the variations of junction times
by (64)-(65). By (A2), the quadratic form J1 is a Legendre form over the
space of linearized trajectories (v, z) satisfying (37), so that (41) implies that
J1 is coercive over the linear space of (v, z) ∈ V ×Z satisfying (37)-(39). It
follows that the first-order optimality system of (Pδ) has a unique solution
and multipliers, that are Lipschitz continuous w.r.t. δ.

Lemma 4.2. Under the assumptions and point (ii) of Th. 2.4, there exists
a neighborhood Vµ of µ0, such that the solution θµ given by (57) satisfies:

tµ,ex
i ≥ tµ,en

i , for all i ∈ Ito (66)
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and
tµ,ex
i = tµ,en

i ⇔ νµ,1
i = 0, i ∈ Ito. (67)

In particular, the solution (uµ, yµ, pµ
1 , ηµ

1 ) of (46)-(49) with θ = θµ is well-
defined over [0, T ], and there exists a constant γ > 0, such that for all
i ∈ Ito:

η̇µ
1 (t) < −γ on [tµ,en

i , tµ,ex
i ] whenever tµ,ex

i > tµ,en
i . (68)

Proof. Let i ∈ Ito. By strong regularity (Lemma 4.1), we have that

tµ,ex
i − tµ,en

i = O(‖µ − µ0‖) ; νµ,1
i = O(‖µ − µ0‖). (69)

Denote by (u, y, p1, η1) the solution of (46)-(49) for θ = θµ. Note that this
is well-defined on each arc, but not as function of time, since it may take
several values for t ∈ ((tµ,en

i , tµ,ex
i )) if tµ,en

i > tµ,ex
i (where ((a, b)) stands for

(a, b) if a ≤ b and (b, a) otherwise). We will see that this last case cannot
occur, i.e. (66) holds, (and clearly also holds by continuity with a strict
inequality for i ∈ Iba), and is satisfied with equality iff νµ,1

i = 0.
Suppose first that tµ,ex

i = tµ,en
i . Then (u, y, η1, p1) is defined as function

of time without ambiguity in the neighborhood of tµ,en
i (the algebraic vari-

ables are given by the dynamics on interior arcs). By (46)-(50), there is a
jump of p1 at entry time and no jump at exit time, thus (y, p1)(t

µ,en+
i ) =

(y, p1)(t
µ,ex−
i ) = (y, p1)(t

µ,ex+
i ). By definition of (54), we have

(gµ)(1)(u(tµ,en−
i ), y(tµ,en

i )) = (gµ)(1)(u(tµ,ex+
i ), y(tµ,ex

i )) = 0,

and hence, since tµ,ex
i = tµ,en

i , hypothesis (A3) implies that u is continuous
at time tµ,en

i . We deduce that:

0 = [Hµ
u (u(tµ,en

i ), y(tµ,en
i ), p1(t

µ,en
i ))] = −νµ,1

i (gµ)(1)u (u(tµ,en
i ), y(tµ,en

i )).

Since (gµ)
(1)
u (u(tµ,en

i ), y(tµ,en
i )) 6= 0 for ‖µ−µ0‖ small enough, it follows that

νµ,1
i = 0. This proves the “⇒” implication in (67).

Suppose now that tµ,ex
i 6= tµ,en

i . In order to avoid any confusion, de-
note the solution of (46)-(49) for θ = θµ by (u−, y−, p−1 , η−1 ) on the bound-
ary arc ((tµ,en

i , tµ,ex
i )), and by (u+, y+, p+

1 , η+
1 ) on the succeeding interior arc

(tµ,ex
i , tµ,en

i+1 ). Note that the limits of these functions and of their time deriva-
tive at endpoints of the interval where they are defined do exist, and here
the jump denotes for instance [u(tµ,ex

i )] := u+(tµ,ex
i ) − u−(tµ,ex

i ).
Using the same local arguments as in Rem. 1.6, we can show that by

(A2)-(A3), (u+, y+, p+
1 , η+

1 )(tµ,ex
i ) = (u−, y−, p−1 , η−1 )(tµ,ex

i ), and we denote
this common value by (u(tµ,ex

i ), y(tµ,ex
i ), p1(t

µ,ex
i ), η1(t

µ,ex
i )). By (A6), there

exists by continuity a constant c > 0 such that, for µ close enough to µ0,

d

dt
(gµ)(1)(u+(t), y+(t))|t→tµ,ex

i
< −c. (70)
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On the other hand, we have on the boundary arc ((tµ,en
i , tµ,ex

i )):

d

dt
(gµ)(1)(u−(t), y−(t))|t→tµ,ex

i
= 0. (71)

Since we have

d

dt
(gµ)(1)(u±(t), y±(t)) = (gµ)(1)u (u±, y±)u̇ + (gµ)(1)y (u±, y±)fµ(u±, y±),

it follows that the jump of u̇ at tµ,ex
i satisfies, by (70)-(71):

[
d

dt
(gµ)(1)(u(t), y(t))|t→tµ,ex

i
] = (gµ)(1)u (u(tµ,ex

i ), y(tµ,ex
i ))[u̇(tµ,ex

i )] < −c,

(72)
and hence, u̇−(tµ,ex

i ) 6= u̇+(tµ,ex
i ). By time-derivation of (14) on the bound-

ary arc ((tµ,en
i , tµ,ex

i )) of nonzero length and on the interior arc (tµ,ex
i , tµ,en

i+1 ),
we obtain (omitting arguments (u±(t), y±(t), p±1 (t), η±1 (t))):

H̃µ
uuu̇± + H̃µ

yufµ − H̃µ
y fµ

u + (gµ)(1)u η̇±1 = 0, (73)

and hence, taking the jump at time tµ,ex
i gives, since (u, y, p1, η1) is contin-

uous at tµ,ex
i :

H̃µ
uu(u, y, p1, η1)(t

µ,ex
i )[u̇(tµ,ex

i )] + (gµ)(1)u (u, y)(tµ,ex
i )[η̇1(t

µ,ex
i )] = 0.

Since η̇+
1 (tµ,ex

i ) = 0, by (72) and (A2)-(A3), we obtain by continuity that
there exists a constant C > 0 such that, for ‖µ − µ0‖ small enough,

η̇−1 (tµ,ex
i ) = −[η̇−1 (tµ,ex

i )] =
H̃µ

uu(u, y, p1, η1)(t
µ,ex
i )

((gµ)
(1)
u (u, y)(tµ,ex

i ))2
(gµ)(1)u (u, y)(tµ,ex

i )[u̇(tµ,ex
i )]

< −C. (74)

By (73) and time derivation of (15), we see that η̇−
1 (t) is given by a Lipschitz

continuous function of time on ((tµ,en
i , tµ,ex

i )), uniformly w.r.t. µ, so there
exists m > 0 independent of µ, such that

η̇−1 (t) ≤ −C + m|tµ,ex
i − tµ,en

i |, t ∈ ((tµ,en
i , tµ,ex

i )). (75)

In view of (69), η̇−
1 is negative on ((tµ,en

i , tµ,ex
i )) for sufficiently small ‖µ−µ0‖,

and consequently, η−
1 (tµ,en

i ) = η−1 (tµ,en
i ) − η−1 (tµ,ex

i ) is nonzero and has the
sign of tµ,ex

i − tµ,en
i . By similar arguments to Rem. 1.6, we can show that

η−1 (tµ,en
i ) = νµ,1

i , and since νµ,1
i ≥ 0 by definition of (54), it follows that

tµ,ex
i > tµ,en

i necessarily holds whenever tµ,en
i 6= tµ,ex

i , which proves (66).

In addition, (75) implies that νµ,1
i = η1(t

µ,en+
i ) > 0 for µ close enough to

µ0, which show by “contraposition” the “⇐” implication in (67). Finally,
relation (68) follows from (74) and (69), which completes the proof.
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Lemma 4.3. Under assumptions and condition (ii) of Th. 2.4, the solution
(uµ, yµ, pµ

1 , ηµ
1 ) of (46)-(49) for θ = θµ, where θµ is solution of (54), is such

that (uµ, yµ) is a Pontryagin extremal of (Pµ), with classical multipliers
(pµ, ηµ) given by (29), and the mapping µ 7→ (uµ, yµ, pµ, ηµ) ∈ U × Y ×
L∞(0, T ; Rn∗) × L∞(0, T ) is Lipschitz continuous on a neighborhood of µ0.

Proof. By Lemma 4.2, we see that (uµ, yµ, pµ
1 , ηµ

1 ) is well-defined over [0, T ],
and by definition of (54), satisfies alternative formulation (12)-(22), as well
as additional condition (25) by Rem. 1.6 (and in particular, uµ is continuous
on [0, T ] and so are pµ and ηµ given by (29)). In view of Rem. 1.4, it remains
to show that the additional conditions (23), (24) and (26) are satisfied.

Let i ∈ Nto. If νµ,1
i = 0, then by Lemma 4.2, tµ,en

i = tµ,ex
i , uµ and its

time derivative are continuous at tµ,en
i , and (gµ)(1)(uµ(tµ,en

i ), yµ(tµ,en
i )) = 0.

By (A6) and standard continuity arguments, there exists ε > 0 such that
gµ(yµ(·)) attains its maximum over (t̄eni −ε, t̄eni +ε) at the unique point tµ,en

i .
Therefore if gµ(yµ(tµ,en

i )) < 0, the state constraint is locally not active. If
gµ(yµ(tµ,en

i )) = 0, then tµ,en
i is a touch point of the perturbed problem, and

(26) holds by (67).
If νµ,1

i > 0, then by Lemma 4.2, tµ,en
i < tµ,ex

i and we have a boundary
arc. By (68), additional condition (24) holds on this boundary arc, and (23)
holds near the entry/exit points by (A6). If i ∈ Iba, then (24) holds by
continuity on the boundary arc [tµ,en

i , tµ,ex
i ] by (A5), and (23) holds near the

entry/exit points by (35). Finally, outside a small neighborhood of contact
points, we obtain gµ(yµ) < 0 by a standard compactness argument. Hence
(uµ, yµ) is a Pontryagin extremal, with classical multipliers (pµ, ηµ) given by
(29).

Lipschitz continuity of the mapping µ 7→ (uµ, yµ, pµ, ηµ) follows from
Lipschitz continuity of the mapping µ 7→ θµ by strong regularity (Lemma
4.1), Lipschitz continuity of (θ, µ) 7→ (u, y, p, η)|k, where (u, y, p, η)|k denotes
the restriction of the solution of (46)-(49) and (29) to “arc” k (possibly a
singleton), for all k = 1, . . . , 2N + 1, and finally Lipschitz continuity of uµ,
ẏµ, pµ and ηµ as functions of time on [0, T ], uniformly w.r.t. µ.

So far, we have proved that there exists a unique solution of (54), with
which is associated a unique Pontryagin extremal (uµ, yµ) for (Pµ). It re-
mains to prove the uniqueness of (uµ, yµ) among all the Pontryagin extremals
(u, y) of (Pµ) with u in a L∞-neighborhood of ū, without restrictions on the
arc structure of (u, y).

More precisely, for δ > 0, define

Ωδ
i := (t̄eni − δ, t̄exi + δ), i = 1, . . . , N. (76)

In view of (A6) and (35), we may fix κ, δ̄ > 0 satisfying the conditions below:

d2

dt2
gµ0(ȳ(t)) ≤ −κ < 0 on Ωδ̄

i \ [t̄eni , t̄exi ], i = 1, . . . , N ; (77)
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The sets Ωδ̄
i are pairwise disjoint and contained in [0, T ]. (78)

The next theorem gives a direct result (i.e. without using a shooting
formulation) that Pontryagin extremals of the perturbed problem have a
neighboring structure to that of (ū, ȳ), when assumptions (A2)-(A6) are
satisfied. Its proof is given in the Appendix.

Theorem 4.4. Let (ū, ȳ) be a Pontryagin extremal for (Pµ0) satisfying
(A2)-(A6). Then for all 0 < δ < δ̄ and all stable extensions (Pµ) of (Pµ0),
there exists a neighborhood Vu × Vµ × Vθ of (ū, µ0, θ0) in U × M × Θ, such
that all Pontryagin extremals (u, y) of (Pµ) with (u, µ) ∈ Vu × Vµ satisfies
the following properties, with the contact set I(gµ(y)) defined in (6):

(S1) I(gµ(y)) ⊂ ∪N
i=1Ω

δ
i ;

(S2) for all i ∈ Iba, I(gµ(y)) ∩ Ωδ
i is an interval of positive measure;

(S3) for all i ∈ Ito, I(gµ(y)) ∩ Ωδ
i is either empty, or a singleton, or an

interval of positive measure,

and there exists θ ∈ Vθ such that θ is solution of (54) and (u, y) is the
trajectory associated with θ.

An immediate consequence of Th. 4.4 is the next lemma.

Lemma 4.5. Under assumptions and point (ii) of Th. 2.4, there exists a L∞

neighborhood Vu of ū and a neighborhood Vµ of µ0, such that for all µ ∈ V µ,
(uµ, yµ) is locally the unique Pontryagin extremal of (Pµ) with u ∈ Vu.

Proof. Let (u, y) be a Pontryagin extremal of (Pµ) with (u, µ) in the neigh-
borhood of (ū, µ0). By Th. 4.4, there exists θ in the neighborhood of θ0

solution of (54) and (u, y) is the (unique) trajectory associated with θ. By
strong regularity (Lemma 4.1), (54) has in a neighborhood of µ0 a unique
solution θµ. Consequently, θ = θµ and (u, y) = (uµ, yµ) is the unique Pon-
tryagin extremal of (Pµ) with (u, µ) in the neighborhood of (ū, µ0).

Now we can prove the main result.

Proof of Theorem 2.4. The proof is somewhat similar to that of Th. 4.1
in [3]. By Lemmas 4.1-4.5, (ii) implies that there exists a unique Pontrya-
gin extremal and associated multipliers (uµ, yµ, pµ, ηµ) with (uµ, µ) in the
neighborhood of (ū, µ0), and the mapping µ 7→ (uµ, yµ, pµ, ηµ) is Lipschitz
continuous. To achieve the proof of (ii) ⇒ (i), it remains to show that
uµ satisfies the uniform quadratic growth condition, which can be done by
slight modifications in the proof of Lemmas 4.7 and 4.8 in [3], that we omit
here.

To prove the converse implication, we construct a perturbation of the
constraint function gµ, so that (nonessential) touch points becomes inactive
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on the perturbed problem (Pµ), and (ū, ȳ) is a Pontryagin extremal of (Pµ)
(see the proof of Th. 4.1 in [3]). By (i) and Lemma 4.5, (ū, ȳ) is then the
local solution of (Pµ) satisfying (44), so it follows from the characterization
of quadratic growth in [2, Th. 5.1] that the strong second-order sufficient
condition (41) holds.

5 Sensitivity Analysis

By Lemma 4.1, strong regularity holds, and by (56) the mapping Ξ : Vδ →
Vθ, δ 7→ θ(δ) solution of (56) is positively homogeneous of degree one. It
follows then from (59) that the mapping µ 7→ θµ is Fréchet directionally
differentiable. The directional derivatives in direction d are obtained by
substituting into (56) δ by −DµF (θ0, µ0)d. Therefore,

θµ0+d = θ0 + ωd + o(‖d‖), (79)

where
ωd = (π∗

d,0, γ
1
d , σen

d , σex
d ) ∈ R

n × R
N × R

N × R
N (80)

is as follows. Denote by

(vd, zd, π1,d, ζ1,d, λ
1
d) (81)

the (unique) optimal solution, costate and multipliers of the linear-quadratic
problem below:

(Pd) min
(v,z)∈V×Z

1
2

∫ T

0
D2

(u,y,µ),(u,y,µ)H̃(ū, ȳ, p̄1, η̄1)((v, z, d), (v, z, d))dt

+ 1
2D2φ̂(ȳ(T ), µ0)((z(T ), d), (z(T ), d))

+ 1
2

∑

i∈Iba

ν̄1
i D2ĝ(ȳ(t̄eni ), µ0)((z(t̄eni ), d), (z(t̄eni ), d))

subject to: ż(t) = Df̂(ū, ȳ, µ0)(v, z, d) on [0, T ], z(0) = 0 (82)

Dĝ(1)(ū, ȳ, µ0)(v, z, d) = 0 on Īb (83)

Dĝ(ȳ(t̄eni ), µ0)(z(t̄eni ), d) = 0, i ∈ Iba (84)

Dĝ(ȳ(t̄eni ), µ0)(z(t̄eni ), d) ≤ 0, i ∈ Ito, (85)

with π1,d associated with the constraint (82), ζ1,d with (83), and λ1
d with

(84)-(85). Then we have πd,0 = π1,d(0), and

γ1
d = λ1

d, (86)

σen
d,i = −

Dĝ(1)(ū(t̄eni ), ȳ(t̄eni ), µ0)(vd(t̄
en−
i ), zd(t̄

en
i ), d)

d
dtg

(1)(ū, ȳ)|t=t̄en−

i

, i = 1, . . . , N, (87)

σex
d,i = −

Dĝ(1)(u(t̄exi ), y(t̄exi ), µ0)(vd(t̄
en+
i ), zd(t̄

ex
i ), d)

d
dtg

(1)(ū, ȳ)|t=t̄en+

i

, i = 1, . . . , N. (88)
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Since the mapping µ 7→ θµ is Fréchet directionally differentiable, and the
solution (uµ, yµ, pµ

1 , ηµ
1 ) of (46)-(50) is, on each arc, a C1 function of (θµ, µ),

combining with the continuity of uµ and of the classical multipliers pµ and
ηµ given by (29) (since by Lemma 4.3, (uµ, yµ) is a Pontryagin extremal of
(Pµ), see then Remarks 1.4 and 1.6), we obtain (as in [3, Lemma 4.1]) the
following result.

Theorem 5.1. Let (ū, ȳ) be a Pontryagin extremal of (P) satisfying (A2)-
(A6). If either point (i) or (ii) of Th. 2.4 is satisfied, then there exists a
neighborhood Vµ of µ, such that the mapping µ 7→ (uµ, yµ, pµ, ηµ) is Fréchet
directionally differentiable in the space

Lr(0, T )×W1,r(0, T ; Rn)×Lr(0, T ; Rn∗)×Lr(0, T ), for all 1 ≤ r < +∞,

and the derivatives of the state and control in direction d are the optimal
solution (vd, zd) of linear-quadratic problem (Pd), while those of the costate
pµ and state constraint multiplier ηµ are obtained, respectively, a.e. by

πd(t) = π1,d(t) + ζ1,d(t)g
µ0

y (ȳ(t)) + η̄1(t)Dĝy(ȳ(t), µ0)(zd(t), d) (89)

ζd(t) =
N

∑

i=1

γ1
d,i1t≥t̄en

i
(t) − ζ1,d(t). (90)

In addition, all jumps parameters and junction times are Fréchet direction-
ally differentiable w.r.t. µ, and their directional derivative in direction d are
given by (86)-(88).

Remark 5.2. We can show that an equivalent formulation of (Pd) is (see
Rem. 2.2(i)) to minimize

∫ T

0
D2

(u,y,µ),(u,y,µ)H(ū, ȳ, p̄, µ0)((v, z, d), (v, z, d))dt

+ D2φ̂(ȳ(T ), µ0)((z(T ), d), (z(T ), d))

+

∫ T

0
D2g(ȳ(t), µ0)((z(t), d), (z(t), d)dη̄(t)

(91)

for (v, z) ∈ V × Z subject to the constraints (82), (85) and

Dĝ(ȳ, µ0)(z, d) = 0 on Īb. (92)

This last constraint is equivalent to (83)-(84) since Dĝ(1)(ū, ȳ, µ0)(v, z, d) =
d
dtDĝ(ȳ(t), µ0)(z(t), d). Then, using the relation (89), we can show that πd,
the directional derivative of pµ w.r.t. µ, is the multiplier associated with
(82) in formulation (91)-(92) of (Pd), and that the directional derivative of
dηµ

dt w.r.t. µ, equal by (90) to ζ̇d = −ζ̇1,d, is also equal to the multiplier
associated with the constraint (92). In addition, it is not difficult to check
that ζ1,d(t̄

en+
i ) = γ1

d,i for all i ∈ Iba, so that discontinuities in πd and ζd may
occur only at points t̄eni for i ∈ Ito when the constraint (85) is active and
the associated multiplier is positive.
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Let us conclude this section by the following remark. For i ∈ Ito, since
t̄eni = t̄exi , the optimality system of (Pd), that it easy to derive and omitted
here, yields that Huuvd + Huyzd + π1,dfu = 0 at t̄en±i , and that the jump of
π1,d is given by [π1,d(t̄

en
i )] = −γ1

d,igy(ȳ(t̄eni )). Hence, the jump of vd is given
by

[vd(t̄
en
i )] = γ1

d,iH
−1
uu (ū, ȳ, p̄)(t̄eni )gy(ȳ(t̄eni ))fu(ū, ȳ)(t̄eni )

= γ1
d,iH

−1
uu (ū, ȳ, p̄)(t̄eni )g(1)

u (ū, ȳ)(t̄eni ),

and we obtain from (87)-(88)

σex
d,i − σen

d,i = −
g
(1)
u (ū, ȳ)(t̄eni )[vd(t̄

en
i )]

d
dtg

(1)(ū, ȳ)|t=t̄en
i

= Ciγ
1
d,i, (93)

with

Ci :=
H−1

uu (ū, ȳ, p̄)(t̄eni )(g
(1)
u (ū, ȳ)(t̄eni ))2

− d
dtg

(1)(ū, ȳ)|t=t̄en
i

> 0.

Since γ1
d,i ≥ 0 for i ∈ Ito, we see that σex

d,i−σen
d,i ≥ 0, with equality iff γ1

d,i = 0.
It follows that, for µ−µ0 = d, the length of the boundary arc and the jump
parameter are related, at first order, by

tµ,ex
i − tµ,en

i = Ciν
µ,1
i + o(‖µ − µ0‖). (94)

6 Example

We illustrate the results of this paper on a very basic example. We consider
the problem of an elastic line of positive mass, fixed at its endpoints and
submitted to a vertical uniform force (g). The problem is to find the equi-
librium position, i.e. minimize the potential energy. This can be written as
the optimal control problem (with t replaced by x ∈ [0, 1]):

min

∫ 1

0

(

u(x)2

2
+ gy(x)

)

dx ; ẏ(x) = u(x) ; y(0) = 0 = y(1).

We add a first-order state constraint, e.g. the level of the floor

y(x) ≥ −h. (95)

Here g and h denotes positive constants. Note that the case of final con-
straint on the state (here, y(T ) = yT given in R

n) are dealt with similarly,
replacing in the shooting equations the final condition p(T ) − φy(y(T )) = 0
by y(T )− yT = 0. The unconstrained optimal trajectory when h/g ≥ 1/8 is
given by:

y(x) = 1
2gx2 − 1

2gx ; u(x) = gx − 1
2g. (96)
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The resolution of the constrained problem when h/g ≤ 1/8 is as follows.
The trajectory is:

u(x) =







g(x − xen) on [0, xen]
0 on [xen, xex]
g((x − 1) − (xex − 1)) on [xex, 1]

y(x) =







g(x2/2 − xenx) on [0, xen]
−h on [xen, xex]
g((x − 1)2/2 − (xex − 1)(x − 1)) on [xex, 1]

with junction conditions:

g(x2
en/2 − x2

en) = −h ; g((xex − 1)2/2 − (xex − 1)2) = −h.

Entry and exit positions xen and xex are given by:

xen =
√

2h/g ; xex = 1 −
√

2h/g. (97)

The alternative state constraint multiplier on [xen, xex] is given by:

η1(x) = p1(x) = −g(x − xex) ≥ 0, η̇1(x) = −g < 0,

and hence, the jump parameter at entry time is:

ν1
en = η1(xen) = g(xex − xen) = g

(

1 − 2
√

2h/g
)

≥ 0. (98)

We consider perturbations w.r.t. nominal values of parameters g = g0 =
1 and h = h0 = 1/8, for which there is a touch point at x = 1/2. The no-
gap strong sufficient second-order condition clearly holds, since the linear-
quadratic problem:

min

∫ 1

0

v2(x)

2
dx ; ż(x) = v(x) ; z(0) = 0 = z(1)

having a strongly convex cost function, has (v, z) = 0 for unique solution.
Let us then study the perturbed quadratic problem at (g0, h0) in direction
d := (γ, η):

min

∫ 1

0

(

v(x)2

2
− γz(x)

)

dx ; ż(x) = v(x) ; z(0) = 0 = z(1),

subject to the interior point inequality constraint:

z(1/2) ≥ −η. (99)

The unconstrained trajectory is:

zd(x) = γ

(

x2

2
−

x

2

)

; vd(x) = γ

(

x −
1

2

)

. (100)
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Figure 1: Perturbation of the state (left) and directional derivatives (right) in case (a)
to (c) (from top to bottom)
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Figure 2: Variation of the lenght of the boundary arc in case (c).

Therefore, the constraint is active, iff η ≤ γ/8. If η ≥ γ/8, (100) corresponds
to the directional derivative of the unconstrained trajectory (96). When
η ≤ γ/8, the constraint (99) is active, i.e. zd(1/2) = 0, and therefore, the
solution of the linear-quadratic problem is as follows:

vd(x) =

{

γx − (2η + γ/4) on [0, 1/2]
γ(x − 1) + (2η + γ/4) on [1/2, 1].

zd(x) =

{

γx2/2 − (2η + γ/4)x on [0, 1/2]
γ(x − 1)2/2 + (2η + γ/4)(x − 1) on [1/2, 1].

The multiplier λd associated with the constraint (99) is, by (93):

λd = [πd(1/2)] = −[vd(1/2)] = −2(2η − γ/4) ≥ 0, (101)

and, by (87)-(88), the variations of entry and exit points σd,en and σd,ex are
given by:

σd,en = −
v(1/2−)

g0
= −γ/4 + 2η ; σd,ex = −

v(1/2+)

g0
= γ/4 − 2η. (102)

By (98) and (97), we check that the above formula corresponds to the first-
order variations, with g = g0 + γ and h = h0 + η, |γ|, |η| small, of:

ν1
en = 1 − 2

√

1/4 + 2η

1 + γ
; xen =

√

1/4 + 2η

1 + γ
; xex = 1 −

√

1/4 + 2η

1 + γ
.
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We consider perturbations in three directions d = (γ, η):

Case (a) (γ, η) = (0,−0.02)

Case (b) (γ, η) = (1, 0)

Case (c) (γ, η) = (1,−0.02).

Case (a) corresponds to an elevation of the ground level, case (b) corresponds
to an increasing of the “gravitational” force g, both of them leading to the
apparition of a boundary arc, and case (c) combines elevation of the ground
and increasing of g. The perturbed trajectories and directional derivatives
of the state in W1,r, 1 ≤ r < +∞, are presented for each case in Fig. 1.
The unconstrained trajectory for (g0, h0) is a parabola. In Fig. 2, we focus
on the apparition of the boundary arc in case (c), check that its lenght is
of order the perturbation and compare with the directional derivatives of
variation of junction times (102).

A Proof of Theorem 4.4

The proof of Theorem 4.4 will use two lemmas. Note that by continuity of
the mapping (u, µ) 7→ gµ(yµ

u), it is immediate that all Pontryagin extremals
of a stable extension (Pµ) with (u, µ) in the neighborhood of (ū, µ0) satisfy
(S1). Let us first define new alternative multipliers needed in lemma A.2
below (see also [13, 12, 9, 6, 7] where these multipliers are used)

η1(t) :=

∫ T

t
dη(s) = η(T ) − η(t+) (103)

p1(t) := p(t) − η1(t)gµ
y (y(t)). (104)

Remark A.1. On [0, T ] \ T , η1 and p1 are related to p1 and η1 by the
following relations:

η1(t) =
∑

τ∈Ten

ν1
τ1t<τ (t) + η1(t) ; p1(t) = p1(t) −

∑

τ∈Ten

ν1
τ1t<τ (t)gµ

y (y(t)),

(105)
with 1t<τ (t) = 1 if t < τ and zero otherwise.

With this definition, and without any assumptions on the arc structure
of the trajectory (i.e. without assuming a finite number of junction points),
we have that

−dp1 = (Hµ
y (u, y, p1) + (gµ)(1)(y)η1)dt,

and hence, the new alternative costate p1 is absolutely continuous. Conse-
quently, an equivalent form of (8)-(10) (when α = 1) is, a.e. on [0, T ]:

{

−ṗ1(t) = Hµ
y (u(t), y(t), p1(t)) + (gµ)

(1)
y (u(t), y(t))η1(t)

p1(T ) = φµ
y (y(T ))

(106)

0 = Hµ
u (u(t), y(t), p1(t)) + (gµ)(1)u (u(t), y(t))η1(t). (107)
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In addition, (11) implies the following (weaker) relations, since η1 is constant
on interior arcs:

0 = g(1)(u(t), y(t)) on boundary arcs (108)

0 = η̇1(t) on interiors arcs. (109)

It follows that when relations (27)-(28) are satisfied, η1 is absolutely contin-
uous. We shall need the following result (convergence of multipliers).

Lemma A.2. Let (ū, ȳ) be a Pontryagin extremal of (Pµ0) satisfying (A2)-
(A3). Consider a stable extension (Pµ), and let (un, yn = yµn

un ) be a Pon-
tryagin extremal for (Pµn), such that un → ū in L∞ and µn → µ0. Denote
by pn, ηn the (unique) multipliers associated with (un, yn), and let p1

n, η1
n be

given by (103)-(104). Then:

1. The sequence (ηn) is bounded in M[0, T ];

2. ‖ηn− η̄‖1,∞∗ → 0, where ‖·‖1,∞∗ denote the norm of the dual of W1,∞;

3. p1
n → p̄1 uniformly over [0, T ];

4. η1
n → η̄1 uniformly over [0, T ].

Remark A.3. Note that under the assumptions of Lemma A.2, by (104) we
deduce that ‖pn − p̄‖∞ → 0, and by (103), ‖ηn − η̄‖∞ → 0.

By (A3) (and (A1)), it is not difficult to see that Robinson’s constraint
qualification holds at point ū for (Pµ0 ), i.e. there exists γ > 0, such that

γBC[0,T ] ⊂ Gµ0(ū) + DGµ0(ū)U − K, (110)

with BC[0,T ] the unit (open) ball of space of continuous functions, K =
C−[0, T ] the cone of nonpositive continuous functions, and Gµ the mapping
U → C[0, T ], u 7→ gµ(yµ

u).
Now let (u, y) be a Pontryagin extremal of a stable extension (Pµ), and

let p, η, α be the associated multipliers. For (u, µ) close enough to (ū, µ0),
Robinson’s constraint qualification (110) still holds, so it is easy to see that
(u, y) is necessarily a normal Pontryagin extremal (i.e. α = 1), and the
associated multipliers (p, η) are unique. Note that equation (11) can be
equivalently rewritten as:

gµ(y) ∈ K ; η ∈ M+[0, T ] ; supp(dη) ⊂ I(gµ(y)), (111)

where supp(dη) denotes the support of the measure dη.

Proof of Lemma A.2. Let δ > 0. By continuity of the mapping (u, µ) 7→
gµ(yµ

u), there exists δ > 0, such that for n large enough (this is precisely
assertion (S1)),

I(gµn(yn)) ⊂ Ωδ := ∪N
i=1Ω

δ
i . (112)
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The first assertion of the lemma is a classical consequence of Robinson’s
constraint qualification (110) (see e.g. [4, Prop. 4.43]). By (A3), reducing δ
if necessary, the linear mapping

U → W1,∞(Ωδ) ; v 7→ (DGµ0(ū)v)|Ωδ ,

where |Ωδ denotes the restriction to the set Ωδ, is onto (e.g. Lemma 2.3
in [2]). Since supp(dηn) ⊂ I(gµn(yn)) ⊂ Ωδ by (112), the second assertion
follows from [4, Prop. 4.44 and Rem. 4.45(i)].

Set p̄1
n := p1

n− p̄1, η̄n := ηn− η̄ and η̄1
n := η1

n− η̄1. By (106), p̄1
n is solution

of:
− ˙̄p

1
n(t) = p̄1

nA(t) + c(t)η̄1
n + rn(t),

with A(t) := fµ0
y (ū(t), ȳ(t)), c(t) := (gµ0)

(1)
y (ū(t), ȳ(t)) and ‖rn‖∞ → 0 when

n → +∞. Denote by Rt1
t2

the flow of the linear system

−ẋ(t) = x(t)A(t) (113)

i.e. Rt1
t2x2 = x(t1), where x is solution of (113) on [t1, t2] with initial condi-

tion x(t2) = x2. Then we have, for all 0 ≤ t ≤ t2 ≤ T :

p̄1
n(t) = p̄1

n(t2)R
t
t2 +

∫ t2

t
c(s)Rt

sη̄
1
n(s)ds + o∞(1)(t), (114)

where o∞(1) denotes a function that goes to zero in L∞ when n → +∞.
Let us show that η̄1

n → 0 in L1(0, T ). Indeed, we have:

∫ T

0
|η̄1

n(t)|dt =

∫ T

0
|

∫ T

t
dη̄n(s))|dt ≤

∫ T

0

∫ T

t
|dη̄n(s)|dt.

By Fubini’s Theorem, it follows that

∫ T

0
|η̄1

n(t)|dt ≤

∫ T

0
(

∫ s

0
dt)|dη̄n|(s)

=

∫ T

0
s|dη̄n|(s) = 〈|dη̄n|, Id〉 ≤ C‖dη̄n‖1,∞∗ → 0,

with Id the identity function in [0, T ], 〈·, ·〉 the duality product over W1,∞∗×
W1,∞ and | · | the total variation. By (114) and final condition of costate,
we deduce that

|p̄1
n(t)| ≤ |φµn

y (yn(T )) − φµ0

y (ȳ(T ))|‖R·
T ‖∞ +

∫ T

t
|c(s)Rt

s||η̄
1
n(s)|ds + o∞(1)

≤ C|φµn
y (yn(T )) − φµ0

y (ȳ(T ))| + ‖c‖∞‖R·
T ‖∞‖

∫ T

0
|η̄1

n(s)|ds + o∞(1)

= o∞(1),
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which shows the third assertion. Finally, by (107), we have near the contact
set on Ωδ:

η1 = −
Hµn

u (un, yn, p1
n)

(gµn)
(1)
u (un, yn)

→ −
Hµ0

u (ū, ȳ, p̄1)

(gµ0)
(1)
u (ū, ȳ)

= η̄1 uniformly on Ωδ,

and η1 is piecewise constant on [0, T ]\Ωδ , which shows the last assertion.

Lemma A.4. Let (ū, ȳ) be a Pontryagin extremal for (Pµ0 ) satisfying (A2)-
(A6). Then for all 0 < δ < δ̄ and all stable extensions (Pµ) of (Pµ0 ), there
exists neighborhoods Vu × Vµ of (ū, µ0) in U × M , such that if (u, y) is
a Pontryagin extremal of (Pµ) with (u, µ) ∈ Vu × Vµ, then (u, y) has no
interior arc contained in Ωδ

i , for all i = 1, . . . , N .

We will denote in the proof of Lemma A.4 below the second-order time
derivative of the state constraint by:

(gµ)(2)(u̇, u, y) := (gµ)(1)u (u, y)u̇+(gµ)(1)y (u, y)fµ(u, y) =
d2

dt2
gµ(y(t)). (115)

Note that by (107), for any Pontryagin extremal (u, y) of (Pµ) satisfying
(27)-(28), u̇ and η̇1 are solutions, on the interior of an interior and boundary
arc, respectively, to the following systems (omitting time argument):











0 = H̃µ
uu(u, y, p1, η1)u̇ + H̃µ

uy(u, y, p1, η1)fµ(u, y)

− H̃µ
y (u, y, p1, η1)fµ

u (u, y) + (gµ)
(1)
u (u, y)η̇1

0 = (gµ)
(1)
u (u, y)u̇ + g

(1)
y (u, y)fµ(u, y) = (gµ)(2)(u̇, u, y),

(116)







0 = H̃µ
uu(u, y, p1, η1)u̇ + H̃µ

uy(u, y, p1, η1)fµ(u, y)

− H̃µ
y (u, y, p1, η1)fµ

u (u, y)
0 = η̇1,

(117)

and therefore (u̇, η̇1) can be expressed, on the interior of each arc, as a C1

function of (u, y, p1, η1) and µ.

Proof of Lemma A.4. We argue by contradiction. Suppose that the state-
ment of the lemma were false. Then there exists a stable-extension (Pµ),
δ0 ∈ (0, δ̄], and (un, µn) such that ‖un − ū‖∞, ‖µn −µ0‖ → 0, (un, yn = yµn

un )
is a Pontryagin extremal for (Pµn), and there exists in ∈ {1, . . . , N} and
(t1n, t2n) ∈ Ωδ0

in
, such that (t1n, t2n) is an interior arc of gµn(yn). Taking if nec-

essary a subsequence, assume that in = i ∈ {1, . . . , N} is constant. Denote
by pn, ηn the classical multipliers associated with (un, yn) and p1

n, η1
n given

by (103)-(104). By Lemma A.2, (27) holds for sufficiently large n, implying
the continuity of un over [0, T ] and also that of η1

n by (A3), so u̇n and η̇1
n

are given by (116)-(117) on interior of arcs.
Since gµn(yn(t1n)) = 0 = gµn(yn(t2n)), and gµn(yn) is negative on (t1n, t2n),

gµn(yn) attains its minimum over [t1n, t2n] at a time tmin
n ∈ (t1n, t2n). Since the
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second-order derivative (gµn)(2)(u̇n, un, yn) is continuous on the interior arc
(t1n, t2n), we deduce that

(gµn)(2)(u̇n(tmin
n ), un(tmin

n ), yn(tmin
n )) ≥ 0. (118)

Assume that i ∈ Ito. Since the touch point t̄eni ∈ Ωδ0
i is non essential, u̇n and

u̇ satisfy (117) on (t1n, t2n), and therefore can be expressed as C1 functions
of (µn, un, yn, p1

n, η1
n) and (µ0, ū, ȳ, p̄1, η̄1) respectively. Due to the uniform

convergence of (µn, un, yn, p1
n, η1

n) to (µ0, ū, ȳ, p̄1, η̄1), we have that u̇n →
˙̄u uniformly on (t1n, t2n) and hence, (gµn)(2)(u̇n, un, yn) → (gµ0 )(2)( ˙̄u, ū, ȳ)
uniformly on (t1n, t2n). Consequently, by (77), for n large enough, we deduce
that

(gµn)(2)(u̇n, un, yn) ≤ −κ/2 on (tn1 , tn2 ), (119)

which contradicts (118).
Assume now that i ∈ Iba. Since we have (by definition of an interior arc)

(gµn)(2)(u̇n(t), un(t), yn(t)) ≤ 0 when t → t1+n and t → t2−n , it follows from
(118) and the continuity of (gµn )(2)(u̇n, un, yn) on (t1n, t2n), that there exists
at least one time t0n ∈ (t1n, t2n), such that

(gµn)(2)(u̇n(t0n), un(t0n), yn(t0n)) = 0. (120)

By the same arguments as above, we have that (gµn)(2)(u̇n, un, yn) converges
uniformly to (gµ0)(2)( ˙̄u, ū, ȳ) on (t1n, t2n) ∩ (t̄eni − δ0, t̄

en
i ) and on (t1n, t2n) ∩

(t̄exi , t̄exi + δ0), whenever these sets are nonempty. Using (77) again, we
deduce that for sufficiently large n, (119) holds on (t1n, t2n) ∩ (t̄eni − δ0, t̄

en
i )

and (t1n, t2n) ∩ (t̄exi , t̄exi + δ0). Consequently, we necessarily have

t0n ∈ (t̄eni , t̄exi ).

By (120), it follows that (µn, un, u̇n, yn, p1
n, η1

n, η̇1
n) satisfies (116) punctually

at time t0n (with η̇1
n(t0n) = 0), and (µ0, ū, ˙̄u, ȳ, p̄1, η̄1, ˙̄η

1
) also satisfies (116)

since we are on a boundary arc. By (A2)-(A3), it follows that the (punc-
tual) values of (u̇n(t0n), η̇1

n(t0n)) and ( ˙̄u(t0n), ˙̄η
1
(t0n)) are given as C1 functions

of (µn, un, yn, p1
n, η1

n)(t0n) and (µ0, ū, ȳ, p̄1, η̄1)(t0n) respectively. Hence, by
uniform convergence of (µn, un, yn, p1

n, η1
n) to (µ0, ū, ȳ, p̄1, η̄1), for all ε > 0,

taking sufficiently large n, we obtain

|u̇n(t0n) − ˙̄u(t0n)| + |η̇1
n(t0n) − ˙̄η

1
(t0n)| ≤ ε. (121)

But by (A5), we have ˙̄η
1
(t0n) < −β, whereas η̇1

n(t0n) = 0 since we are on
an interior arc for (un, yn), contradicting (121). Consequently, there is no
interior arc of (un, yn) included in Ωδ

i , for all i = 1, . . . , N , which achieves
the proof of the lemma.

Now we are ready to give the proof of Th. 4.4.
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Proof of Th. 4.4. Assertion (S1) is immediate, and (S3) follows easily from
Lemma A.4 since there is no interior arc of (u, y) in Ωδ

i . In view of Lemma
A.4, to complete the proof of (S2), it remains to show that Ωδ

i ∩I(gµ(y)) is an
interval of positive measure, i.e. a boundary arc. Suppose this is false. Then
there exists a stable extension (Pµ), sequences un → ū in L∞, µn → µ0,
and (un, yn) a Pontryagin extremal of (Pµn), such that Ωδ

i ∩ I(gµn (yn)) is
either empty or a singleton. In both cases, this implies that there exists an
interval of positive measure [t̄1, t̄2], such that [t̄1, t̄2] ⊂ [t̄eni , t̄exi ] and [t̄1, t̄2]∩
I(gµn(yn)) = ∅ for all n. This entails in particular that [t̄1, t̄2]∩ supp(dηn) =
∅. Let ϕ be a C∞ function with support in [t̄1, t̄2] which is positive on (t̄1, t̄2),

then we have
∫ T
0 ϕ(t)dηn(t) = 0, for all n. But by (A5), η̄ has a positive

density over (t̄1, t̄2), and hence,
∫ T
0 ϕ(t)dη̄(t) > 0, which contradicts the

second assertion in Lemma A.2. This achieves the proof of assertion (S2).
Note that using the same argument, we can show that for any sequence of
Pontryagin extremals (un, yn) of (Pµn ) with un → ū in L∞ and µn → µ0,
setting Ωδ

i ∩ I(gµn(yn)) := [τ 1
n, τ2

n], it is necessary that

t̄eni ≥ lim sup
n+∞

τ1
n ; t̄exi ≤ lim inf

n→+∞
τ2
n. (122)

Note that whenever a Pontryagin extremal (u, y) for (Pµ) satisfies (S1)-
(S3), it has finitely many junction times, so it make sense to speak of the
finite-dimensional vector of “shooting parameters” (initial costate, jump pa-
rameters at entry times, and junction times) such that (u, y) is solution of
the alternative formulation. Now construct θ as follows. For all i ∈ Ito, if
the constraint is not active on Ωδ

i , add to the set of shooting parameters the
(unique) time in Ωδ

i where gµ(y) attains its maximum over Ωδ
i , duplicate all

such times as well as touch points, add a zero jump parameter for each of
them, and obtain then a θ ∈ Θ such that θ is solution of (54), and (u, y) is
the trajectory associated with θ.

The convergence of θ to θ0 when µ → µ0 is easily obtained. More
precisely, the convergence of initial costate follows from Rem. A.3. The
convergence of jump parameters follows from assertion (4) in Lemma A.2
(recall that η1 and η1 are linked by (105) and η1 = 0 on interior arcs).
For i ∈ Iba, knowing that Ωδ

i ∩ I(gµ(y)) is an interval (tµ1 , tµ2 ), by letting
δ → 0, we obtain t̄eni ≤ lim infµ→µ0

tµ1 and t̄exi ≥ lim supµ→µ0
tµ2 (the converse

inequality follows from (122)), which shows the convergence of entry/exit
points for i ∈ Iba. Similarly, letting δ → 0, we obtain the convergence of
touch points and entry/exit points of boundary arcs to the common value
t̄eni , for i ∈ Ito. Finally, the convergence of nonactive local isolated maxima
of gµ(y) in Ωδ

i when i ∈ Ito, is obtained by classical arguments, since (34)
holds and locally on Ωδ

i , u and u̇ being continuous on interiors arcs, gµ(y)
belongs to a W2,∞ (in fact C2) neighborhood of gµ0(ȳ).
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