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Abstract

By analogy with the conjecture of Hirsch, we conjecture that the order of the largest total
curvature of the central path associated to a polytope is the number of inequalities deflning the
polytope. By analogy with a result of Dedieu, Malajovich and Shub, we conjecture that the
average diameter of a bounded cell of an arrangement is less than the dimension. We prove
continuous analogues of two results of Holt-Klee and Klee-Walkup: we construct a family of
polytopes which attain the conjectured order of the largest total curvature, and we prove that
the special case where the number of inequalities is twice the dimension is equivalent to the
general case. We substantiate these conjectures in low dimensions and highlight additional links.

1 Continuous Analogue of the Conjecture of Hirsch

Let P be a full dimensional convex polyhedron deflned by m inequalities in dimension n. The diameter
–(P ) is the smallest number such that any two vertices of the polyhedron P can be connected by
a path with at most –(P ) edges. The conjecture of Hirsch, formulated in 1957 and reported in [2],
states that the diameter of a polyhedron deflned by m inequalities in dimension n is not greater than
m¡n. The conjecture does not hold for unbounded polyhedra. A polytope is a bounded polyhedron.
No polynomial bound is known for the diameter of a polytope.

Conjecture 1.1. (Conjecture of Hirsch for polytopes)
The diameter of a polytope deflned by m inequalities in dimension n is not greater than m ¡ n.

Intuitively, the total curvature [15] is a measure of how far ofi a certain curve is from being a
straight line. Let ˆ : [fi; fl] ! Rn be a C2((fi ¡ "; fl + ")) map for some " > 0 with a non-zero

derivative in [fi; fl]. Denote its arc length by l(t) =
R t

fi
k _̂ (¿)kd¿ , its parametrization by the arc length

by ˆarc = ˆ – l¡1 : [0; l(fl)] ! Rn, and its curvature at the point t by •(t) = ˜̂
arc(t). The total

curvature is deflned as
R l(fl)

0
k•(t)kdt. The requirement _̂ 6= 0 insures that any given segment of the

curve is traversed only once and allows to deflne a curvature at any point on the curve.

We present one useful proposition. Roughly speaking, it states that two similar curves might not
difier greatly in their total curvatures either. This fact is used in Section 3 in proving the analogue
of the d-step conjecture for the total curvature of the central path.

Proposition 1.1. Let ˆ be as above and f`jgj=0;1;::: be a sequence of C2((fi ¡ "; fl + ")) functions
with non-zero derivatives in [fi; fl] that converge to ˆ point-wise as j ! 1, i.e., `j(t) ! ˆ(t) for
all t 2 [fi; fl]. Then the total curvature of ˆ is bounded from above by the inflmum limit of the total
curvature of `j over all j.
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2 Polytopes and Arrangements: Diameter and Curvature

For compactness we only sketch an elementary proof of this proposition in Section 4. For a detailed
exposition of a very similar argument see [5].

From now on we consider only polytopes, i.e., bounded polyhedra, and denote those by P .
For a polytope P = fx : Ax ‚ bg with A 2 Rm£n, denote ‚(P ) the largest total curvature of the

primal central path corresponding to the standard logarithmic barrier function, ¡ Pm
i=1 ln(Aix ¡ bi),

of the linear programming problem minfcT x : x 2 Pg over all possible c. Following the analogy
with the diameter, let ⁄(m; n) be the largest total curvature ‚(P ) of the primal central path over all
polytopes P deflned by m inequalities in dimension n.

Conjecture 1.2. (Continuous analogue of the conjecture of Hirsch)
The order of the largest total curvature of the primal central path over all polytopes deflned by m
inequalities in dimension n is the number of inequalities deflning the polytopes, i.e., ⁄(m; n) = O(m).

Remark 1.1. In [5] the authors showed that a redundant Klee-Minty n-cube C satisfles ‚(C) ‚ ( 3
2 )n,

providing a counterexample to the conjecture of Dedieu and Shub [4] that ⁄(m; n) = O(n).

For polytopes and arrangements, respectively central path and linear programming, we refer to
the books of Grũnbaum [9] and Ziegler [16], respectively Renegar [12] and Roos et al [13], and the
references therein.

2 Discrete Analogue of the result of Dedieu, Malajovich and

Shub

Let A be a simple arrangement formed by m hyperplanes in dimension n. We recall that an arrange-
ment is called simple if m ‚ n + 1 and any n hyperplanes intersect at a unique distinct point. Since
A is simple, the number of bounded cells (bounded connected component of the complement to the
hyperplanes) of A is I =

¡
m¡1

n

¢
. Let ‚c(P ) denote the total curvature of the primal central path

corresponding to minfcT x : x 2 P g. Following the approach of Dedieu, Malajovich and Shub [3], let
‚c(A) denote the average value of ‚c(Pi) over the bounded cells Pi of A; that is,

‚c(A) =

Pi=I
i=1 ‚c(Pi)

I
:

Note that each bounded cell Pi is deflned by the same number m of inequalities, some being potentially
redundant. Given an arrangement A, the average total curvature of a bounded cell ‚(A) is the largest
value of ‚c(A) over all possible c. Similarly, ⁄A(m; n) is the largest possible average total curvature
of a bounded cell of a simple arrangement deflned by m inequalities in dimension n.

Proposition 2.1. (Dedieu, Malajovich and Shub [3])
The average total curvature of a bounded cell of a simple arrangement deflned by m inequalities in
dimension n is not greater than 2…n.

By analogy, let –(A) denote the average diameter of a bounded cell of A; that is,

–(A) =

Pi=I
i=1 –(Pi)

I
:

Similarly, let ¢A(m; n) denote the largest possible average diameter of a bounded cell of a simple
arrangement deflned by m inequalities in dimension n.

Conjecture 2.1. (Discrete analogue of the result of Dedieu, Malajovich and Shub)
The average diameter of a bounded cell of a simple arrangement deflned by m inequalities in dimension
n is not greater than n.
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3 Additional Links and Low Dimensions

3.1 Additional Links

Proposition 3.1. If the conjecture of Hirsch holds, then ¢A(m; n) • n + 2n
m¡1 .

Proof. Let mi denote the number of hyperplanes of A which are non-redundant for the description
of a bounded cell Pi. If the conjecture of Hirsch holds, we have –(Pi) • mi ¡ n. It implies:

–(A) •
Pi=I

i=1(mi ¡ n)

I
=

Pi=I
i=1 mi

I
¡ n:

Since a facet belongs to at most 2 cells, the sum of mi for i = 1; : : : ; I is less than twice the number of
bounded facets of A. As a bounded facet induced by a hyperplane H of A corresponds to a bounded
cell of the (n ¡ 1)-dimensional simple arrangement A \ H, the sum of mi is less than 2m

¡
m¡2
n¡1

¢
.

Therefore, we have, for any simple arrangement A,

–(A) • 2m
¡

m¡2
n¡1

¢
¡

m¡1
n

¢ ¡ n =
2mn

m ¡ 1
¡ n =

n(m + 1)

m ¡ 1
:

Remark 3.1. In the proof of Proposition 3.1, we overestimate the sum of mi for i = 1; : : : ; I as
some bounded facets belong to exactly 1 bounded cell. Let call such bounded facets external. We
hypothesize that any simple arrangement has at least n

¡
m¡2
n¡1

¢
external facets, in turn, this would

strengthen Proposition 3.1 to: If the conjecture of Hirsch holds, then ¢A(m; n) • n(m¡n+1)
m¡1 .

Similarly to Proposition 3.1, the results of Kalai and Kleitman [10] and Barnette [1] which bounds

the diameter of a polytope by, respectively, 2 mlog(n)+1 and 2n¡2

3 (m ¡ n + 5
2 ), directly yield:

Proposition 3.2. ¢A(m; n) • 4mn(2m(m¡2
n¡1))

log n

m¡1 and ¢A(m; n) • n( m+1
m¡1 + 5

2n
) 2n¡2

3 .

The special case of m = 2n of the conjecture of Hirsch is known as the d-step conjecture (as the
dimension is often denoted by d in polyhedral theory). In particular, it has been shown by Klee and
Walkup [11] that the special case m = 2n for all n is equivalent to the conjecture of Hirsch.

Proposition 3.3. (Continuous analogue of the result of Klee and Walkup)
If ⁄(2n; n) = O(n) for all n, then ⁄(m; n) = O(m).

Proof. Suppose ⁄(2n; n) • 2Kn; n ‚ 2. Consider minfcT x : x 2 P g where P = fx : Ax ‚ bg with
A 2 Rm£n and P and ´ respectively denotes the associated central path and the analytic center.
The two cases n < m < 2n and m > 2n are considered separately. Denote 0 and 1 the vector of all
zeros and all ones respectively, intP { the interior of P . We may assume P is full-dimensional, for if
not, we may reduce the problem dimension to satisfy the assumption. Note A is full-rank since P is
bounded.

Case n < m < 2n: without loss of generality assume c = (1; 0; : : : ; 0) 2 Rn and denote x⁄
1 the

optimal value of minfcT x : x 2 P g. Consider minfcT x : x 2 eP g where eP = fx : eAx ‚ ebg with
eA 2 R2n;n and eb 2 R2n are given by:

eAi;j =

8
<
:

Ai;j for i = 1; : : : ; m and j = 1; : : : ; n;
1 for i = m + 1; : : : ; 2n and j = 1;
0 for i = m + 1; : : : ; 2n and j = 2; : : : ; n;

ebi =

‰
bi for i = 1; : : : ; m;

x⁄
1 ¡ 1 for i = m + 1; : : : ; 2n;
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and eP denotes the associated central path, see Figure 1(a). Since the central path is the collection

of the analytic centers of the level sets between the optimal solution and ´, we have P µ eP and,
therefore, ‚c(P ) • ‚c( eP ). As eP is deflned by 2n inequalities in dimension n, we have ‚c( eP ) • 2Kn,
and thus, for n < m < 2n, ‚c(P ) • 2Kn, that is, ⁄(m; n) = O(m).

Case m > 2n: without loss of generality assume ´ = 0. Consider minf(c; ¡µ)T (x; y) : (x; y) 2 eP g
where eP = f(x; y) 2 Rn £R : Ax¡by ‚ 0; y • 1g with the associated central path eP. In particular, if

the deflnition of P is non-redundant, eP is the (n + 1)-dimensional °ipped pyramid with base P £ f1g
and the apex (´; 0) = 0. We show that for large enough value of µ À kck the central path P of the

original optimization problem may be well approximated by a segment of the central path eP so that
the total curvature of P is bounded from above by the total curvature of eP. Intuitively, by choosing
µ large enough we should be able to force eP to flrst follow almost a straight line from the analytic
center of eP to the face containing P £ f1g, and once eP is forced almost onto this face the path
should look just like the central path P for minfcT x : x 2 P g in one-less dimension, see Figure 1(b).

Consequently, we argue that the total curvature of P may not be less then that of eP.

Figure 1: An illustration for the proof of Proposition 3.3 for n = 2: (a) 2n > m = 3, (b) 2n < m = 5

Denote s = Ax ¡ by and let S be the diagonal matrix with Sii = si; i = 1; : : : ; n. Recall that
the barrier functions ef(x; y) : int eP ! R and f(x) : intP ! R giving rise to the central paths
eP = f(ex; ey)(”) = arg min(x;y) ”(c; ¡µ)T (x; y) + ef(x; y); ” 2 [0; 1)g and P = fx(”) = arg minx ”cT x +

f(x); ” 2 [0; 1)g are ef(x; y) = ¡ Pm
i=1 ln si ¡ ln(1 ¡ y) and f(x) = ¡ Pm

i=1 ln sijy=1. The gradient of
ef at a point (x; y) satisfles

eg =

µ ¡AT S¡11
1

1¡y
+ bT S¡11

¶

and the Hessian of ef satisfles

eH =

µ
AT S¡2A ¡AT S¡2b

(¡AT S¡2b)T 1
(1¡y)2 + bT S¡2b

¶
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where its inverse may be computed using Schur complement and is equal to

eH¡1 =

µ
(AT S¡2A)¡1 0

0 0

¶
+

1
1

(1¡y)2 ¡ °

µ
(AT S¡2A)¡1AT S¡2b

1

¶ µ
(AT S¡2A)¡1AT S¡2b

1

¶T

where
° = bT S¡2b ¡ (AT S¡2b)T (AT S¡2A)¡1AT S¡2b:

In what follows we adapt the notation of [12]: we write kvkx for the local norm of v at x where the
norm is induced by the intrinsic inner product at x 2 Df arising from the strongly non-degenerate
self-concordant function f : Df ! R, namely kvk = vT r2f(x)v. First we show that for µ large
enough any segment of P corresponding to ” 2 [”; ”] may be well approximated by a suitably chosen

segment of eP; in doing so we will manufacture a good surrogate for a point (ex; ey)(”) 2 eP from

x
‡

1
2 (” +

p
”2 ¡ ”=µ)

·
2 P.

Proposition 3.4. Let ” 2 [”; ”] and M be such that jbT S¡11j;
p

j°j • M for all (yx(”); y), 1
2 • y • 1,

” 2 [”; ”]. If µ is chosen large enough to satisfy

µ ‚ 1

”
maxf1;

p
82M ¡ 1g

then for y = 1 ¡ 1
1+µ”

the point (yx(”); y) approximates (ex; ey)(”=y), namely

°°°°
µ ex

ey
¶

(”=y) ¡
µ

yx(”)
y

¶°°°°
(yx(”);y)

•
p

82

3

M

1 + µ”
:

Remark 3.2. M < 1 since the portion of the central path P corresponding to any flnite interval
[”; ”] lies in the interior of P .

Remark 3.3. With y = 1 ¡ 1
1+µ”

the function ” 7! ”
y

is monotone increasing for ” ‚ 0 and hence is

invertible with its inverse being ” 7! 1
2 (” +

p
”2 ¡ ”=µ).

Remark 3.4. Recalling that ef is strongly non-degenerate self-concordant and, therefore, an open
unit ball in the local norm at (x; y) 2 int eP satisfles B(x;y)((x; y); 1) ‰ int eP where eP is bounded by
assumption, the proposition implies that (ex; ey)(”) ! (x(”); 1) as µ ! 1. Moreover, the convergence
is uniform over any flnite segment [”; ”] of P.

Proof. We rely on the fact that the Newton’s method iterates exhibit local quadratic convergence
to the central path for linear programming [13], which may be rephrased in a more general setting
of strongly non-degenerate self-concordant functions [12]. For concreteness we use an intermediate
statement in the proof of Proposition 2.2.8 of [12]: let n(x) = ¡r2f(x)¡1rf(x) be the Newton
step for strongly non-degenerate self-concordant function f : Df ! R, if kn(x)kx • 1

9 then f has a
minimizer z and kx ¡ zkx • 3kn(x)kx.

Consider the Newton step for minimizing ”0(c; ¡µ)T (x; y) + ef(x; y), and evaluate (the square of)
its local norm at (yx(”); y) where y = 1 ¡ 1

1+µ”
and ”0 = ”

y
:

µ
”0

µ
c

¡µ

¶
+ eg

¶T

eH¡1

µ
”0

µ
c

¡µ

¶
+ eg

¶flflflflfl
(yx(”);y)

=

µ ”
y

c + 1
y
rf

¡”
y

µ + 1
1¡y

+ bT S¡11

¶T

eH¡1

µ ”
y

c + 1
y
rf

¡”
y

µ + 1
1¡y

+ bT S¡11

¶flflflflfl
(yx(”);y)
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and since x(”) 2 P

=

µ
0

¡”
y

µ + 1
1¡y

+ bT S¡11

¶T

eH¡1

µ
0

¡”
y

µ + 1
1¡y

+ bT S¡11

¶flflflflfl
(yx(”);y)

=

µ¡”

y
µ +

1

1 ¡ y
+ bT S¡11

¶2
1

1
(1¡y)2 + °

flflflflfl
(yx(”);y)

and by the choice of y and µ

=
(bT S¡11)2

1
(1¡y)2+°

flflflflfl
(yx(”);y)

• M2

(1 + µ”)2 ¡ M2
• 82

81

µ
M

1 + µ”

¶2

• 1

81
:

Now, since the size of the Newton step for minimizing ”0(c; ¡µ)T (x; y)+ ef(x; y) measured with respect
to the local norm at (yx(”); y) is indeed • 1

9 , the statement of the proposition follows immediately.

Next we argue that the total curvature of any flnite segment [”; ”] of the central path P may not

be much less than the total curvature of [”; ”]-segment of eP. Indeed, this follows from Proposition 1.1
where the point-wise convergence of two paths follows from Remark 3.4. Note that the gradient to
the central path does not vanish, since a point x(”) 2 P is the minimizer for ”cT x + f(x) and hence
must satisfy ”c + rf(x) = 0, the derivative with respect to ” satisfles _x(”) = ¡r2f(x)¡1c 6= 0,
recalling that under our assumptions r2f(x) is non-singular. Using a similar argument one can show
P is C2 with respect to ”, although a particular parametrization of P is not important since it is
already well-known that P is real-analytic [14]. Same considerations apply to eP.

In turn, the total curvature of P may be arbitrary well approximated by the total curvature of
a suitably chosen flnite segment of the path, letting ” ! 0 and ” ! 1. The later follows from
the flniteness of the total curvature of P established in [3], or intuitively from the fact that P is
asymptotically straight as ” ! 0 and ” ! 1.

Finally, we may summarize our flndings in the following Lemma.

Lemma 3.1. With the construction above as µ ! 1 we have

lim inf ‚(c;¡µ)( eP ) > ‚c(P ):

The proof that lim inf ‚(c;¡µ)( eP ) ‚ ‚c(P ) easily follows from the Remark 3.4 and Proposition 1.1
as already described. For strict inequality using the techniques in [5] (also similar to the technique

used in Proposition 3.7) one can show that just before eP \starts to converge" to P, eP is bound to
make a flrst sharp turn which in the limit will contribute to …=2 additional total curvature for this
path.

Now, inductively increasing the dimension and the number of inequalities by 1 and carefully
using the limit argument in the above, the same construction gives a sequence of polytopes eP =
eP1; eP2; : : : ; ePm¡2n satisfying ‚c(P ) • ‚(c;¡µ)( eP1) • ¢ ¢ ¢ • ‚(c;¡µ;::: )( ePm¡2n). Since ePm¡2n is deflned

by 2m ¡ 2n inequalities in dimension m ¡ n, we have ‚(c;¡µ;::: )( ePm¡2n) • 2K(m ¡ n). This implies
that, for m > 2n, ‚c(P ) • 2K(m ¡ n), that is, ⁄(m; n) = O(m).

Remark 3.5. In contrast with Proposition 3.1, ⁄(m; n) = O(m) does not imply that ⁄A(m; n) =
O(n) since all the m inequalities count for each ‚(Pi) while it is enough to consider the mi non-
redundant inequalities for each –(Pi).
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3.2 Low Dimensions

The diameter of a polytope in dimension 2 and 3 satisfles, respectively, –(P ) • b m
2 c and –(P ) •

b 2m
3 c ¡ 1. It clearly implies:

Proposition 3.5. ¢A(m; 2) • 2 + 2
m¡1 and ¢A(m; 3) • 3 + 4

m¡1 .

In dimension 2, let S2 be the sphere of radius 1 centered on (1; 1) and consider the arrangement
A⁄

m;2 made of the 2 lines forming the nonnegative orthant and an additional m ¡ 2 lines tangent
to S2 and separating the origin from the center of the sphere S2. See Figure 2 for an illustration
of A⁄

6;2. Besides m ¡ 2 triangles, the bounded cells of A⁄
m;2 are made of

¡
m¡2

2

¢
4-gons. We have

–(A⁄
m;2) = 2(m¡2)

m¡1 , and thus,

Proposition 3.6. 2 ¡ 2
m¡1 • ¢A(m; 2) • 2 + 2

m¡1 .

Figure 2: The arrangement A⁄
6;2

Remark 3.6. The arrangement A⁄
m;2 was generalized in [6] to an arrangement with

¡
m¡n

n

¢
cubical

cells yielding that the dimension n is an asymptotic lower bound for ¢A(m; n) for flxed n. A similar
construction produces an order-n lower bound for ⁄A(m; n).

In dimension 2, for m ‚ 4, consider the polytope P ⁄
m;2 deflned by the following m inequalities:

y • 1, x • y
10 + 1

2 , ¡x • y
3 + 1

3 and (¡1)ix • 10i¡2y
11 + 5

11 ¡ 10¡4

m
i

m
for i = 4; : : : ; m. See Figure 3 for

an illustration of P ⁄
6;2.

Proposition 3.7. The total curvature of the central path of minfy : (x; y) 2 P ⁄
m;2g satisfles

lim inf
m!1

‚(0;1)(P ⁄
m;2)

m
‚ …:

Proof. First we show that the central path P goes through a sequence of m ¡ 2 points (xj ; 101¡j

5 )

for j = 1; : : : ; m ¡ 2 with xj ‚ 0 for odd j and xj • ¡10¡4

m
for even j. For i = 2; : : : ; m and

j = 1; : : : ; m ¡ 2, denote zj
i the flrst coordinate of the intersection of the line y = 101¡j

5 and the facet

of P ⁄
m;2 induced by the ith inequality deflning P ⁄

m;2, that is, zj
2 = 10¡j

5 + 1
2 , zj

3 = ¡ 10¡j+1

15 ¡ 1
3 , and

zj
i = (¡1)i( 10i¡j¡1

55 + 5
11 ¡ 10¡4

m
i

m
) for i = 4; : : : ; m. As the central path may be characterized as

the set of minimizers of the barrier function over appropriate level sets of the objective function, the

point (xj ; 101¡j

5 ) of P satisfles

xj = arg max
x

mX

i=2

ln(¡1)i(zj
i ¡ x):
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Figure 3: The polytope P ⁄
6;2 and its central path

Therefore, to show that xj ‚ 0 for odd j and that xj • ¡10¡4

m
for even j, it is enough to prove that

gj(0) > 0 for odd j and gj( ¡10¡4

m
) < 0 for even j where

gj(x) =

mX

i=2

d

dx
ln(¡1)i(zj

i ¡ x):

For simplicity we assume that m is even. A similar argument applies for odd values of m. Since

(¡1)k+1

µ
1

x¡zj
k

+ 1
x¡zj

k+1

¶
> 0 for k ‚ j + 4 and ¡10¡4

m
• x • 0, we have

i=mX

i=j+4

1

x ¡ zj
i

‰ ‚ 0; j odd; x = 0;

• 0; j even; x = ¡10¡4

m
:

(1)

This yields

g1(0) ‚ ¡1
1
2 + 1

50

+
1

1
3 + 1

15

¡ 1
100
55 + 5

11 ¡ 10¡4
=

772

5639
> 0:

For j ‚ 2, rewrite

gj(x) =

ˆ
1

x ¡ zj
2

+
1

x ¡ zj
3

!
+

i<j+2X

i=4

1

x ¡ zj
i

+

i<j+4X

i=j+2

1

x ¡ zj
i

+

i=mX

i=j+4

1

x ¡ zj
i

:

Observe

1

x ¡ zj
2

+
1

x ¡ zj
3

=

8
<
:

¡1
1
2 + 10¡j

5

+ 1
1
3 + 10¡j+1

15

for x = 0;

¡1
1
2 + 10¡j

5 + 10¡4

m

+ 1
1
3 + 10¡j+1

15 ¡ 10¡4

m

for x = ¡10¡4

m
;

(2)
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Figure 4: The central path for P ⁄
34;2

and

i<j+4X

i=j+2

1

x ¡ zj
i

8
>>><
>>>:

‚ 1
10
55 + 5

11

¡ 1
100
55 + 5

11 ¡ 10¡4

m

; j ‚ 3 odd; x = 0;

• ¡1
10
55 + 5

11 + 10¡4

m

+ 1
100
55 + 5

11 ¡2 10¡4

m

; j • m ¡ 4 even; x = ¡10¡4

m
;

• ¡1
10
55 + 5

11 + 10¡4

m

; j = m ¡ 2; x = ¡10¡4

m
:

(3)

For odd j ‚ 3 and x = 0, we have

i<j+2X

i=4

1

x ¡ zj
i

‚ ¡ 1

103¡j

55 +
‡

5
11 ¡ 10¡4

m

· +
1

104¡j

55 + 5
11

+ ¢ ¢ ¢ ¡ 1

1
55 +

‡
5

11 ¡ 10¡4

m

·

=
¡1

5
11 ¡ 10¡4

m

0
B@ 1

1 + 103¡j

55
‡

5
11 ¡ 10¡4

m

·
+

1

1 + 105¡j

55
‡

5
11 ¡ 10¡4

m

·
+ ¢ ¢ ¢ +

1

1 + 1

55
‡

5
11 ¡ 10¡4

m

·

1
CA

+
11

5

ˆ
1

1 + 11¢104¡j

5¢55

+
1

1 + 11¢106¡j

5¢55

+ ¢ ¢ ¢ +
1

1 + 11¢10¡1

5¢55

!
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‚ ¡1
5

11 ¡ 10¡4

m

0
B@1 ¡ 103¡j

55
‡

5
11 ¡ 10¡4

m

· +

0
@ 103¡j

55
‡

5
11 ¡ 10¡4

m

·
1
A

2

+1 ¡ 105¡j

55
‡

5
11 ¡ 10¡4

m

· +

0
@ 105¡j

55
‡

5
11 ¡ 10¡4

m

·
1
A

2

+ ¢ ¢ ¢ +1 ¡ 1

55
‡

5
11 ¡ 10¡4

m

· +

0
@ 1

55
‡

5
11 ¡ 10¡4

m

·
1
A

2
1
CA

+
11

5

µ
1 ¡ 11 ¢ 104¡j

5 ¢ 55
+ ¢ ¢ ¢ + 1 ¡ 11 ¢ 10¡1

5 ¢ 55

¶

=
¡1

5
11 ¡ 10¡4

m

0
B@

„
j

2

”
¡ 1

55
‡

5
11 ¡ 10¡4

m

· ¢ 1 ¡ :01b j
2 c

1 ¡ :01
+

0
@ 1

55
‡

5
11 ¡ 10¡4

m

·
1
A

2

1 ¡ :0001b j
2 c

1 ¡ :0001

1
CA

+
11

5

ˆ„
j

2

”
¡ 1 ¡ 11

550
¢ 1 ¡ :01b j

2 c¡1

1 ¡ :01

!

‚ ¡ ¥
j
2

ƒ
10¡4

m¡
5

11

¢2 ¡ 5
11

10¡4

m

+
1

55
‡

5
11 ¡ 10¡4

m

·2 ¡ 1

552
‡

5
11 ¡ 10¡4

m

·3

:9999
¡ 11

5
¡

µ
11

5

¶2
1

550 ¢ :9999
;

where the second inequality is based on 1¡v • 1
1+v

• 1¡v+v2; v ‚ 0 and the last equality is obtained
by summing up the terms in three resulting geometric series. This, combined with observations (1),
(2) and (3), gives, for odd j ‚ 3,

gj(0) ‚
µ

¡2 +
1

1
3 + 1

1500

¶
+

µ
1

10
55 + 5

11

¡ 1
100
55 + 5

11 ¡ :0001

¶

+

ˆ
¡:00005¡

5
11

¢2 ¡ 5
11 ¢ :0001

+
1

55
¡

5
11

¢2 ¡ 1

552
¡

5
11 ¡ :0001

¢3
:9999

¡ 11

5
¡

µ
11

5

¶2
1

550 ¢ :9999

!
=

49

63838
> 0:

Similarly for even j ‚ 2 and x = ¡10¡4

m
we have

i<j+2X

i=4

1

x ¡ zj
i

• ¡1
5

11 + 10¡4

m

0
@

„
j

2

”
¡ 1 ¡ 1

550
‡

5
11 + 10¡4

m

· ¢ 1 ¡ :01b j
2 c¡1

1 ¡ :01

1
A

+
1

5
11 ¡ 2 10¡4

m

0
@

„
j

2

”
¡ 1 ¡ 1

55
‡

5
11 ¡ 2 10¡4

m

· ¢ 1 ¡ :01b j
2 c¡1

1 ¡ :01
+

0
@ 1

55
‡

5
11 ¡ 2 10¡4

m

·
1
A

2

1 ¡ :0001b j
2 c¡1

1 ¡ :0001

1
CA

•
µ„

j

2

”
¡ 1

¶
2 10¡4

m
+ 10¡4

m¡
5

11

¢2 ¡
‡

¡10¡4

m

·2

¡ 10¡4

m

‡
5

11 + 10¡4

m

· +
1

550
‡

5
11 + 10¡4

m

·2 ¢ 1

1 ¡ :01

¡ 1

55
‡

5
11 ¡ 2 10¡4

m

·2 +
1

552
‡

5
11 ¡ 2 10¡4

m

·3 ¢ 1

1 ¡ :0001
:

Thus, for even j ‚ 2.

gj

µ¡10¡4

m

¶
•

µ ¡1
1
2 + 1

500 + :0001
+

1
1
3 ¡ :0001

¶
+

µ ¡1
10
55 + 5

11 + :0001
+

1
100
55 + 5

11 ¡ :0002

¶
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+

ˆ
:00015¡

5
11

¢2 ¡ :00012 ¡ :0001
¡

5
11 + :0001

¢ ¡ 89

99
¢ 1

55
¡

5
11

¢2 +
1

552 ¢ :999
¢ 1¡

5
11 ¡ :0002

¢3

!
=

¡784

3985
< 0:

Therefore, the central path P goes through a sequence of m ¡ 2 points (xj ; yj) with yj = 101¡j

5 and

xj ‚ 0 for odd j, xj • ¡10¡4

m
for even j. One can easily check that (xj ; yj) 2 P for j = 1; : : : ; m ¡ 2

by verifying that the analytic center ´ is above the line y = 1
5 . We have

´ = (´1; ´2) = arg max
(x;y)2P ⁄

m;2

µ
ln(1 ¡ y) + ln

µ
¡x +

y

10
+

1

2

¶
+ ln

µ
x +

y

3
+

1

3

¶

+

mX

i=4

ln

µ
(¡1)i+1x +

10i¡2y

11
+

5

11
¡ 10¡4

m

i

m

¶!
:

Therefore, to show that ´2 > 1
5 , it is enough to prove that the derivative with respect to y of the

log-barrier function is negative for (x; y) 2 P ⁄
m;2 and y • 1

5 , that is,

¡1

1 ¡ y
+

1

¡10x + y + 5
+

1

3x + y + 1
+

mX

i=4

10i¡2

‡
(¡1)i+111x + 10i¡2y + 5 ¡ 11 ¢ 10¡4

m
i

m

· > 0;

which is implied by

¡1

1 ¡ y
+

100

¡11x + 100y + 5 ¡ 11 ¢ :0001
m

4
m

>
¡5

4
+

100
100

5 + 5 + 66
15

=
1265

588
> 0:

To show that lim infm!1
‚(0;1)T

(P ⁄
m;2)

m
‚ …, consider three consecutive points from this sequence,

say (xj¡1; yj¡1); (xj ; yj); (xj+1; yj+1), and observe that for any " > 0 we can choose m so that for all
"m • j < m ¡ 2 we have

jyj ¡ yj¡1j
jxj ¡ xj¡1j < ";

jyj+1 ¡ yj j
jxj+1 ¡ xj j < ":

Let m be such a value and j ‚ "m. Without loss ofi generality j might be assumed odd and let
¿j¡1; ¿j ; ¿j+1 2 R be such that Parc(¿k) = (xk; yk); k = j ¡ 1; j; j + 1. We show by contradiction that

there is a t1 such that the flrst coordinate
‡

_Parc(t1)
·

1
>

p
1 ¡ "2. Suppose that for all t 2 [¿j¡1; ¿j ]

we have
‡

_Parc(t)
·

1
• p

1 ¡ "2, then
‡

_Parc(t)
·

2
• ¡" since k _Parc(t)k = 1 and (Parc(t))2 is monotone-

decreasing with respect to t. By the Mean-Value Theorem it follows that ¿j ¡ ¿j¡1 > xj ¡ xj¡1, and
thus, by the same theorem, we must have (Parc(¿j))2 ¡ (Parc(¿j¡1))2 = yj ¡ yj¡1 < ¡"(xj ¡ xj¡1),

a contradiction. Similarly, there is a t2 such that
‡

_Parc(t2)
·

1
< ¡p

1 ¡ "2. Since the total curvature

Kj of the segment of Parc connecting the points (xj¡1; yj¡1); (xj ; yj); (xj+1; yj+1) corresponds to the

length of the curve _Parc connecting the corresponding derivative points on a unit 2-sphere, Kj may

be bounded below by the length of the geodesic between the points _Parc(t1) and _Parc(t2), that is,
bounded below by a constant arbitrarily close to …. Now simply add all Kj for all "m • j < m¡2.

Holt and Klee [8] showed that, for m > n ‚ 13, the conjecture of Hirsch is tight. Fritzsche and
Holt [7] extended the result to m > n ‚ 8. Since the polytope P ⁄

m;2 can be generalized to higher
dimensions by adding the box constraints 0 • xi • 1 for i ‚ 3, we have:

Corollary 3.1. (Continuous analogue of the result of Holt and Klee)

lim infm!1
⁄(m;n)

m
‚ …, that is, ⁄(m; n) is bounded below by a constant times m.
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4 Sketch of the proof of Proposition 1.1

Observe that without loss of generality we may assume ˆ is parameterized by the arc length: a short
computation shows that if _̂ 6= 0 then the second derivative of the arc length parametrization of the
curve is continuous since

_̂
arc(t) = ˆ(l¡1(t))0

t = _̂(l¡1(t)) ¢ (l¡1(t))0
t =

_̂(l¡1(t))

k _̂ (l¡1(t))k ;

and consequently

˜̂
arc – l =

˜̂k _̂k2 ¡ _̂ ( ˜̂T _̂ )

k _̂k3
:

In what follows we remove the arc subscript from ˆ to shorten the notation and write fi for l(fi)
and fl for l(fl). Note that the total curvature of ˆ corresponds to the length of the gradient curve _̂

between the points _̂(fi) and _̂(fl) which in turn belong to the unit n-sphere.
First we argue that the total curvature of ˆ may be arbitrarily well approximated by the sum

of chordal distances between pairs ( _̂(ti¡1); _̂ (ti)),
PN

i=1 k _̂ (ti) ¡ _̂ (ti¡1)k, where t0 = fi < t1 <

t2 < ¢ ¢ ¢ < tN = fl as long as maxi=1;¢¢¢ ;N (ti ¡ ti¡1) ! 0, see Figure 5(a). Trivially
R fl

fi
k ˜̂(t)kdt =PN

i=1

R ti

ti¡1
k ˜̂(t)kdt and observe

flflflflfl
Z ti

ti¡1

k ˜̂(t)kdt ¡
Z ti

ti¡1

k _̂ (ti) ¡ _̂ (ti¡1)k
ti ¡ ti¡1

dt

flflflflfl •
Z ti

ti¡1

flflflflflk
˜̂(t)k ¡ k _̂ (ti) ¡ _̂ (ti¡1)k

ti ¡ ti¡1

flflflflfl dt

•
Z ti

ti¡1

°°°°°
˜̂(t) ¡

_̂ (ti) ¡ _̂ (ti¡1)

ti ¡ ti¡1

°°°°° dt =

Z ti

ti¡1

°°°°°°°°°
˜̂(t) ¡

0
BBB@

˜̂
1(„t1)

˜̂
2(„t2)
...

˜̂
n(„tn)

1
CCCA

°°°°°°°°°
dt •

Z ti

ti¡1

Mtdt =
M(ti ¡ ti¡1)2

2

with ti¡1 • „ti • ti for all i, where the second inequality follows from the triangle inequality, the
flrst equality follows from the Intermediate-Value Theorem, and the last inequality is implied by the
Lipschitz continuity of the second derivative of ˆ on the compact set where the Lipschitz constant
is denoted by M . So, up to a quadratic error term the curvature contribution over the segment
[ti¡1; ti] may be approximated by the length of the linear segment connecting the starting point
_̂(ti¡1) and the ending point _̂(ti) with both points on the unit sphere, implying a linear error term

for the total curvature approximation over [fi; fl]. In particular, we may consider the partitioning
t0 = fi < t1 < t2 < ¢ ¢ ¢ < tN = fl where each k _̂ (ti) ¡ _̂ (ti+1)k = ° for some small flxed °.

Note that any partitioning of [fi; fl] trivially gives a lower bound of
PN

i=1 k _̀j(ti) ¡ _̀j(ti¡1)k on
the total curvature of `j for all j. Also, note that since `j(t) ! ˆ(t) as j ! 1 on a compact set
[fi; fl], the convergence is uniform.

Next we claim that for j large enough the changes in the flrst derivative of `j in the neighboring
segment to ˆ([ti¡1; ti]) is at least almost as large as the change in the derivative of ˆ itself over [ti¡1; ti],

namely is bounded below by … k _̂ (ti)¡ _̂ (ti+1)k = °. If this is true, then since
PN

i=1 k _̀j(ti)¡ _̀j(ti¡1)k
gives a lower bound on the total curvature of `j , the argument would be complete. To show that
the former is indeed the case, consider – < 1=2 maxi=1;¢¢¢ ;N (ti ¡ ti¡1) and small enough so that
_̂(ti) … ˆ(ti+–=2)¡ˆ(ti¡–=2))

–
where the approximation error is quadratic in – and uniform for all i

(again, this may be achieved since ˆ is C2 over a compact). Since the convergence `j(t) ! ˆ(t) is
uniform, for any r > 0 there exists J so that for all j ‚ J we have j`j(t) ¡ ˆ(t)j < r for all t 2 [fi; fl].
Pick J so that r ¿ – sin °. Consider two cylindrical tubes with rounded bases around segments
[ˆ(ti¡1 ¡ –=2); ˆ(ti¡1 + –=2)] and [ˆ(ti ¡ –=2); ˆ(ti + –=2)] { each tube is a union of a cylinder of
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height … – and radius r with base centers at ˆ(tk ¡ –=2) and ˆ(tk + –=2), k = i ¡ 1 and i respectively,
and two r-balls with the same centers. Align the coordinate system so that the flrst coordinate is
collinear with the vector (ˆ(ti¡1 ¡ –=2); ˆ(ti¡1 + –=2)) and the second coordinate chosen so that
together with the flrst coordinate axis it spans a hyperplane parallel to [ˆ(ti ¡ –=2); ˆ(ti + –=2)], with
the flrst two coordinates of ˆ(ti) positive, see Figure 5(b). The following two inequalities should be
interpreted as true up to higher order error terms. Note that by the Intermediate-Value Theorem

there exists ¿ such that
flflfl
‡

_̀j
arc(¿)

·
2

flflfl • 2r
–¡2r

: considering the tube around [ˆ(ti¡1¡–=2); ˆ(ti¡1+–=2)]

note that for `j
arc to traverse the tube will take at least – ¡ 2r change of the arc length parameter,

while at the same time its second coordinate will change by at most 2r. Similarly, considering the

second tube we conclude that there exists ¿ such that
flflfl
‡

_̀j
arc(¿)

·
2

flflfl ‚ – sin °¡2r
–+2r

. Clearly, with r small

enough, or equivalently, j large enough, k _̀j
arc(ti) ¡ _̀j

arc(ti¡1)k is at least ° up to the higher order
terms, since we consider the shortest distance between two points _̀j

arc(¿) and _̀j
arc(¿) on the n-unit

sphere, see Figure 5(c).

Figure 5: Illustration of the proof of Proposition 1.1
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