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Abstract. The Lipschitz Global Optimizer (LGO) software integrates global and local scope search 
methods, to handle nonlinear optimization models. This paper introduces the LGO implementation 
linked to the General Algebraic Modeling System (GAMS). First we review the key features and 
basic usage of the GAMS /LGO solver option, then present reproducible numerical results to 
illustrate its performance. 
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1 Introduction 
 
Nonlinearity is a key characteristic of a vast range of objects, formations and processes in nature 
and in society. Consequently, nonlinear descriptive models are relevant in many areas of the 
sciences and engineering. For related discussions (targeted towards various professional audiences) 
consult for instance Aris (1999), Bracken and McCormick (1968), Dörner (1996), Gershenfeld 
(1999), Murray (1983), Lopez (2005), Steeb (2005), and Stojanovic (2003). Managing nonlinear 
systems leads to nonlinear optimization – a subject that has been of great practical interest, at least 
since the beginnings of mathematical programming. For technical discussions and further examples, 
see e.g. the topical chapters in Bartholomew-Biggs (2005), Chong and Zak (2001), Diwekar (2003), 
Edgar, Himmelblau, and Lasdon (2001), Pardalos and Resende (2002), Hillier and Lieberman 
(2005). 
 
Algorithmic advances and progress in computer technology have enabled the development of 
sophisticated nonlinear optimization software implementations. Among the currently available 
software products, one can mention, e.g. LANCELOT (Conn, Gould, and Toint, 1992) which 
implements an augmented Lagrangian based solution approach. Sequential quadratic programming 
methods are implemented in EASY-FIT (Schittkowski, 2002), filterSQP (Fletcher and Leyffer, 
1998, 2002), GALAHAD (Gould, Orban, and Toint, 2002), and SNOPT (Gill, Murray, and 
Saunders, 2003). Another prominent class of methods is based on the reduced gradient (RG) 
approach and its generalization (GRG). RG methodology is implemented e.g., in MINOS (Murtagh 
and Saunders, 1995) which includes also other solvers. GRG strategies are implemented in LSGRG 
(Lasdon and Smith, 1992; Edgar, Himmelblau, and Lasdon, 2001), and in CONOPT (Drud, 1996). 
Interior point methodology is used in LOQO (Vanderbei, 2000) and in KNITRO (Waltz and 
Nocedal, 2003). Finally – but without claiming completeness– one can mention gradient-free 
quadratic model-based solver implementations such as UOBYQA (Powell, 2002), and heuristic 
direct search methods reviewed by Wright (1996). A recent issue of SIAG/OPT Views and News 
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(Leyffer and Nocedal, 2003) provides concise, informative reviews regarding the state-of-art in 
nonlinear optimization, although the contributed articles mainly discuss optimization software with 
a local search scope. A detailed review of local and global optimization algorithms is provided by 
Bliek et al. (2001). 
 
Without prior information that provides a suitable starting point, even the best local search methods 
encounter difficulties in solving general nonlinear models. Such methods will typically find only a 
local solution (when better solutions may exist), or they may return a locally infeasible result in 
(globally) feasible models. Clearly, if one i) does not have sufficient insight to guarantee an 
essentially convex model structure, and ii) does not have access to a good starting point that will 
lead to the best possible solution, then the application of a global scope search strategy becomes 
desirable. We wish to point out that this line of argument does not “dismiss” high-quality local 
optimization software that has been in use for decades with considerable success. A global scope 
search, however, can bring tangible benefits to both model development (by enabling more general 
and thereby perhaps more realistic formulations) and solution (by making possible global search 
when it is not guaranteed that local search will suffice). 
 
The field of global optimization (GO) has been gaining increasing attention in the past few decades, 
and in recent years it has reached a certain level of maturity. The number of textbooks focused on 
GO is well over one hundred worldwide. For illustration, the Handbook of Global Optimization 
volumes – edited by Horst and Pardalos (1995) and by Pardalos and Romeijn (2002) – are 
mentioned. These books cover the most frequently used GO model types and solution strategies, 
with information on software and various application areas.  
 
The key theoretical developments have been followed by solution algorithms and their software 
implementations. While most GO software products reviewed by Pintér (1996b) have been perhaps 
“academic” rather than “professional”, a decade later a number of companies offer professionally 
developed and maintained GO software. To illustrate this point, it suffices to visit e.g. the web sites 
of Frontline Systems, the GAMS Development Corporation, LINDO Systems, Maplesoft, Maximal 
Software, Paragon Decision Technology, TOMLAB, or Wolfram Research, to check out platform-
specific GO software information. One should also mention here at least a few informative, non-
commercial web sites that discuss GO models, algorithms, and technology. For instance, the web 
site of Neumaier (2005a) is devoted to global optimization in its entirety; Fourer (2005) and 
Mittelmann and Spellucci (2005) also provide valuable discussions of nonlinear programming 
methods and software, with numerous further links and pointers.  
 
In this article, we introduce the GAMS /LGO solver engine for nonlinear optimization. First we 
formulate and briefly discuss the general GO model, then review the key features of the LGO solver 
suite, and discuss its GAMS-specific implementation. We also present reproducible numerical 
results, to illustrate the performance of GAMS /LGO.  
 
 
2 Global Optimization: Model Statement and Specifications 
 
Consider the continuous global optimization (CGO) model stated as 
 
(1) min f(x) subject to x∈D:={x:  l≤x≤u   gj(x)≤0   j=1,...,m}. 
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In (1) we apply the following notation and assumptions: 
• x∈Rn  n-dimensional real-valued vector of decision variables 
• f:Rn→R continuous (scalar-valued) objective function   
• D⊂Rn non-empty set of feasible solutions, a proper subset  of  Rn:  this feasible  

 set is defined by 
• l∈Rn, u∈Rn component-wise finite lower and upper bounds on x, and  
• g:Rn→Rm   a finite collection (m-vector) of continuous constraint functions. 
 
Let us note that the constraints gj j=1,…,m in (1) could be followed in (1) by arbitrary (≤, =, ≥) 
relation signs, and that explicit bounds on the constraint function values could also be imposed. 
Such – formally more general – models are directly deducible to the model (1). Without going into 
details that are not relevant here, let us also point out that models with bounded integer variables 
can be brought to the form (1). This, of course, also implies the formal coverage of mixed integer 
models by the CGO model. 
 
The compactness of D and the continuity of f (by the theorem of Weierstrass) guarantee that the 
global solution set X* of the CGO model is non-empty. In many cases, X* consists of a unique point 
x*. However, it is easy to show GO model instances in which X* is finite (with cardinality greater 
than one), countable, non-countable, and it can be even a subset of D with a positive volume. For 
the sake of meaningful algorithmic convergence statements, we typically assume that X* is at most 
countable. This is rarely a restriction in well-posed, practically motivated problems. 
 
Without further structural assumptions, certain model instances of (1) lead to very difficult 
numerical problems. For instance, the feasible set D could be disconnected, and some of its 
components could be non-convex; furthermore, the objective function f could be multi-extremal 
over D. In such cases, (1) could have an unknown number of global (as well as local) solutions. Let 
us point out that there is no generally applicable, constructive algebraic characterization of global 
optimality. In traditional nonlinear programming, numerical methods frequently aim at solving the 
Lagrange or Karush-Kuhn-Tucker (KKT) system of necessary optimality conditions, to find local 
solutions. The corresponding system of equations and inequalities to find points from X* becomes 
another GO problem, often at least as complex as the original model (1). Neumaier (2004) presents 
an interesting discussion of this point, indicating that the number of KKT points to check for 
optimality can grow exponentially as the model size (number of variables n and/or constraints m) 
increases. 
 
To illustrate the potential difficulty of CGO models by a small example, let us consider the problem 
of finding the numerical solution(s) to the equations  
 
(2) eqn1:=x−sin(2x+3y)−cos(3x−5y)=0 eqn2:=y−sin(x−2y)+cos(x+3y)=0.  
 
We will search for solutions in the (postulated) variable range x∈[-2, 3], y∈[-2.5, 1.5]. 
 
Figure 1 shows the surface plot of the error function (eqn1)2 + (eqn2)2 which vanishes at the 
solution(s). Although this reformulation leads to a rather simple (two-variable, box-constrained) 
model instance of (1), the resulting model has no apparent structure that could be easily exploited 
by an algorithmic search procedure. 
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Figure 1.  
An illustrative global optimization model. 

 
In line with the discussion above, problem (2) could have multiple global and local solutions. For 
example, one of the numerical solutions is x*≈0.8388353863, y*≈0.5371194096; the residual 
absolute errors of the equations are eqn1≈2.12628⋅10-10, eqn2≈–5.21127⋅10-11. This solution has 
been produced using the solver implementation described by (Pintér and Kampas, 2003): later on 
we will produce another solution using GAMS /LGO.  
 
Theoretically, one would like to find exactly all global solutions x*∈X*, by applying a suitable 
search mechanism. However, even unconstrained local search methods in general nonlinear 
optimization require an infinite numerical procedure. Therefore a more realistic goal is to find 
suitable approximations of points in X*, and of the corresponding optimum value f*. In practice, 
this needs to be attained on the basis of a finite number of model function evaluations at 
algorithmically selected search points. Formally, one could accept an approximate numerical 
solution *

ax  that satisfies the relation 
 
(3) ρ( *

ax , X*):=minx*∈X* ρ( *
ax , x*)≤γ. 

 
In (3) ρ is a given metric − typically defined by the Euclidean norm introduced in Rn − and γ>0 is a 
fixed tolerance parameter. (In words, *

ax  should be “sufficiently close” to at least one of the global 
solutions.) Similarly, one could accept an approximate solution *

ex ∈D that satisfies the relation 
 
(4) f( *

ex )≤f*+ε, 
 
In (4) ε>0 is another tolerance (accuracy) parameter. Here we formally assume that f* is known, or 
that it can be properly estimated. In practice, one searches for feasible solutions that are within a 
specified tolerance from the “best possible” solution, or from its valid lower bound. Theoretically, 
we expect that the lower bounding procedure is consistent: i.e., that we can provide increasingly 
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accurate bound estimates that converge to f*. In numerical practice, this may also be a difficult 
problem, in “unstructured” GO models when such estimates are difficult (or impossible) to produce. 
 
To ensure the numerical solvability of model (1) in the sense of (4) – on the basis of a finite sample 
point sequence from D – we can require the Lipschitz-continuity of the model functions. Recall that 
a function h is Lipschitz-continuous in the set D, if the relation 
 
(5) |h(x1)−h(x2)|≤L||x1−x2|| 
 
is valid for all pairs x1, x2 from D. (In the right-hand side of (5), the Euclidean norm is used.) The 
value L=L(D,h)≥0 is a suitable Lipschitz constant of h over D. Let us emphasize that the smallest 
possible value of L is typically unknown (for smooth functions, it is the global maximum of ||∇h(x)|| 
over the set D). Therefore the availability of a proper overestimate (with respect to all model 
functions f and gj j=1,…,m) is often postulated theoretically, or it is estimated in practice: for related 
discussions, consult e.g. Pintér (1996a), or Strongin and Sergeyev (2000). As it is well-known, if f 
is Lipschitz-continuous in [l,u] and L(D,f) is a valid Lipschitz constant, then even a single point x 
chosen from [l,u] and the corresponding function value f(x) supports the computation of a lower 
bounding function for f over the entire box [l,u]. Such basic (or more advanced) bounding 
information can be built into branch-and-bound search procedures that will then have rigorous 
global convergence properties (Horst and Tuy, 1996; Pintér, 1996a).  
 
 
3 LGO Solver Suite: Algorithm Components and Current Implementations  
 
The model (1) with a continuous or Lipschitz structure is still very general, and it includes most GO 
problem types that occur in practice. As a consequence, it includes also very difficult problem 
instances – in arbitrarily low model dimension n, and even without added constraints (m=0) – that 
pose a challenge in any computational environment of today or tomorrow. For example, one can 
think of optimizing numerically an objective function which includes trigonometric functions with 
embedded high frequency arguments and high amplitude multipliers. Figure 1 displays a relatively 
“mild” instance of such a problem; (Pintér, 2002) discusses and solves model instances for 
n=1,…,10. Let us note additionally that the increase of model dimensionality (n and m) in itself can 
lead to an exponential increase of model complexity, in terms of the number of local/global optima. 
For a very simple illustrative example, one can think of maximizing ||x|| over an n-dimensional 
finite size box region B that includes the origin. In this case each of the 2n box vertices is a locally 
optimal solution. 
 
For given CGO model instances, the “most suitable” solution approach could vary to a considerable 
extent. A “universal” GO strategy can be expected to work for broad model classes, although its 
efficiency could be lower for certain problem types. On the other hand, highly specialized 
algorithms often will not work for GO models outside of their intended scope. LGO – abbreviating 
a Lipschitz(-Continuous) Global Optimizer – has been designed to handle in principle the entire 
class of models defined by (1), without requiring any special structure beyond continuity or 
Lipschitz-continuity. For example, the objective function displayed in Figure 1 is Lipschitz-
continuous, but it could be difficult to place it into a more specific category in a constructive and 
algorithmically useful manner. This overall design principle and the corresponding choice of 
component algorithms makes LGO applicable even to “black box” models. The latter category 
specifically includes business confidential models provided e.g. as an object file or a dynamic link 
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library. It also includes models that incorporate computationally evaluated functions (such as 
special functions, parametric differential equations, integrals, stochastic simulation, and so on). At 
the same time, models with a given specific structure – e.g., an indefinite quadratic objective f over 
a convex set D – can also be solved by LGO, although specialized methods may be more efficient 
to handle such models.  
 
LGO has been gradually developed since 1990, with continuing development and maintenance (as  
a proprietary solver system). The theoretical results underpinning its global search algorithms are 
discussed in Pintér (1996a), with platform-specific implementations described in articles and user 
manuals (Pintér, 1997, 2001a, 2002, 2003a, 2004, 2005a, b, c, d, Pintér and Kampas, 2003, Pintér, 
Holmström, Göran and Edvall, 2004). Therefore only a concise review of its key features is 
included here.  
 
The overall solution approach in LGO is based on the integration of theoretically convergent global 
and efficient local search strategies. Currently, the following search algorithms are offered as LGO 
components: 
 
• adaptive partition and search (branch-and-bound) based global search (referred to as BB)  
• adaptive global random search (single-start) (GARS) 
• adaptive global random search (multi-start) (MS) 
• constrained local search by the generalized reduced gradient method (LS). 
 
Within a given LGO solver run, the user can choose any of the global solver modes BB, GARS, or 
MS. The selected global solver component is automatically followed by the local solver. The LS 
option can be used also in a stand-alone mode, started from a user-supplied initial solution or – in 
lack of such information – from an automatically generated (default) starting point. 
 
The BB solver component implements a theoretically convergent algorithm, assuming Lipschitz-
continuous model functions f and g. In models with a unique global solution x*, the algorithmically 
generated search point sequence {xk} converges to x*. (In models which have an at most countable 
set X*, all elements of X* are limit points of a corresponding sub-sequence of {xk}.) The BB 
approach is based on the assumption that one is able to provide valid overestimates of the Lipschitz 
constant, for each model function, throughout the iterations. In practice, such a condition is 
typically only approximated by algorithm implementations. The BB implementation in LGO 
combines its adaptive set partition steps with deterministic and randomized sampling strategies 
within the generated subsets. The latter strategy supports also the application of statistical bounding 
procedures. The BB solver module is expected to generate a close approximation of at least one of 
the global solution points, before LGO switches over to local search.  
 
It is well-known that properly constructed stochastic search algorithms possess global convergence 
properties, under mild analytical conditions. Specifically, each convergent subsequence of the 
sequence {xk*} of improving global solution estimates converges to a point of X*, with probability 
1. This statement applies to instances of model (1) defined by continuous functions f and g, even 
without the Lipschitz-continuity assumption. The GARS solver mode is based on a combination of 
random search methods and an attempt to focus the global search effort on the region which – on 
the basis of the actual sample results – is estimated to contain the global solution point (or, in 
general, one of these points). Similarly to BB, this method is used to generate an initial solution for 
subsequent local search.  
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The multi-start global search component (MS) is also based on the theoretical stochastic global 
convergence properties mentioned above. In MS the total allocated global sampling effort is 
distributed among several global searches. Each of these leads to a “promising” starting point used 
in subsequent local search. Typically, MS requires the most computational effort (due to its 
multiple local searches); however, in complicated models, it often finds the best numerical solution. 
Therefore the MS+LS combination is chosen as the recommended default solver mode, but it is 
straightforward to select another option (LS, BB+LS, GARS+LS). 
 
All three global solvers are gradient-free, requiring only model function value information. 
Specifically, their operations are partially driven by iteratively calculated values of the exact 
penalty function  
 

(6) ( ) | ( ) | max( ( ),0)j jj E j I
f x g x g x

∈ ∈
+ +∑ ∑ . 

  
In (6) the index sets E and I denote the subsets of equality and inequality constraints, respectively. 
In the LS mode finite difference based gradient approximations are used (tacitly assuming at least 
local smoothness when needed for convergence). Again, this gradient-free approach supports also 
the optimization of “black box” systems. Let us note that “black box” handling is not a basic 
GAMS feature: however, it may become handy e.g. when interfacing GAMS with other (Excel, 
MATLAB, C, VB, Java, etc.) environments: consult e.g. Ferris (2005) and Kalwelagen (2005). A 
similar comment applies also to other LGO implementations linked to other modeling 
environments. 
 
As already mentioned, each of the global solver modes is automatically followed by local search. 
The local solver embedded in LGO implements a dense nonlinear optimization algorithm, without 
postulating or exploiting any specific further model structure. This GRG solver is based on classical 
nonlinear optimization techniques discussed e.g. by Edgar, Himmelblau, and Lasdon (2001). The 
application of the local search mode theoretically assumes that the CGO model (1) is defined by 
continuously differentiable functions, at least in the region(s) of attraction where this solver mode is 
used.  
 
As a result of using the above listed solver strategies, LGO will return – barring numerical problems 
and “unsuitable” option settings – a global search based solution (BB + LS, GARS + LS), several 
such solutions (MS + LS), or a local search based solution (LS). The term “global search based 
solution” describes a solution that – according to extensive numerical experience – often is very 
close to the global solution (or one of these), or at least is a high-quality feasible solution. Let us 
emphasize here the gap between global convergence theory and software implementation and usage 
in practice, before dismissing such an outcome. It strongly depends on the practical circumstances 
and user demands, whether we wish to find a rigorously guaranteed “very precise” solution (that 
perhaps requires a few days/weeks/months/years of program runtime), or we need/prefer to get a 
numerical solution in seconds/minutes. An honest look at the deterministically or stochastically 
guaranteed gap between the best solution found and the (unknown) best possible solution, in a time-
limited run, often can be a humbling experience, when trying to solve models of realistic size and 
complexity…  
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Since 1990, LGO – equipped with a text input/output interface – has been implemented using 
several programming language platforms. These include professional Fortran compilers (Lahey 
Fortran 77/90, Lahey-Fujitsu Fortran 95, Digital/Compaq/Intel Visual Fortran 95, g77, g95, and 
some others), with direct connectivity to C/C++ models (using e.g. Borland C/C++, Microsoft 
Visual C/C++, gcc, lcc-win32, and others). There is also a compiler based LGO implementation 
that is enhanced by a simple Windows menu interface, providing an integrated development 
environment that can be used in conjunction with C and Fortran compilers. These implementations 
are discussed e.g. in (Pintér, 1997, 2002, 2005a). 
 
In addition to the above core implementations, LGO is available as a callable library, to use in 
conjunction with several optimization modeling languages and with integrated scientific-technical 
computing systems. Currently, these include the following (in alphabetical order, indicating also the 
year of product release): 
 
• AIMMS /LGO solver option (Paragon Decision Technology, 2005; Pintér, 2005c)  
• GAMS /LGO solver option (GAMS Development Corporation, 2003; Pintér, 2003a)  
• MathOptimizer Professional for Mathematica (Wolfram Research, 2003; Pintér and Kampas, 

2003)  
• Global Optimization Toolbox for Maple (Maplesoft, 2005; Pintér, 2004; Pintér, Linder and 

Chin, 2005) 
• MPL /LGO solver option (Maximal Software, 2005; Pintér, 2005d) 
• TOMLAB /LGO solver option to use with MATLAB (MathWorks, 2005; TOMLAB, 2005; 

Pintér, Holmström, Göran, and Edvall, 2004)  
 
Peer reviews discussing several of these implementations are also available: consult Benson and 
Sun (2000), Cogan (2003), and Castillo (2005), two further software reviews (Henrion, 2006; Wass, 
2006) are to appear in 2006. 
 
 
4 GAMS and the GAMS /LGO Solver Option 
 
The General Algebraic Modeling System (GAMS) is a high-level model development environment 
that supports the analysis and solution of a broad range of optimization problems. GAMS is capable 
of handling advanced modeling applications, by allowing users to build prototypes as well as large-
scale models. Models can be developed, solved and documented simultaneously, maintaining the 
same GAMS model file. GAMS has been available since 1987, and it has a significant world-wide 
user base. The first edition of the user’s guide (Brooke, Kendrick, and Meeraus, 1988) has been 
both extended and enhanced by accompanying documentation that includes the extensive, 
hyperlink-enabled GAMS documentation by McCarl (2004). The website www.gams.com provides 
a wealth of information: some of the key points are highlighted below. 
 
The GAMS modeling language is similar to commonly used procedural programming languages 
(such as C, Fortran, Pascal). GAMS offers interfaces to other development environments, including 
e.g., MS Excel, MS Access, MATLAB, and Gnuplot. GAMS can also be embedded in various 
application environments: these include C/C++, Delphi, Java, Visual Basic, and WebSphere.  
 
The GAMS Model Library is a large and growing collection of models collected from a variety of 
application areas such as economics, econometrics, engineering, finance, management science and 
operations research. The library includes examples for all supported model types. Many of the 
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models are of realistic size and complexity, in addition to collections of “academic” test problems. 
The model converter program CONVERT transforms a GAMS model instance into a format used 
by other modeling and solver systems, and hence provides significant assistance in sharing test 
models by users of the various modeling and solver systems. A further valuable service is GAMS 
World (http://www.gamsworld.org) with the objective of bridging the gap between academic 
research and the practice of optimization. The site includes a large additional set of documented 
models and performance analysis tools.  
 
All modeling and solver features, including the full documentation, are available through an 
integrated development environment (GAMS IDE) on MS Windows platforms. Command-line 
GAMS usage is also supported for Windows/Linux/Unix/Mac environments. In addition to 
advanced model development features, GAMS offers direct links to a range of solver options. These 
solvers can handle both general (categorized as linear, nonlinear, pure and mixed integer, and 
stochastic) and more specialized (such as complementarity, equilibrium, and constrained nonlinear 
systems) models. LGO has been added to the solvers available in the GAMS modeling environment 
in 2003. Pintér (2003a) provides a concise GAMS /LGO user documentation: portions of that 
description are used here, with additional details. (All GAMS solver manuals are available through 
the GAMS web site.) For the sake of completeness, let us remark that two other global solvers – 
BARON and OQNLP – are also available for the GAMS platform. BARON (Tawarmalani and 
Sahinidis, 2002) is based on a successive convexification approach by constructing enclosure 
functions and related bound estimates that drive the global search. In its solution procedure, 
BARON uses other solvers: within GAMS, these are MINOS and CPLEX (and optionally others 
that are modularly available). OQNLP − similarly to LGO − is a stand-alone solver option: it uses a 
multi-start global search approach based on the OptTek search engine, in combination with the 
well-received local solver LSGRG. For a discussion of OQNLP and its performance, consult e.g., 
Ugray et al. (2006).  
 
The basic structure of the GAMS /LGO modeling and solution procedure is displayed in Figure 2.  

                           
Figure 2. 

GAMS /LGO modeling and solution procedure. 
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The steps of model development, verification and preprocessing, solution by LGO, optional further 
solver calls, and report generation are tightly integrated. As a result, our numerical experiments 
indicate relatively little runtime overhead associated with the operations of GAMS, when compared 
to the core (compiler-platform based) LGO implementation. 
 
The GAMS /LGO interface is similar to those of other GAMS solvers, and many options such as 
resource and iteration limits can be set directly in the GAMS model. To provide LGO-specific 
options, users can make use of solver option files: consult the solver manuals (GAMS Development 
Corporation, 2003) for more details regarding this point. The list of the current GAMS /LGO 
options is shown below, see Tables 1 (general options similar to those also for other solvers) and 2 
(LGO specific options and parameters). The tables display the option lists, with added brief 
explanation and the default settings. 
 

Table 1.  
GAMS /LGO general options 

 
Option Description Default 
tlimit Runtime limit in seconds. This is equivalent to the general GAMS 

option reslim. If specified, then it overrides the reslim option. 
1000

log_time Iteration log time interval in seconds. GAMS log output is 
generated every log_time seconds.  

0.5

log_iter Iteration log time interval. Log output is written every log_iter 
iteration. 

10

log_err Iteration log error output. Error reported (if necessary) every 
log_err iterations. 

10

       
debug 

Debug option. Prints out complete LGO status report to listing 
file. 
0   No  
1   Yes 

0

callCono
pt 

Number of seconds given for an (optional) secondary optimization 
phase using CONOPT (when available). CONOPT terminates after at 
most CallConopt seconds. This solver phase also determines duals 
for the final solution point. 

5

help Prints all available GAMS and GAMS/LGO solver options in the log 
and listing files. 

No
printout

 
 

Table 2.  
GAMS /LGO specific options 

 
Option Description Default 
opmode Specifies the LGO search mode used. 

0   Local search started from the given nominal solution, without 
a preceding global search (LS) 
1   Global branch-and-bound search and local search (BB+LS) 
2   Global adaptive random search and local search (GARS+LS)       
3   Global multistart random search and local search (MS+LS) 

3

m g_maxfct Maximum number of merit (model) function evaluations before 
termination of global search phase (BB, GARS, or MS). In the 
default setting, n is the number of variables and m is the number 
of constraints. The difficulty of global optimization models 
varies greatly: for difficult models, g_maxfct can be increased 
as deemed necessary. 

500(n+m) 

max_nosu
c 

Maximum number of merit function evaluations in global search 
phase (BB, GARS, or MS) where no improvement is made. Global 
search phase terminates upon reaching this limit. For difficult 
models, max_nosuc can be increased as deemed necessary. 

100(n+m) 

penmult Constraint penalty multiplier. Global merit function is defined 
as objective + the constraint violations weighted by penmult. 

100
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acc_tr Global search termination criterion parameter (acceptability 
threshold). The global search phase (BB, GARS, or MS) ends if an 
overall merit function value is found in the global search phase 
that is less than (or equal to) acc_tr. 

-1.0E10

fct_trg Target objective function value; a partial stopping criterion in 
the local search phase. 

-1.0E10

fi_tol Local search (merit function improvement) tolerance; a stopping 
criterion in the local search phase. 

1.0E-6

con_tol Maximal constraint violation tolerance in local search.  1.0E-6
kt_tol Kuhn-Tucker local optimality condition violation tolerance.  1.0E-6
irngs Random number seed. 0
Var_lo Smallest (default) lower bound, unless set by user. -1.0E+6
Var_up Largest (default) upper bound, unless set by user. 1.0E+6
Bad_obj Default value for objective function, if evaluation errors occur. 1.0E+8

 
Clearly, there is no “universal recipe” to provide options and switches to a general purpose 
nonlinear solver like LGO that will be adequate to handle “all possible” models. According to our 
fairly extensive numerical experience, the default option settings shown above are suitable to solve 
at least small to moderate size GO problems without any “tweaking” of the parameters. (Let us also 
recall here the notes related to global search based solutions.) This observation has been validated 
for many of the standard academic tests known from the GO literature, using GAMS /LGO or other 
LGO implementations.  
 
In the next section we will illustrate this point, by presenting model examples formulated in GAMS 
and solved by LGO. The current GAMS (release 22.0) and the current (February 2006) LGO 
versions are used in the calculations. All other solvers mentioned are used in their default mode, 
unless specifically noted otherwise. The illustrative runs have been done on an AMD64 3.2 GHz 
processor based desktop machine, running under the Windows XP Professional operating system. 
 
 
5 Using GAMS /LGO: Illustrative Examples 
 
Example 1: Solving a pair of transcendental equations  
 
We assume that not all readers are familiar with GAMS: therefore first an easy-to-follow example is 
presented. This model is based on problem (2). All GAMS language elements are denoted by 
boldface fonts. Explanatory comments are given between the rows denoted by $ontext and 
$offtext, and in rows started by the symbol *. The GAMS output details shown are only slightly 
formatted for the purposes of this article (to fit the available space better), when necessary.  
 
$title Global Optimization Model Example GO_test_2v_2c 
 
$ontext 
 
Find a solution to the system of nonlinear equations 
 
x-sin(2x+3y)-cos(3x-5y)=0 
y-sin(x-2y)+cos(x+3y)=0. 
 
This is a 2-variable, 2-constraint global optimization test problem in 
itself that could have (in fact, it has) multiple solutions. Therefore 
we will determine the minimal norm solution. 
 
$offtext 
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* Define optimization model 
 
variables obj, x, y; 
 
equations defobj, con1, con2; 
 
* Define an objective function as the squared norm of the solution to 
the equations. 
 
defobj.. obj =e= x*x+y*y; 
 
* Define the constraints. 
 
con1..   x-sin(2*x+3*y)-cos(3*x-5*y) =e= 0 ; 
 
con2..   y-sin(x-2*y)+cos(x+3*y) =e= 0; 
 
* Define bounds and nominal values.  
* See the corresponding .lo, .l and .up index notation. 
 
x.lo = -2; x.l = 2.5; x.up = 3; 
 
y.lo = -2.5; y.l = 1.3; y.up = 1.5;  
 
* The model m is defined by the information given above. 
 
model m / all /; 
 
* Invoke the LGO solver option for solving this nonlinear programming  
* (NLP) model. 
 
option nlp=lgo; 
 
solve m minimizing obj using nlp; 
 
* Set precision for the display of results. 
 
option decimals=8; 
 
* Display the solution found.  
 
display obj.l, x.l, y.l; 
 

The summary of the GAMS /LGO run and its results − cited directly from the corresponding 
GAMS log file − are displayed below: 
 
LGO 1.0       Aug 1, 2005 WIN.LG.NA 22.0 003.000.000.VIS Lib005-060224 
 
    LGO Lipschitz Global Optimization 
    Copyright (C) Pinter Consulting Services, Inc. 
    129 Glenforest Drive, Halifax, NS, Canada B3M 1J2 
    E-mail : jdpinter@hfx.eastlink.ca 
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    Website: www.pinterconsulting.com 
 
    1 defined, 0 fixed, 0 free 
    2 LGO equations and 2 LGO variables 
 
   Iter      Objective     SumInf   MaxInf     Seconds  Errors 
   2409   9.563139E-02   0.00E+00  0.0E+00       0.015 
 
--- LGO Exit: Normal completion - Global solution 
 
The solution arguments and the optimum value (to the maximal 8 decimals precision supported by 
GAMS) are x≈ -0.17334605, y≈ -0.25609087, obj≈ 0.09563139. 
 
Recall that the LGO iteration count (2409 in this example) is based on the total number of model 
function evaluations in the (default multi-start) global and local search phases, without using 
analytical gradient (or higher order) information. The total runtime is approximately 0.015 seconds; 
(very small runtimes are sometimes indicated as 0.000 solution time by GAMS).  
 
Let us note here that the same model happens to be solvable also by LGO’s local search mode: this 
is invoked by a suitable setting in the options file (discussed later on) as shown below.   
 
--- Using option file C:\...\gamsdir\lgo.opt 
    > opmode=0 
 
    1 defined, 0 fixed, 0 free 
    2 LGO equations and 2 LGO variables 
 
   Iter      Objective     SumInf   MaxInf     Seconds  Errors 
    291   9.921421E-01   0.00E+00  0.0E+00       0.000 
 
--- LGO Exit: Normal completion - Local solution 
 
Here LGO uses only 291 model function evaluations, and finds a local solution with a greater norm 
than the global search based solution: x≈0.83883539, y≈0.53711941, obj ≈ 0.99214207. 
 
As indicated earlier, GAMS /LGO can also be used in conjunction with other available solvers. For 
instance, an LGO solver run could be directly followed by a call to the local NLP solver CONOPT 
(Drud, 1996) from the best solution point found (assuming the availability of that solver). Such 
polishing steps may be especially useful in difficult models, since model re-scaling and restart 
(invoked by using another solver) could, in general, improve the precision of the solution found. If 
all went well, then CONOPT will essentially just confirm the solution found by LGO as optimal 
(without distinguishing between global or local solutions). This is the case also in the example 
above. At the same time, the local solvers MINOS, CONOPT, and SNOPT all report infeasible 
results for this model when used on their own, indicating the genuine need for a global solver to 
handle this (small, box-constrained GO) model. (Notice also that LGO has found a local solution in 
its LS mode that CONOPT could not improve.) The OQNLP solver returns the same global solution 
as LGO (while cautiously stating that it is a local solution). The BARON solver can not handle 
trigonometric functions (as of the version BARON 7.2.5 Aug 1, 2005, available to the author). 
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This numerical example illustrates that nonlinear – especially, global – optimization models can be 
truly challenging, even in relatively simple, small-scale instances. This fact in itself motivates the 
use of several solver options whenever available.  
 
Example 2: Packing identical size circles in the unit circle 
 
We will consider a well-known circle packing model that has been intensively studied at least for 
several decades, mostly by “pure” mathematicians (with no or modest use of computers). Given the 
unit circle C (of radius 1), and a positive integer k, find a set of k identical size circles Ci i=1,…,k 
with the maximal possible radius r=r(k) so that all Ci are contained by C, in a non-overlapping 
arrangement. For illustration, an optimized configuration for k=20 is displayed below. This 
arrangement has been found and the visualized by using MathOptimizer Professional (LGO in 
conjunction with the Mathematica platform (Pintér and Kampas, 2003).  
 
 

 
 

Figure 3.  
Packing 20 uniform size circles in the unit circle by global optimization.  

Source: Pintér and Kampas (2006).  
 
There exists a significant body of literature (books, articles, dissertations, and web sites) discussing 
various packings of identical size circles. For example, Melissen (1997) provides a detailed review 
of such packing model statements and related analytical results, with more than 350 topical 
references. For the problem stated above, analytical proofs are known only for k≤11 (as per 
Melissen’s cited work), although putative arrangements are known (as of today) for up to about 500 
circles. With respect to the best known configurations, we will use the information presented by 
Specht (2005): his website also provides further references to related work. 
 
To formulate the mathematical model of the circle packing problem, we will assume that the unit 
circle is centered at the origin. For a given k, denote the optimized circle radius by r, and the centre 
of circle i by ci=(xi, yi) i=1,…,k. Then we want to solve the following optimization problem: 
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(7) maximize r 
2r ≤ || ci – cj || 1 ≤ i < j ≤ k  
|| ci || + r ≤ 1  1 ≤ i ≤ k 
0 ≤ xi ≤ 1  1 ≤ i ≤ k 
0 ≤ yi ≤ 1  1 ≤ i ≤ k 
0 ≤ r ≤ 1. 

  
Here || ci – cj ||= [(xi – xj)2 + (yi – yj)2 ]1/2 and || ci || := (xi

2 + yi
2 )1/2.  

 
The model (7) has 2k+1 decision variables, k(k-1)/2 non-convex (reverse convex) constraints that 
represent the “no overlap” condition, and k convex nonlinear constraints that represent the 
“container” condition. Observe that the number of non-convex constraints increases essentially at a 
quadratic rate as k grows.  
 
Let us also point out that this model has obvious structural symmetry which could be exploited in a 
modeling and solution procedure. (Figure 3 shows essentially the same configuration as Specht’s 
website for the k=20 case, except that it is rotated, and that the innermost circle can be moved 
around to some extent.) For example, a lexicographic arrangement of the circle centers could be 
required: this would narrow the search domain, but also would lead to added constraints. Instead of 
following this modeling path, we will use GAMS /LGO (and several other solvers) in a completely 
“blind” manner, since we are interested in their generic solver capabilities. (Again, all solvers are 
used with their default settings.) Notice additionally that the variable bounds could be made a bit 
tighter as a function of k, but again – in this illustrative example – we take the “easy road to 
modeling” on purpose. The only tighter bound that we shall use is 0.05≤r≤0.4, based on the fact that 
we will solve model instances with k=5,10,15,…,60. (These bounds could also be made tighter.) 
The current standard GAMS /LGO solver is set up to handle maximally 3000 variables and 2000 
constraints (the latter in addition to the variable lower/upper bounds): hence, the k=65 instance 
would exceed the constraint limitation. 
 
A possible GAMS model formulation of the circle packing problem (7) is displayed below. Notice 
(see the related in-code note) the easy scalability of the model by changing a single value. Let us 
also remark that instead of the nonlinear constraints stated in (7) their equivalent forms  
 

4r2
 ≤ || ci – cj ||2  1 ≤ i < j ≤ k 

|| ci ||2 ≤ (1 – r)2  1 ≤ i ≤ k 
 
are used below.  
 
$title Packing identical size circles in the unit circle 
 
$ontext 
 
Given the unit circle (of radius 1), find a set of identical size 
circles with an optimized (maximal) radius r so that all such circles 
are contained by the unit circle, in a non-overlapping arrangement. 
 
One can set up model-instances simply by changing the second index 
below: that is, i1*ik will define the k-circle model instance. 
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$offtext 
 
Sets 

i / i1 * i5 /  ; 
 
* The alias command gives more than one name to a set. 
alias (i, j)  ; 
 
* Here we define the set ij(i,j) of ordered pairs i,j i<j. 
set ij(i,j); 
ij(i,j)$(ord(i) < ord(j)) = yes; 
 
variables 
         r 
         x(i) 
         y(i); 
 
* Note that the equations keyword is interpreted as constraints (hence, 
it also covers inequalities). 
equations 
         circumscribe(i) 
         nooverlap(i,j); 
 
circumscribe(i)..     sqr(1.-r) =g= sqr(x(i)) + sqr(y(i)); 
nooverlap(ij(i,j))..  sqr(x(i)-x(j))+sqr(y(i)-y(j)) =g= 4*sqr(r); 
 
x.lo(i) = -1.; x.up(i) = 1.; 
y.lo(i) = -1.; y.up(i) = 1.; 
r.lo = 0.05;   r.up = 0.4; 
 
model m /all/; 
 
solve m using nlp maximizing r; 
 
This example also illustrates the compact and transparent nature of the GAMS model formulation. 
 
In all program runs, first we use LGO, automatically followed by CONOPT: as discussed earlier, 
this combination could lead (and in some cases, does lead) to some result improvements. The 
results for k=5,10,15,…,60 packed circles are summarized by Table 3. In the table heading “k” 
denotes the number of circles; the column entries under “LGO” are the optimized circle radii r=r(k) 
found by LGO in itself; while “LGO+CONOPT” heads the column of radii found by the 
combination of the two solvers. The “Best known result” column is cited from (Specht, 2005), 
rounded to the 11-decimal precision reported by GAMS /LGO+CONOPT. “NFE” denotes the 
number of model function evaluations done by LGO. The “Runtimes” column shows the 
LGO+CONOPT times in seconds, separated by a + sign. Again, all runtimes (especially the very 
small ones) depend also on the state of the computer and operating system used, and hence these are 
approximate. 
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Table 3.  
Packing identical size circles in the unit circle: summary of results. 

 
k LGO LGO+CONOPT Best known result NFE Runtimes (sec) 
5 0.37019190816    0.37019190816 0.37019190816     17383     0.125+0.016
10 0.26077981223    0.26077981216 0.26225892419     42678     0.907+0.094
15 0.22088519921 0.22088519954 0.22117253909     81849     3.844+0.109
20 0.19522401104    0.19522401102  0.19522401102    131203  10.344+0.016
25 0.17352441376  0.17352441371  0.17382766142   203233   24.672+0.031
30 0.15137590832   0.16080454102  0.16134910906    295572   50.500+0.125
35 0.14656680267    0.14866214852 0.14931677664    356579   85.031+0.109
40 0.13781012238   0.13857348501  0.14037360420  534093   165.391+0.188
45 0.13177203692   0.13177203691  0.13204959425    580471   221.079+0.109
50 0.12569303835  0.12569303835 0.12582548953  739523   376.484+0.078
55 0.11486959821  0.11871318638  0.12178632453    907129   530.906+0.625
60 0.10731691701 0.11469879969   0.11565748013    979374   669.016+1.234

 
Without going into a detailed numerical analysis of these illustrative results, one can draw a few 
key conclusions.  
 
• LGO in itself finds solutions (in its default operational mode, with standard option settings) for 
up to 60 circles that are within 93% to 99.9999 % relative precision to the best solution known.  
• All results found by LGO+CONOPT are within 97.5% of the putative optimum, typically 
within 99.5% or (much) higher precision. The addition of CONOPT (started from the LGO 
solution) requires a relatively very modest extra computational effort. 
• LGO (or LGO+CONOPT) require a computational effort that apparently scales well with model 
size; it is also fairly reasonable considering today’s computers. (The 60-circle model in its GAMS 
formulation has 121 decision variables and 1830 – mostly non-convex – constraints.) 
 
To put these findings in perspective, let us also mention that in many cases the best known result 
has been found by a significant effort both in terms of modeling (research time) and computational 
resources – as opposed to the effort reported here (from a fraction of a second to about 11 minutes, 
on a desktop PC). Note furthermore that if we “tweak” the model and/or the solvers, then the 
default results shown above can be improved. Solver option settings could allow LGO to apply 
more global search effort, and/or to apply its other solver modes. For example, increasing the global 
search effort in LGO to 1000000 steps, for k=10, we obtain the LGO+CONOPT solution 
0.26225892419 in less than 22 seconds: this value coincides with the best known solution to at least 
11 decimals. The modeling procedure itself could also be refined e.g., by adding randomized or 
grid-like initial circle arrangements, using more tight bounds on r, etc. However, all such 
“tweaking” has been avoided, since we wish to report results using the GAMS solvers in their 
default mode.  
 
We have attempted to use also several other solvers to handle this model-class: a brief summary of 
our findings is reported below. CONOPT, MINOS, and SNOPT – being high-quality local solvers – 
have difficulties in finding feasible solutions when used in a stand-alone mode. Specifically, 
CONOPT and SNOPT report model infeasibility for all cases considered here. MINOS finds a local 
solution for k=5, then for larger models it reports model infeasibility or too many iterations (without 
finding a solution).  
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For the smaller model-instances, the global solver OQNLP (in conjunction with the local solver 
LSGRG) finds good quality solutions in a time frame similar to that of LGO, although the summary 
report typically states an “Iteration Count Exceeded” message. Unfortunately, OQNLP does not 
report program execution timings: however, in our experiments it could not complete the solution 
process for k=40 circles within the preset 1000 seconds time limit.   
 
The global solver BARON solves the k=5 model instance in its preprocessing phase (that uses 
MINOS), and reports that solution. However, the k=10 case is not solved (that is, BARON does not 
terminate) in 1,200 seconds. Therefore no further attempts were made to use BARON in solving 
larger model instances. To be fair, let us remark here that the solution found during preprocessing 
for the case k=10 by BARON+MINOS is, in fact, close to the best known solution. However, 
thereafter BARON seems to require a significant amount of time to narrow the gap between the best 
solution (lower bound) and the stated upper bound, since the lower bound found during 
preprocessing did not improve at all in 1,200 seconds. (Recall here our earlier related comment.) As 
an added note, BARON could not complete even its parser and preprocessing phase for the k=60 
case in 300 seconds.  
 
The illustrative test results summarized above indicate that LGO in its default operational mode 
(with or without CONOPT) produces good quality solutions with a reasonable effort, when solving 
models from an arguably non-trivial model-class. The results also demonstrate the need for using 
global solvers to handle such general nonlinear models. We are convinced that these findings are 
valid, in spite of unavoidable biases in model selection, solver settings, and benchmarking 
methodology. At the same time, we strongly believe that it remains impossible to draw far-reaching 
conclusions based on a limited set of examples. Our illustrative results certainly do not justify the 
claim “Among the currently available global solvers, BARON is the fastest and the most robust 
one…” cited from a recent benchmarking study by Neumaier, Scherbina, Huyer and Vinkó (2005).  
 
We will not go into further details on benchmarking here which is a substantial subject in itself. 
From the related literature we refer only to some recent work with GO relevance by Dolan and 
Moré (2002), Pintér (2002), Ali, Khompatraporn and Zabinsky (2005), Khompatraporn, Pintér and 
Zabinsky (2005). GAMS specific studies and numerical results are discussed e.g., by Bussieck, 
Drud, Meeraus and Pruessner (2003), GAMS Performance World (2003), Pintér (2003c), 
Mittelmann and Pruessner (2006), and Ugray et al. (2006). The computational study Pintér (2003c) 
includes also many of the standard academic tests known from the GO literature collected in 
chapters of Floudas et al. (1999) and available in GAMS format. 
 
 
6 Concluding Remarks 
 
Computational global optimization is coming of age. Recently, several global optimization solvers 
have been implemented for use within the framework of prominent modeling and optimization 
environments. As a result, global optimization methodology and software is increasingly used 
worldwide, and it already has significant applications. In addition to its obvious educational 
perspectives, prominent research and commercial application areas include biotechnology, chemical 
and process industries, econometrics and finance, engineering design, medical research, and 
scientific modeling. For a selection of books (and substantial book chapters) that include also 
detailed test results, application examples and case studies, consult e.g. Grossmann (1996), Pintér 
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(1996a), Floudas (1999), Floudas et al. (1999), Papalambros and Wilde (2000), Pintér (2002), 
Tawarmalani and Sahinidis (2002), Zabinsky (2003), Neumaier (2004), Liberti and Maculan 
(2006), and Pintér (2006).  
 
Regarding LGO implementations and their applications, Pintér (2005b) presents an overview of 
several of these with numerical examples. More detailed numerical studies and specific applications 
are discussed e.g., in the following works:  
 
• Minimal potential energy models in computational physics and chemistry (Pintér, 2001b; 

Stortelder, de Swart, and Pintér, 2001) 
• Laser design (Isenor, Pintér, and Cada, 2003) 
• Model calibration (Pintér, 2003b) 
• A detailed LGO benchmarking study using several GAMS model libraries (Pintér, 2003c) 
• Radiotherapy planning (Tervo, Kolmonen, Lyyra-Laitinen, Pintér, and Lahtinen, 2003) 
• Design optimization in acoustic engineering (Pintér and Purcell, 2003) 
• Various application examples and case studies developed for the Maple platform (Maplesoft, 

2004; Pintér, Linder and Chin, 2005)  
• A comparative numerical study of global optimization tools in Mathematica (Kampas and 

Pintér, 2005) 
• Generalized (non-uniform) circle packings (Pintér and Kampas, 2005) and other object 

configuration analysis problems (Kampas and Pintér, 2006)  
• Circle packing models, with industrial application perspectives (Castillo, Kampas, and Pintér, 

2005) 
• Numerous further applications that are part of proprietary studies. 
 
The listed books and examples show the broad applicability of global optimization technology (and 
of LGO, as an instance) across an increasing range of professional studies as well as in actual 
process design and product development.  
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