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Abstract

By analogy with the conjecture of Hirsch, we conjecture that the order of the largest total
curvature of the central path associated to a polytope is the number of inequalities deflning the
polytope. By analogy with a result of Dedieu, Malajovich and Shub, we conjecture that the
average diameter of a bounded cell of an arrangement is less than the dimension. We prove
continuous analogues of two results of Holt-Klee and Klee-Walkup: we construct a family of
polytopes which attain the conjectured order of the largest total curvature, and we prove that
the special case where the number of inequalities is twice the dimension is equivalent to the
general case. We substantiate these conjectures in low dimensions and highlight additional links.

1 Continuous Analogue of the Conjecture of Hirsch

Let P be a full dimensional convex polyhedron deflned by m inequalities in dimension n. The diameter
-(P) is the smallest number such that any two vertices of the polyhedron P can be connected by
a path with at most —-(P) edges. The conjecture of Hirsch, formulated in 1957 and reported in [2],
states that the diameter of a polyhedron deflned by m inequalities in dimension n is not greater than
m j n. The conjecture does not hold for unbounded polyhedra. A polytope is a bounded polyhedron.
No polynomial bound is known for the diameter of a polytope.

Conjecture 1.1. (Conjecture of Hirsch for polytopes)
The diameter of a polytope deflned by m inequalities in dimension n is not greater than m j n.

Intuitively, the total curvature [15] is a measure of how far ofi a certain curve is from being a

straight line. Let ~ : [fi;fl] ¥ R" be a C?((fi iR";fI + ™) map for some ™ > 0 with a non-zero
derivative in [fi; fl]. Denote its arc length by I(t) = fti k(¢ )kd; , its parametrization by the arc length
by Tarc = T -1i1: [O;A(fl)] T R" and its curvature at the point t by =(t) = :arc(t). The total

curvature is deflned as O'(ﬂ) ke(t)kdt. The requirement - & 0 insures that any given segment of the

curve is traversed only once and allows to deflne a curvature at any point on the curve.

We present one useful proposition. Roughly speaking, it states that two similar curves might not
difier greatly in their total curvatures either. This fact is used in Section 3 in proving the analogue
of the d-step conjecture for the total curvature of the central path.

with non-zero derivatives in [fi; fl] that converge to ~ point-wise as j ¥ A, i.e., J(t) ¥ ~(t) for
all t 2 [fi; fl]. Then the total curvature of ~ is bounded from above by the inflmum limit of the total
curvature of ~J over all j.
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For compactness we only sketch an elementary proof of this proposition in Section 4. For a detailed
exposition of a very similar argument see [5].

From now on we consider only polytopes, i.e., bounded polyhedra, and denote those by P.

For a polytope P = fx : Ax , bg with A 2 R™&" denote ,(P) the largest totqi,curvature of the
primal central path corresponding to the standard logarithmic barrier function, j :“:l In(Aix i bi),
of the linear programming problem minfc'x : x 2 Pg over all possible c. Following the analogy
with the diameter, let—{m; n) be the largest total curvature ,(P) of the primal central path over all
polytopes P deflned by m inequalities in dimension n.

Conjecture 1.2. (Continuous analogue of the conjecture of Hirsch)
The order of the largest total curvature of the primal central path over all polytopes deflned by m
inequalities in dimension n is the number of inequalities deflning the polytopes, i.e.~—Tm;n) = O(m).

Remark 1.1. In [5] the authors showed that a redundant Klee-Minty n-cube C satisfles ,(C) , (%)”,
providing a counterexample to the conjecture of Dedieu and Shub [4] that—{m; n) = O(n).

For polytopes and arrangements, respectively central path and linear programming, we refer to
the books of Griinbaum [9] and Ziegler [16], respectively Renegar [12] and Roos et al [13], and the
references therein.

2 Discrete Analogue of the result of Dedieu, Malajovich and
Shub

Let A be a simple arrangement formed by m hyperplanes in dimension n. We recall that an arrange-
ment is called simple if m , n+ 1 and any n hyperplanes intersect at a unique distinct point. Since
A is simple, the number of. bougded cells (bounded connected component of the complement to the
hyperplanes) of Ais | = ™Mil" et ,°(P) denote the total curvature of the primal central path
corresponding to minfc™ x : x 2 Pg. Following the approach of Dedieu, Malajovich and Shub [3], let
,°(A) denote the average value of ,°(P;) over the bounded cells P; of A; that is,

Piz c

—

Note that each bounded cell P; is deflned by the same number m of inequalities, some being potentially
redundant. Given an arrangement A, the average total curvature of a bounded cell , (A) is the largest
value of ,¢(A) over all possible ¢. Similarly,—a(m; n) is the largest possible average total curvature
of a bounded cell of a simple arrangement deflned by m inequalities in dimension n.

Proposition 2.1. (Dedieu, Malajovich and Shub [3])
The average total curvature of a bounded cell of a simple arrangement deflned by m inequalities in
dimension n is not greater than 2..n.

(A =

By analogy, let —(A) denote the average diameter of a bounded cell of A; that is,
F>i=|
i=1~(Pi).
I :
Similarly, let ¢a(m;n) denote the largest possible average diameter of a bounded cell of a simple
arrangement deflned by m inequalities in dimension n.

-(A) =

Conjecture 2.1. (Discrete analogue of the result of Dedieu, Malajovich and Shub)
The average diameter of a bounded cell of a simple arrangement deflned by m inequalities in dimension
n is not greater than n.
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3 Additional Links and Low Dimensions

3.1 Additional Links

Proposition 3.1. If the conjecture of Hirsch holds, then ¢a(m;n) = n + 20

mjgl*

Proof. Let m; denote the number of hyperplanes of A which are non-redundant for the description
of a bounded cell P;. If the conjecture of Hirsch holds, we have -(P;) « m; j n. It implies:

Pi= ] =
~(A) - izl(rlni in — i:Il mi _

bounded facets of A. As a bounded facet induced by a hyperplane H of A corresponds to a baunded
cell of the (n j 1)-dimensional simple arrangement A \ H, the sum of m; is less than 2m ™Mi2

nijl *
Therefore, we have, for any simple arrangement A, '
imi2¢
. 2mn n(m+1)
~(A) = ¢ jn= in= ——~:
A) ‘mil ! mil' mil
O
Remark 3.1. In the proof of Proposition 3.1, we overestimate the sum of m; for i = 1;:::;1 as
some bounded facets belong to exactly 1 bounded cell. Let cgll such bounded facets external. We
mij2

hypothesize that any simple arrangement has at least n ni1 external facets, in turn, this would

strengthen Proposition 3.1 to: If the conjecture of Hirsch holds, then ¢a(m;n) = MMINED

Similarly to Proposition 3.1, the results of Kalai and Kleitman [10] and Barnette [1] which bounds

the diameter of a polytope by, respectively, 2 m'°9(m+1 and Znsiz(m i n+ 3), directly yield:

amn(2m(717))'*"
mijl

ni2
and Ca(m;n) = n(ME; + ) 55—,

Proposition 3.2. ¢a(m;n) =
The special case of m = 2n of the conjecture of Hirsch is known as the d-step conjecture (as the
dimension is often denoted by d in polyhedral theory). In particular, it has been shown by Klee and

Walkup [11] that the special case m = 2n for all n is equivalent to the conjecture of Hirsch.

Proposition 3.3. (Continuous analogue of the result of Klee and Walkup)
I£—-12n; n) = O(n) for all n, then—Tm; n) = O(m).

Proof. Suppose—T2n;n) = 2Kn; n , 2. Consider minfc'x : x 2 Pg where P = fx : Ax , bg with
A 2 RMEN and P and ~ respectively denotes the associated central path and the analytic center.
The two cases n < m < 2n and m > 2n are considered separately. Denote O and 1 the vector of all
zeros and all ones respectively, intP { the interior of P. We may assume P is full-dimensional, for if
not, we may reduce the problem dimension to satisfy the assumption. Note A is full-rank since P is
bounded.

Case n < m < 2n: without loss of generality assume ¢ = (1;0;:::;0) 2 R" and denote x; the
optimal value of minfc™x : x 2 Pg. Consider minfc™x : x 2 Bg where B = fx : &x , 8g with
& 2 R?™" and § 2 R2" are given by:

8 . . 9

< Ajj fori=1::;;mandj =105 Yoo
Aij = _ 1 fori=m+1;:::;2nand j =1, 8 = <

- 0 fori=m+1;:::;2nand j=2;:::;n; 1
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and P denotes the associated central path, see Figure 1(a). Since the central path is the collection
of the analytic centers of the level sets between the optimal solution and ~, we have P P and,
therefore, ,¢(P) = ,¢(®). As P is deflned by 2n inequalities in dimension n, we have ,°(®) « 2Kn,
and thus, for n <m < 2n, ,¢(P) =« 2Kn, that is—{m; n) = O(m).

Case m > 2n: without loss of generality assume ~ = 0. Consider minf(c; j )T (x;y) : (X;y) 2 Bg
where B = f(x;y) 2 R"£R : Ax j by , 0;y = 1g with the associated central path B. In particular, if
the deflnition of P is non-redundant, P is the (n + 1)-dimensional ipped pyramid with base P £ flg
and the apex (7;0) = 0. We show that for large enough value of kck the central path P of the
original optimization problem may be well approximated by a segment of the central path B so that
the total curvature of P is bounded from above by the total curvature of B. Intuitively, by choosing

large enough we should be able to force P to flrst follow almost a straight line from the analytic
center of B to the face containing P £ f1g, and once P is forced almost onto this face the path
should look just like the central path P for minfc™ x : x 2 Pg in one-less dimension, see Figure 1(b).
Consequently, we argue that the total curvature of P may not be less then that of B.

(x.0)

(@) (b)

Figure 1: An illustration for the proof of Proposition 3.3 forn=2: () 2n>m =3, (b) 2n<m =5

Denote s = Ax j by and let S be the diagonal matrix with S;; = sj; i = 1;:::;n. Recall that
the barrier functions £(x;y) : intP ¥ R and f(x) : intP ¥ R giving rise to the central paths

B = f(& »)(") = arg mingx.y " (c; b Y (x;y)+E(x;y); " 2[0; 1)g anciDP = fx(”) = argmin, ”"c"x +
f(x);”2[0;L)gare Bx;y) =i i, Insiilnliy)and fF(x)=1i o, Insijy=1. The gradient of
£ at a point (x;y) satisfles

o= jATSI1] Ll
Iy +bTSi
and the Hessian of £ satisfles
Tgi2 “ATgQi2 1l
A'Si2A jA'Si4p

K= . ]
(i ATSi2p)T ﬁﬂﬁs-?b
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where its inverse may be computed using Schur complement and is equal to
(ATSizA)il 0 ﬂ+ 1 (ATSiZA)ilATSﬂb Ll (ATsi2A)i1ATsi2b Tr

1 -
0 (N —— 1 1

[it=

where
=b"Si?% j (ATSI2H)T(ATSIZA)iIATSIZ:

In what follows we adapt the notation of [12]: we write kvky for the local norm of v at x where the
norm is induced by the intrinsic inner product at x 2 D¢ arising from the strongly non-degenerate
self-concordant function f : D¢ ¥ R, namely kvk = v' r2f(x)v. First we show that for large
enough any segment of P corresponding to ” 2 [”;”] may be well approximated by a suitably chosen
segment of B; in doing so we will manufacture a good surrogate for a point (& ¢)(”) 2 B from

X 3"+ "Zj7=) 2P.

Proposition 3.4. Let” 2 [”;”] and M be such that jb" Si11j; pﬁ - M forall (yx(");y), 3 =y = 1,
7 2[7;7]. If is chosen large enough to satisfy

. %maxfl; p@M i 1g

then fory =1 j 1% the point (yx(’);y) approximates (&;¢)(”=y), namely

T | P
B i PO
¥ y YXCy)

.. 82 M
3 1+ 7

Remark 3.2. M < 7 since the portion of the central path P corresponding to any flnite interval

[’;7"] lies in the interior of P.

Remark 3.3. Withy =1 j g5 the function ” A © is monotone increasing for ” , 0 and hence is

invertible with its inverse being 7 @ (" + " 72§ 7= ).

Remark 3.4. Recalling that £ is strongly non-degenerate self-concordant and, therefore, an open
unit ball in the local norm at (x;y) 2 intf® satisfles B(x.,)((X;y); 1) % int® where B is bounded by
assumption, the proposition implies that (&;¢)(”) ¥ (x(”);1) as ¥ 1. Moreover, the convergence
is uniform over any flnite segment [”;>] of P.

Proof. We rely on the fact that the Newton’s method iterates exhibit local quadratic convergence
to the central path for linear programming [13], which may be rephrased in a more general setting
of strongly non-degenerate self-concordant functions [12]. For concreteness we use an intermediate
statement in the proof of Proposition 2.2.8 of [12]: let n(x) = jr?f(x)ilrf(x) be the Newton
step for strongly non-degenerate self-concordant function f : Df ¥ R, if kn(X)kx = % then f has a
minimizer z and kx j zkyx = 3kn(x)kx.

Consider the Newton step for minimizing ”°(c; § )" (x;y) + £(x;y), and evaluate (the square of)
its local norm at (yx(”);y) wherey =1 j =~ and "’ = _:

vz
T 1 T 9
20 iC +g gil 0 _C +g
T yx()y)
” 1 T » 1
_ yc+yrf _ q il yc+—rf _
1o+ gy +bTsit + o +DbTSil

Tiy 2 liy YxC)3y)
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and since x(”) 2 P

M1 T
T
1. 1
— +p'Sil1 n
y lly (1iy)2+

o

yx(”):y)

x(")sy)

and by the choice of y and

(bTSi11)2 M?2 82 M 'ITZ-;

@+ MHZiM2 8l 1+ 7 81’

1
@iv)P+  yx()y)

Now, since the size of the Newton step for minimizing ”%(c; i )7 (x;y)+®(x;y) measured with respect
to the local norm at (yx(’);y) is indeed = %, the statement of the proposition follows immediately. O

Next we argue that the total curvature of any flnite segment [”;] of the central path P may not
be much less than the total curvature of [”;*"]-segment of B. Indeed, this follows from Proposition 1.1
where the point-wise convergence of two paths follows from Remark 3.4. Note that the gradient to
the central path does not vanish, since a point x(”’) 2 P is the minimizer for ”c" x + f(x) and hence
must satisfy ”c + rf(x) = 0, the derivative with respect to ” satisfles x(”) = jr?f(x)ilc & 0,
recalling that under our assumptions r2f(x) is non-singular. Using a similar argument one can show
P is C2? with respect to ”, although a particular parametrization of P is not important since it is
already well-known that P is real-analytic [14]. Same considerations apply to B.

In turn, the total curvature of P may be arbitrary well approximated by the total curvature of
a suitably chosen flnite segment of the path, letting” ¥ 0 and ™ ¥ 1. The later follows from
the flniteness of the total curvature of P established in [3], or intuitively from the fact that P is
asymptotically straightas” ¥ Qand ” ¥ 1.

Finally, we may summarize our flndings in the following Lemma.

Lemma 3.1. With the construction above as ¥ 1 we have
liminf ,©i (@) > °(P):

The proof that liminf ,©i )(®) , ,°(P) easily follows from the Remark 3.4 and Proposition 1.1
as already described. For strict inequality using the techniques in [5] (also similar to the technique
used in Proposition 3.7) one can show that just before B \starts to converge" to P, B is bound to
make a flrst sharp turn which in the limit will contribute to ..=2 additional total curvature for this
path.

Now, inductively increasing the dimension and the number of inequalities by 1 and carefully
using the limit argument in the above, the same construction gives a sequence of polytopes B =

by 2m j 2n inequalities in dimension m j n, we have ,©1 (B . ,,) = 2K(m j n). This implies
that, for m > 2n, ,¢(P) = 2K(m j n), that is—{m;n) = O(m). O

Remark 3.5. In contrast with Proposition 3.1—m;n) = O(m) does not imply that—a(m;n) =
O(n) since all the m inequalities count for each ,(P;) while it is enough to consider the m; non-
redundant inequalities for each —(P;).
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3.2 Low Dimensions

The diameter of a polytope in dimension 2 and 3 satisfles, respectively, -(P) = b%c and -(P) =
bZMc j 1. It clearly implies:

Proposition 3.5. ¢a(m;2

T

In dimension 2, let S, be the sphere of radius 1 centered on (1;1) and consider the arrangement
A, made of the 2 lines forming the nonnegative orthant and an additional m j 2 lines tangent
to S, and separating the origin from the center of the sphere S,. See Flglure % for an illustration
of A( Besides m j 2 triangles, the bounded cells of A7, -, are made of ™} 2" 4-gons. We have

-(AT2) = 2(m 2 and thus,

Proposition 3.6. 2 i

2
mil mil*

Figure 2: The arrangement AG.,

Remark 3.6. The arrangement Ag;z was generalized in [6] to an arrangement with 'mrj” cubical
cells yielding that the dimension n is an asymptotic lower bound for ¢ (m;n) for flxed n. A similar

construction produces an order-n lower bound for—a(m; n).
In dimension 2, for m , 4, consider the polytope P/ deflned by the following m inequalities:

y=1lxe%+3, ix-%+%and(il)ix-1°ili12y+%i10' for i = 4;:::;m. See Figure 3 for
an illustration of Pg,.
Proposition 3.7. The total curvature of the central path of minfy : (x;y) 2 P @ satisfles

O ()

liminf 2
m¥ 1

Proof. First we show that the central path P goes through a sequence of m j 2 points (Xj; 1o” 'J)

for j = 1;::; i 2 with x; , 0 for odd j and x; = J—'lom for even j. For i = 2;:::;m and
J=1:0 ;m 2 denote zJ the flrst coordinate of the mtersectlon of the liney = 10 and the facet
ot P/ mduced by the it" inequality deflning Py, that is, 2} = 10” +1,20 = 10;:;1 i 3, and

= GOIEEE + 5 § 220 for i = 4;::;m. As the central path may be characterlzed as

the set of minimizers of the barrier function over approprlate level sets of the objective function, the
point (X;; 10;") of P satisfles

XX .
xj =argmax  In(il)'(z i x):
X
i=2
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Figure 3: The polytope PG/;2 and its central path

Therefore, to show that x; , O for odd j and that x; = J%” for even j, it is enough to prove that
g3 (0) > 0 for odd j and gi (+12"%) < 0 for even j where

] XXy .
g’ = &ln(il)'(zf i X):
i=2

For simplicity we assume that m is even. A similar argument applies for odd values of m. Since

ikt Lo 1 >0fork , j+4and 122"’ « x « 0, we have
Xizi  XiZiy, m
i %
= 1 7 . 0; jodd, x=0;
o e0 .y = 0. (1)
imj+a X 1 24 ; jeven; x =i
This yields
) il 1 1 T2
90 > Tt T im0 5 0 >0
s5+tg 3t §+ﬁ|10l4 5639
For j , 2, rewrite
— ' B
; 1 iSigr2 1 Iigd 1 > 1
g (X) = i + K + j + j =+ J
i XiZ3 i=4 X172 jmje2 X0 4 jmjaa X0 7
Observe s . .
1 1 < %+l105iJ + 14101171 for x =0; @
— + - = _ _ i4
X i 212 X i Z% - %_'_105;'11_'_10”:4 +%+#i% forx:%,
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A h’ly
» X
_—
<>
<>
<>
<>
<>
-\/\>
<>
<
<
<
<
<
<9
g
Figure 4: The central path for Pz,
and 8 1 - 1 . H . .
ot | BCWE PgepamE e ol
7o T Tysa107 T Iw,s i J S Mi 4even; X =S ©)
i=j+2xizi§-55 11_1m . 55 11 1 m o s _M.
- 10,5 4103 J=miz2 X = o
55 11 m
For odd j , 3 and x =0, we have
oSS U .1 _ L s gl
i =1 - T ) [ T+
i T e e TR R T e e
55 11 m 55 11 m
(@] 1
il 1 1 1
:i-lloi451+ L 10543 +1+ L 1051d _+¢¢¢+ I
11 P ™m 55 %imni‘l 55 %Ilon:“ 55 % OTM
1
11 1 1 1
+tT aorid T 11¢106iJ +¢M+W
S oI+ Mg 1+ MEE 1+ “5s
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o o 1,
- 3il 3il
> sfijioﬂgli i:o 10i4 +0 :'ti-o 10i4 A
70 m 55 a0 m 55 71
o) 1, o) 1,1
5ii 5ij
+1 _thl _ L@ i10| _4A+¢¢¢+li " 1 _ +@ % 1 _ AX
55 i 'm 55 41 i n 55 fitm %5 oaih
11 1_11¢104i1+m+1_11¢10i1ﬂ
5 - ' 555 ! "5¢55
o ) 0] 1, ) 1
il 1 1 :01P%c 1 1§ :00010%¢
~ 5 -I 10i4 8 JE i i5 10i4 ¢ I'0'012 +@ i5 10i4 A 1I'0F)000012 g
71 m 55 5 j o i 55 5 101 i
- 77 !
FE IS S I Bt
5 2 '"“ V550 1301
¥ f oo
i il 1014 1 1 1o g
ot — + — — i —% — e
> 1s . 5 10i4 . - : )
i ftm 55 51007 ge2 S 10if “gge > 3%0¢:9999

where the second inequality isbasedon1jv = ﬁ = 1jv+vZ; v , 0and the last equality is obtained

by summing up the terms in three resulting geometric series. This, combined with observations (1),
(2) and (3), gives, forodd j , 3,

; 1 T 1 1 T
¢(0) . P2+t + i -
R S*mo  sti s taxi 000l .
N j :00005 . 1 i 1 1 11‘IT2 1 ) 49 -0
i—t> R 7 i t3 i-i - ; = :
27§ 21:0001 55 2 ° 552 5 j:0001°:9999 S 5 550¢:9999 63838
Similarly for even j , 2 and x = J%‘l we have
o ., 1
i§<2 _ I . .n1bici1
1 il @l .. + 1 @1"012.A
T ® i3 5 141 + — —
= X074 ot 2 550 5 + 104 101
o ., _ o 1, 1
- .g1bicit - bicii
+5 110i4 1 ili + ! -4'¢1I'91.2 +@ % . -4'A1I'90.012 g
o 20T 1 1
- E ll | 2 + -4-2 -4¢ »4-+ i ’4-261"01

B e gemt w0 pesye s 0

.o, 1 . L1 ‘ 1 )

1 + - + "3 - . :

5 . 510i4 5 _ ~10i4 1 j :0001
55 i 255 552 3 i 25,
Thus, for even j , 2.
i ilOi“ﬂ- il N 1 ﬂ+ il . 1 Ll
¢ m I+ 140001 I ;:0001 10+ 5 +:0000 20+ 5 j:0002
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00015 89 1 1 1 _ §784

+ - @ - ¢ i — ¢ - e 4+ [ @~ = <0:
"5 {00012 § :0001' 5 +:0001 99 55'S577 552¢:999 'S5 ;o002 0 3985
. . 1liid
Therefore, the central pathilllD goes through a sequence of m j 2 points (xj;y;j) with y; = 105 * and
Xj » Oforoddj, X; = % for even j. One can easily check that (x;;yj) 2P forj=1;:::;m j 2
by verifying that the analytic center ~ is above the liney = % We have
1 1
“=(C1;"2)=arg max InLjy)+In ix+l+} +1In x+X+}
b2 x¥)2Pes 0 2 33

10'i2y 5 104 j
+ — i —
11 11" m m

> .
+ In (i)"ix+
i=4

Therefore, to show that ", > % it is enough to prove that the derivative with respect to y of the

log-barrier function is negative for (x;y) 2 Pg;z andy = % that is,

il 1 1 X, 1072
— + — + + + - - — >0
ljy jlOx+y+5 3x+y+1 =4 (il)'+111X+10'52y+5i1101%4%
which is implied by
il 100 o5, 100 _ 165
liy jlix+100y+5j11¢0012 = 4 = 10 4+54+ 5 588 =

©onT
To show that liminf s 1 ERa ) - -, consider three consecutive points from this sequence,

say (Xji1:Yii1) (X Vi) (Xj+1;Yj+1), and observe that for any " > 0 we can choose m so that for all
"mej<mj2we have

Wi i Yiad o Wier i3] _

Xj 1 Xji1) Xj+1 1 Xj)
Let m be such a value and j , "m. Without loss ofi generality j might be assumed odd and let
Ciil b éj+1 2 R be such that Parc(¢k) = (_ka;yk); k=jilj;j+1 Weshow by contradiction that
there is %tl such that the flrst coordiinate Parc(t1) e 1§ "2. Suppose that for all t 2 [¢j;1;¢j]

we have Pgc(t) - pm' then Pac(t) , - i " since kRarc(t)k = 1 and (Parc(t)), is monotone-
decreasing with respect to t. By the Mean-Value Theorem it follows that ¢; i ¢j;1 > Xj i Xj;1, and
thus, by the same theorem, we must have (Parc(g,i))2 i (Parc(éiin)), = Vi i Vit < i"(Xj i Xji1),
a contradiction. Similarly, there is a t; such that Pgc(t2) . < i 1i "2 Since the total curvature
K; of the segment of P, connecting the points (Xj ;1;Yji1); (Xj: ¥j); (Xj+1;Yj+1) corresponds to the
length of the curve R, connecting the corresponding derivative points on a unit 2-sphere, K; may

be bounded below by the length of the geodesic between the points Rac(t1) and Pgc(t2), that is,
bounded below by a constant arbitrarily close to ... Now simply add all Kj forall"m = j <mj2. O

Holt and Klee [8] showed that, for m > n , 13, the conjecture of Hirsch is tight. Fritzsche and
Holt [7] extended the result to m > n , 8. Since the polytope Pg;z can be generalized to higher
dimensions by adding the box constraints 0 = x; = 1 for i , 3, we have:

Corollary 3.1. (Continuous analogue of the result of Holt and Klee)

liminfm e 7™ | that is—(m; n) is bounded below by a constant times m.
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4 Sketch of the proof of Proposition 1.1

Observe that without loss of generality we may assume ~ is parameterized by the arc length: a short
computation shows that if = & 0 then the second derivative of the arc length parametrization of the
curve is continuous since

()

~ =~ = (it R =
are(® = 20FHO) = 20RO P OR = | = 7

and consequently 5 ~
~ = k2§ 2T

arc — 1 — k,:k3
In what follows we remove the arc subscript from ~ to shorten the notation and write fi for I(fi)
and fl for I(fl). Note that the total curvature of — corresponds to the length of the gradient curve
between the points Z(fi) and =(fl) which in turn belong to the unit n-sphere.

First we argue that the total curvature of = maysbe arbitrarily well approximated by the sum
of chordal distances between pairs (=(ti;1); -(ti)), :\‘=1 KZ(ti) i ~(ti; 1)k, where t(h: fi<t <
}_2)< tt¢ <ty = fl as long as maxi=1.e.n (i i tiza) ¥ O, see Figure 5(a). Trivially ffi' k:(t)kdt =

N5 kS(tkdt and observe

i=1 tiil
Z Z. o~ Z . e
BRI L CTRLY By =G CERL
tig tij1 ihhgl ti;1 illija
O -~
Z1(t)

Zu L) § () Zuo g‘lae)% Z M(ti i ti;1)?
- i 1 dt= i ) dt = Mtdt = i i li)”
tiza G it tize : tis1 2

“h(tn)

with tj;, = t = t; for all i, where the second inequality follows from the triangle inequality, the
flrst equality follows from the Intermediate-Value Theorem, and the last inequality is implied by the
Lipschitz continuity of the second derivative of ~ on the compact set where the Lipschitz constant
is denoted by M. So, up to a quadratic error term the curvature contribution over the segment
[ti;1; ti] may be approximated by the length of the linear segment connecting the starting point
“(ti ;1) and the ending point -(t;) with both points on the unit sphere, implying a linear error term
for the total curvature approximation over [fi;fl]. In particular, we may consider the partitioning
to=fi<t; <ty <ttt <ty =fl where each kK=(t;) i =(ti+1)k = for sope small flxed

Note that any partitioning of [fi; fl] trivially gives a lower bound of 'i\l=1 K2 (ti) i J(ti;o)kon
the total curvature of ~J for all j. Also, note that since ~i(t) ¥ ~(t)asj ¥ A on a compact set
[fi; fl], the convergence is uniform.

Next we claim that for j large enough the changes in the flrst derivative of > in the neighboring
segment to ~ ([t ; 1; ti]) is at least almost as large as the change in the derivativeof ~ itself over [t;; 1; ti],
namely is bounded below by ... K=(t;) § =(ti+1)k = . If this is true, then since 'i\':l kKJ(ti)i I(ti; )k
gives a lower bound on the total curvature of ~¥, the argument would be complete. To show that
the former is indeed the case, consider — < 1=2maXi=1.c:n(ti i ti;1) and small enough so that
() .. —UF==2i T i==2) \yhere the approximation error is quadratic in — and uniform for all i
(again, this may be achieved since ~ is C? over a compact). Since the convergence ~J(t) ¥ ~(t) is
uniform, for any r > 0 there exists J so that for all j , J we have j~I(t) § ~(t)j < r for all t 2 [fi; fl].
Pick J so that r ¢ -sin . Consider two cylindrical tubes with rounded bases around segments
[C(tiza i —=2); " (ti;1 +-=2)] and ["(ti i —=2); " (ti +-=2)] { each tube is a union of a cylinder of
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height ... - and radius r with base centers at ~(tx i —=2) and ~(tx +-=2), k =1 j 1 and i respectively,
and two r-balls with the same centers. Align the coordinate system so that the flrst coordinate is
collinear with the vector (T (ti;1 i —=2); (ti;1 +-=2)) and the second coordinate chosen so that
together with the flrst coordinate axis it spans a hyperplane parallel to [~ (tj i -=2); " (tj +-=2)], with
the flrst two coordinates of ~(t;) positive, see Figure 5(b). The following two inequalities should be

interpreted as true up F higher_oHder error terms. Note that by the Intermediate-Value Theorem
there exists ¢, such that i J,.(;) R _frZr: considering the tube around [ (ti; 1 i —=2); " (ti;1+-=2)]
note that for ~J . to traverse the tube will take at least - j 2r change of the arc length parameter,
while at the same time its second coordinate will chau‘gge by at most 2r. Similarly, considering the

second tube we conclude that there exists ¢ such that fi 21,.(7) - ‘Si_”+2ir2r. Clearly, with r small

enough, or equivalently, j large enough, k2, (t;) i 2L (ti; 1)K is at least up to the higher order
terms, since we consider the shortest distance between two points 2J,.(.) and =4,.(2) on the n-unit
sphere, see Figure 5(c).

A

A X2

\'gifarc (tl)
/”’,/’\:7z8in7/

Vs

]

1

(b)

Figure 5: Illustration of the proof of Proposition 1.1

Acknowledgments Research supported by an NSERC Discovery grant, by a MITACS grant and
by the Canada Research Chair program.



14 Polytopes and Arrangements: Diameter and Curvature

References

[1] D. Barnette: An upper bound for the diameter of a polytope. Discrete Mathematics 10 (1974)
9{13.

[2] G. Dantzig: Linear Programming and Extensions. Princeton University Press (1963).

[3] J.-P. Dedieu, G. Malajovich and M. Shub: On the curvature of the central path of linear pro-
gramming theory. Foundations of Computational Mathematics 5 (2005) 145{171.

[4] J.-P. Dedieu and M. Shub: Newton ow and interior point pethods in linear programming.
International Journal of Bifurcation and Chaos 15 (2005) 827{839.

[5] A. Deza, T. Terlaky and Y. Zinchenko: Central path curvature and iteration-complexity for
redundant Klee-Minty cubes. In: D. Gao and H. Sherali (eds.) Advances in Mechanics and
Mathematics 111 (2007) 215{248.

[6] A. Deza and F. Xie: Hyperplane arrangements with large average diameter. AdvOL-Report
2007/5, McMaster University (2007).

[7] K. Fritzsche and F. Holt: More polytopes meeting the conjectured Hirsch bound. Discrete Math-
ematics 205 (1999) 77{84.

[8] F. Holt and V. Klee: Many polytopes meeting the conjectured Hirsch bound. Discrete and
Computational Geometry 20 (1998) 1{17.

[9] B. Griinbaum: Convex Polytopes. Graduate Texts in Mathematics 221, Springer-Verlag (2003).

[10] G. Kalai and D. Kleitman: A quasi-polynomial bound for the diameter of graphs of polyhedra.
Bulletin of the American Mathematical Society 26 (1992) 315{316.

[11] V. Klee and D. Walkup: The d-step conjecture for polyhedra of dimension d < 6. Acta Mathe-
matica 133 (1967) 53{78.

[12] J. Renegar: A Mathematical View of Interior-Point Methods in Convex Optimization. SIAM
(2001).

[13] C. Roos, T. Terlaky and J.-Ph. Vial: Interior Point Methods for Linear Optimization. Springer
(2006).

[14] G. Sonnevend, J. Stoer and G. Zhao: On the complexity of following the central path of linear
programs by linear extrapolation Il. Mathematical Programming 52 (1-3) (1991) 527{553.

[15] M. Spivak: Comprehensive Introduction to Difierential Geometry. Publish or Perish (1990).
[16] G. Ziegler: Lectures on Polytopes. Graduate Texts in Mathematics 152, Springer-Verlag (1995).

Antoine Deza, Tam§s Terlaky, Yuriy Zinchenko

Advanced Optimization Laboratory, Department of Computing and Software,
McMaster University, Hamilton, Ontario, Canada.

Email: deza, terlaky, zinchen@mcmaster.ca



