
SANDIA REPORT
SAND2006-4621
Unlimited Release
Printed August 2006

Asynchronous parallel generating set
search for linearly-constrained
optimization

Joshua D. Griffin, Tamara G. Kolda, and Robert Michael Lewis

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia
Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees,
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied,
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any infor-
mation, apparatus, product, or process disclosed, or represent that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government, any agency thereof, or any of their contractors
or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of
the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

SAND2006-4621
Unlimited Release

Printed August 2006

Asynchronous parallel generating set
search for linearly-constrained

optimization

Joshua D. Griffin and Tamara G. Kolda
Computational Science and Mathematics Research Department

Sandia National Laboratories
Livermore, CA 94551-9159
{jgriffi,tgkolda}@sandia.gov

Robert Michael Lewis
Department of Mathematics
College of William & Mary

Williamsburg, Virginia, 23187-8795
buckaroo@math.wm.edu

Abstract

Generating set search (GSS) is a family of direct search methods that en-
compasses generalized pattern search and related methods. We describe an
algorithm for asynchronous linearly-constrained GSS, which has some complex-
ities that make it different from both the asynchronous bound-constrained case
as well as the synchronous linearly-constrained case. The algorithm has been
implemented in the APPSPACK software framework and we present results
from an extensive numerical study using CUTEr test problems. We discuss the
results, both positive and negative, and conclude that GSS is a reliable method
for solving small-to-medium sized linearly-constrained optimization problems
without derivatives.

3

http://csmr.ca.sandia.gov/~jgriffi
http://csmr.ca.sandia.gov/~tgkolda
http://www.math.wm.edu/~buckaroo

Acknowledgments

The authors wish to thank Rakesh Kumar and Virginia Torczon for their invaluable
insights and stimulating discussions.

4

Contents

1 Introduction . 9
2 Asynchronous GSS for problems with linear constraints . 11

2.1 Initializing the algorithm . 14
2.2 Updating the search directions . 14
2.3 Trial Points . 16
2.4 Successful Iterations . 16
2.5 Unsuccessful Iterations . 16
2.6 An illustrated example . 17

3 Theoretical properties . 21
3.1 Definitions and terminology . 21
3.2 Assumptions and conditions . 23
3.3 Bounding a measure stationarity . 25
3.4 Globalization . 27
3.5 Global convergence . 28

4 Implementation Details . 31
4.1 Scaling . 31
4.2 Function value caching . 32
4.3 Snapping to the boundary . 32
4.4 Generating conforming search directions . 32
4.5 Direction caching . 34
4.6 Augmenting the search directions . 34

5 Numerical results. 37
5.1 Test Problems . 37
5.2 Choosing a starting point . 37
5.3 Parameter Choices . 38
5.4 Numerical results . 38

6 Conclusions . 49
References . 51

5

Figures

1 Different set of conforming directions as xk and εk vary. 15
2a Iteration k = 0 for example problem . 18
2b Iteration k = 1 for example problem . 18
2c Iteration k = 2 for example problem . 18
2d Iteration k = 3 for example problem . 19
2e Iteration k = 4 for example problem . 19
2f Iteration k = 5 for example problem . 19
3 Two options for additional search directions are the coordinate directions

(left) or the normals to the linear inequality constraints (right). 35
4 Column descriptions for numerical results. 41
5 Comparisons of wall clock time (top) and function evaluations (bot-

tom) for synchronous and asynchronous runs on 5, 10, and 20 processors. 45

6

Tables

1a CUTEr problems with 10 or fewer variables, tested on 20 processors. . . 39
1b CUTEr problems with 10 or fewer variables, tested on 20 processors. . . 40
2 CUTEr problems with 11–100 variables, tested on 40 processors. 43
3 CUTEr problems with an artificial time delay, testing synchronus and

asynchronous implementations on 5, 10, and 20 processors. 44
4 CUTEr problems with 100 or more variables, tested on 60 processors. . 46
5 Problems whose best and worst objective value, obtained from 10 sep-

arate asynchronous runs, had a relative difference greater than 10−5. . . 47

7

Algorithms

1 Asynchronous GSS for linearly-constrained optimization 12
2 Generating trial points . 13
3 Sufficient decrease check . 13

8

1 Introduction

Generating set search (GSS), introduced in [19], is a family of methods for derivative-
free optimization that encompasses generalized pattern search [29, 2] and related
methods. Two key features of GSS methods is that they can handle linear constraints
and that they are easily parallelizable.

The problem of linear constraints for GSS has been studied by Kolda, Lewis, and
Torczon [18], who present a GSS method for linearly-constrained optimization, and
Lewis, Shepherd, and Torczon [22], who discuss the specifics of implementing GSS
methods for linearly constrained optimization as well as numerical results for five test
problems. Both these papers build upon previous work by Lewis and Torczon [23],
which showed that the search directions must conform to the nearby boundary.

GSS methods have been parallelized in the software package APPSPACK [11, 15,
17], which is an asynchronous implementation of GSS for unconstrained and bound
constrained problems and has proved to be useful in a variety of applications [3, 4,
7, 12, 13, 21, 24, 25, 26, 28]. The asynchronous implementation has the advantage
of more efficiently using distributed resources by minimizing processor idle time. In
numerical experiments, the asynchronous method has been as fast or faster than the
synchronous method; for example, in recent work, the asynchronous method was 8–
30% faster on a collection of benchmark test problems problems in well-field design
[17].

In this paper, our contribution is to show how to handle linear constraints in an
asynchronous GSS method. For GSS methods, the search directions must conform
to the nearby boundary and the definition of “nearby” depends on the current step
length control parameter. In the asynchronous implementation, different directions
may have different step lengths, so we must handle that situation carefully.

The linearly-constrained optimization problem we consider is

minimize f(x)

subject to cL ≤ AIx ≤ cU

AEx = b.

(1)

Here f : Rn → R is the objective function. The matrix AI represents the linear
inequality constraints, including any bound constraints. Inequality constraints need
not be bounded on both sides; that is, we allow for entries of cL to be −∞, and entries
of cU to be +∞. The matrix AE represents the equality constraints.

The paper is organized as follows. We describe an asynchronous GSS algorithm
for linearly-constrained optimization problems in §2, along with a detailed discussion.
In §3, we show that this algorithm is guaranteed to converge to a KKT point under
mild conditions. Moreover, the asynchronous algorithm has the same theoretical
convergence properties as its synchronous counterpart in [18, 22]. Details that help

9

to make the implementation efficient are presented in §4, and we include extensive
numerical results on problems from the CUTEr [10] test set in §5. We are able
to solve problems with up to 505 variables and up to 2000 constraints. In fact,
linear constraints often reduce the number of search directions at each iteration,
thereby enabling us to solve larger problems than in the unconstrained case. We also
compare synchronous and asynchronous versions of the code on several test problems,
demonstrating that an asynchronous implementation can greatly reduce execution
time. We draw conclusions and discuss future work in §6.

10

2 Asynchronous GSS for problems with linear

constraints

Here we describe the algorithm for parallel, asynchronous GSS for linearly-constrained
optimization. Kolda, Lewis, and Torczon [18] outline a GSS algorithm for problems
with linear inequality constraints and consider both the simple and sufficient decrease
cases. Lewis, Shepherd, and Torczon [22] extend this method to include linear equality
constraints as well. Kolda [17] describes a parallel asynchronous GSS method for
problems that are either unconstrained or bound constrained, considering both the
simple and sufficient decrease cases. Here, we revisit the asynchronous algorithm and
extend it to handle problems with linear constraints. As much as possible, we have
adhered to the notation in [17].

The algorithm is presented in Algorithm 1, along with two subparts in Algo-
rithms 2 and 3. In addition to the parameters for the algorithm (discussed in §2.1),
we assume that the user provides the linear constraints that define the feasible region,
denoted by Ω, and a means for evaluating f(x). The notation used is as follows. Sub-
scripts denote the iteration index. The vector xk ∈ Rn denotes the best point, i.e., the
point with the lowest function value at the beginning of iteration k. The set of search
directions for iteration k is denoted by Dk. Superscripts denote the direction index,
which ranges between 1 and |Dk| at iteration k. For simplicity in our discussions and
because it is often practical, we assume

‖ d
(i)
k ‖ = 1 for i = 1, . . . , |Dk|. (2)

Because the method is asynchronous, each direction has its own step length, denoted
by

∆
(i)
k for i = 1, . . . , |Dk|.

The set Ak ⊆ {1, . . . , |Dk|} is the set of active indices, that is, the indices of those
directions that have an active trial point in the evaluation queue or that are converged
(i.e., ∆

(i)
k < ∆tol). At iteration k, trial points are generated for each i 6∈ Ak. The

trial point corresponding to direction i at iteration k is given by y = xk +∆̃
(i)
k d

(i)
k (see

Algorithm 2); we say that the point xk is the parent of y.

In this paper, we focus solely on the sufficient decrease case because it is the most
practical. We present Algorithm 3 in terms of the forcing function

ρ(∆) = α∆2,

where ∆ is the step length that was used to produce the trial point, and the multi-
plicand α is a user-supplied parameter of the algorithm. Other choices for ρ(∆) are
discussed in §3.2.2.

11

Algorithm 1 Asynchronous GSS for linearly-constrained optimization
Require: x0 ∈ Ω . initial starting point
Require: ∆tol > 0 . step length convergence tolerance
Require: ∆min > ∆tol . minimum first step length for a new best point
Require: δ0 > ∆tol . initial step length
Require: εmax > ∆tol . maximum distance for considering constraints nearby
Require: qmax ≥ 0 . max queue size after pruning
Require: α > 0 . sufficient decrease parameter, used in Alg. 3

1: G0 ← generators for T (x0, ε0) where ε0 = min{δ0, εmax}
2: D0 ← a set containing G0

3: ∆(i)
0 ← δ0 for i = 1, . . . , |D0|

4: A0 ← ∅
5: for k = 0, 1, . . . do
6: Xk ← { xk + ∆̃(i)

k d
(i)
k | 1 ≤ i ≤ |Dk|, i 6∈ Ak } (see Alg. 2) . generate trial points

7: send trial points Xk (if any) to the evaluation queue
8: collect a (non-empty) set Yk of evaluated trial points
9: Ȳk ← subset of Yk that has sufficient decrease (see Alg. 3)

10: if there exists a trial point yk ∈ Ȳk such that f(yk) < f(xk) then . successful
11: xk+1 ← yk

12: δk+1 ← max{Step(yk),∆min}
13: Gk+1 ← generators for T (xk+1, εk+1) where εk+1 = min{δk+1, εmax}
14: Dk+1 ← a set containing Gk+1

15: ∆(i)
k+1 ← δk+1 for i = 1, . . . , |Dk+1|

16: Ak+1 ← ∅
17: prune the evaluation queue to qmax or fewer entries
18: else . unsuccessful
19: xk+1 ← xk

20: Ik ← {Direction(y) : y ∈ Yk and Parent(y) = xk}
21: δk+1 ← min

{
1
2∆(i)

k | i ∈ Ik
}
∪
{

∆(i)
k | i 6∈ Ik

}
22: Gk+1 ← generators for T (xk+1, εk+1) where εk+1 = min{δk+1, εmax}
23: Dk+1 ← a set containing Dk ∪ (Gk+1 \ Dk)

24: ∆(i)
k+1 ←

1
2∆(i)

k for 1 ≤ i ≤ |Dk| and i ∈ Ik
∆(i)

k for 1 ≤ i ≤ |Dk| and i 6∈ Ik
δk+1 for |Dk| < i ≤ |Dk+1|

25: Ak+1 ← { i | 1 ≤ i ≤ |Dk|, i 6∈ Ik } ∪ { i | 1 ≤ i ≤ |Dk+1|,∆
(i)
k < ∆tol }

26: end if
27: if ∆(i)

k+1 < ∆tol for i = 1, . . . , |Dk+1| then terminate.
28: end for

12

Algorithm 2 Generating trial points

1: for all i ∈ {1, . . . , |Dk|} \ Ak do

2: ∆̄ = max{ ∆ > 0 | xk + ∆d
(i)
k ∈ Ω } . max feasible step

3: ∆̃ = min{∆(i)
k , ∆̄}

4: if ∆̃ > 0 then
5: y ← xk + ∆̃d

(i)
k

6: Step(y)← ∆
(i)
k

7: Parent(y)← xk

8: ParentFx(y)← f(xk)
9: Direction(y)← i

10: add y to collection of trial points
11: else
12: ∆

(i)
k ← 0

13: end if
14: end for

Algorithm 3 Sufficient decrease check

1: ȲK ← ∅
2: for all y ∈ Yk do
3: f̂ ← ParentFx(y)
4: ∆̂← Step(y)
5: if f(y) < f̂ − α∆̂2 then
6: Ȳk ← ȲK ∪ {y}
7: end if
8: end for

13

2.1 Initializing the algorithm

A few comments regarding the initialization of the algorithm are in order. Because
GSS is a feasible point method, the initial point x0 must be feasible. If the given
point is not feasible, we first solve a different optimization problem to find a feasible
point; see §5.2.

The parameter ∆tol is problem-dependent and plays a major role in determining
both the accuracy of the final solution and the number of iterations. Smaller choices
of ∆tol yield higher accuracy but the price is a (possibly significant) increase in the
number of iterations. If all the variables are scaled to have a range of 1 (see §4.1),
choosing ∆tol = 0.01 means that the algorithm terminates when the change in each
parameter is less than 1%.

The minimum step size following a successful iteration must be set to some value
greater than ∆tol and defaults to ∆min = 2∆tol. A typical choice for the initial step
length is δ0 = 1; relatively speaking, bigger initial step lengths are better than smaller
ones. The parameter εmax forms an upper bound on the maximum distance used to
determine whether a constraint is nearby and must also be greater than ∆tol. A
typical choice is εmax = 2∆tol. The pruning parameter qmax is usually set equal to the
number of worker processors, implying that the evaluation queue is always emptied
save for points currently being evaluated. The sufficient decrease parameter α is
typically chosen to be some small constant such as α = 0.01.

2.2 Updating the search directions

In Steps 1, 13, and 22, a set of conforming search directions, with respect to x and ε,
is generated. In the synchronous algorithm, specifically, those are the directions that
generate T (xk, εk), the ε-tangent cone about xk (see §3.1.1). The details of finding
the generators are described in §4.4. Several examples of generating sets are shown
in Figure 1. The choice of εk depends on ∆k; specifically, we set εk = min{∆k, εmax}.
The constant εmax provides a maximum distance for considering constraints because
it generally does not make sense to consider constraints that are far away and can
even confuse the method as seen in Figure 1(d). Asymptotically, however, εk = ∆k.

In the asynchronous case, meanwhile, every search direction has its own step
length, ∆

(i)
k . Consequently, Dk, the set of search directions at iteration k, must

contain generators for each of the following cones:

T (xk, ε) for all ε = min{∆(i)
k , εmax} for i = 1, . . . , |Dk|. (3)

This requirement is not as onerous as it may at first seem. After successful iterations,
the step sizes are all equal, so only one tangent cone is relevant (Step 13). It is
only after an unsuccessful iteration that generators for multiple tangent cones may
be needed simultaneously. As the individual step sizes ∆

(i)
k are reduced, which they

14

(a) The ε-ball does not intersect any
constraints; any positive spanning set
can be used.

(b) The current iterate is on the
boundary and its ε-ball intersects with
two constraints.

(c) The current iterate is not on the
boundary but its ε-ball intersects with
two constraints.

(d) The value of ε is so large that the
corresponding ε-tangent cone is empty.

Figure 1. Different set of conforming directions as xk and
εk vary.

will be by Theorem 3.12, generators for multiple values of ε may need to be included.
Because εk+1 ∈ {εk,

1
2
εk} in Step 21, we need add at most one set of search directions

per iteration in order to satisfy (3). If δk+1 = δk or δk+1 ≥ εmax, then εk+1 = εk,
so there will be no difference between T (xk+1, εk+1) and T (xk, εk). Consequently, we
can skip the calculation of extra directions in Step 13 and Step 22. When the ε-
active constraints do differ and different ε-tangent cones are produced, we generate
the conforming directions for the new smaller value of εk in Step 22 and then merge
them with the full direction set in Step 23. Even then, it is often the case that
different values of ε

(i)
k yield identical sets of active constraints, so Dk+1 = Dk.

15

2.3 Trial Points

In Step 6, trial points are generated for each direction that does not already have
an associated trial point and is not converged. Algorithm 2 provides the details of
generating trial points. If a full step is not possible, then the method takes the longest
possible feasible step. However, if no feasible step may be taken in direction d

(i)
k , the

step length ∆
(i)
k is set to zero. Note that Step(y) stores ∆

(i)
k as opposed to the

truncated step size ∆̃; this prevents the step size from becoming prematurely small
due to a point being near the boundary.

The set of trial points collected in Step 8 may not include all the points in Xk and
may include points from previous iterations.

2.4 Successful Iterations

The candidates for the new best point are first restricted (in Step 9) to those points
that satisfy the sufficient decrease condition. The sufficient decrease condition is with
respect to the point’s parent, which is not necessarily xk. The details for verifying
this condition are in Algorithm 3. Next, in Step 10, we check whether or not any
point strictly improves the current best function value. If so, the iteration is called
successful.

In this case, we update the best point, reset the search directions and correspond-
ing step lengths, prune the evaluation queue, and reset the set of active directions
Ak+1 to the empty set. Note that we reset the step length to δk+1 in Step 15 and that
this value is the maximum of the step that produced the new best point and ∆min

(see Step 12). The constant ∆min is used to reset the step length for each new best
point and is needed for the theory that follows; see Proposition 3.8. In a sense, ∆min

can be thought of as a mechanism for increasing the step size, effectively expanding
the search radius after successful iterations.

The pruning in Step 17 ensures that the number of items in the evaluation queue
is always finitely bounded. In theory, the number of items in the queue may grow
without bound [17].

2.5 Unsuccessful Iterations

If the condition in Step 10 is not satisfied, then we call the iteration unsuccessful.
In this case, the best point is unchanged (xk+1 = xk). The set Ik in Step 20 is the
set of direction indices for those evaluated trial points that have xk as their parent.
If Ik = ∅ (in the case that no evaluated point has xk as its parent), then nothing

changes; that is, Dk+1 ← Dk, ∆
(i)
k+1 ← ∆

(i)
k for i← 1, . . . , |Dk+1|, and Ak+1 ← Ak. If

16

Ik 6= ∅, we reduce step sizes corresponding to indices in Ik and add new directions to
Dk+1 as described in §2.2.

It is important that points never be pruned during unsuccessful iterations. Prun-
ing on successful iterations offers the benefit of freeing up the evaluation queue so that
points nearest the new best point may be evaluated first. In contrast, at unsuccessful
iterations, until a point has been evaluated, no information exists to suggests that
reducing the step size and resubmitting will be beneficial. Theoretically, the basis for
Proposition 3.8 hinges upon the property that points are never pruned until a new
best point is found.

2.6 An illustrated example

In Figure 2, we illustrate six iterations of Algorithm 1, applied to the test problem

minimize f(x) =
√

9x2
1 + (3x2 − 5)2 − 5 exp

(
−1

(3x1+2)2+(3x2−1)2+1

)
subject to

3x1 ≤ 4
−2 ≤ 3x2 ≤ 5

−3x1 − 3x2 ≤ 2
−3x1 + 3x2 ≤ 5,

(4)

We initialize Algorithm 1 with x0 = a, ∆tol = 0.01 (though it’s not relevant in
the iterations we show here), ∆min = 0.02 (likewise), ∆0 = 1, εmax = 1, qmax = 2, and
α = 0.01.

The initial iteration is shown in Figure 2a. Shaded level curves illustrate the value
of the objective function, with darker shades representing lower values. The feasible
region is shown by the pentagon. The current best point, x0 = a, is denoted by a star.
We calculate the search directions (shown as lines emanating from the current best
point to corresponding trial points) that conform to the constraints captured in the
ε0-ball. We also initialize the step lengths, generating the trial points b and c, both
of which are submitted to the evaluation queue. We assume that only a single point,
c, is returned by the evaluator. In this case, the point satisfies sufficient decrease with
respect to its parent, a, and necessarily also satisfies simple decrease with respect to
the current best point, a.

Figure 2b shows the next iteration. The best point is updated to x1 = c. The set
of nearby constraints changes, so the search directions also change, as shown. The
step lengths are all set to δ1 = 1, generating the new trial points d and e, which are
submitted to the evaluation queue. Once again, the evaluator returns a single point,
d. In this case, d does not satisfy the sufficient decrease condition, so the iteration
is unsuccessful.

In Figure 2c, the best point is unchanged, i.e., x2 = x1 = c. The value of δ2 and
hence ε2 are reduced to 1

2
. In this case, however, the set of ε-active constraints is

17

x0 = a, δ0 = 1, ε0 = 1

D0 =

{[
1√
2

−1√
2

]
,

[
−1√

2
−1√

2

]}
∆

(1)
0 = ∆

(2)
0 = 1

X0 = {b, c}, Queue = {b, c}

Wait for evaluator to return. . .

Y0 = {c}, Queue = {b}
f(c) < f(a)− ρ(∆

(1)
0)

⇒ Successful

Figure 2a. Iteration k = 0 for example problem

x1 = c, δ1 = 1, ε1 = 1

D1 =

{[
−1√

2
−1√

2

]
,

[
1
0

]}
∆

(1)
1 = ∆

(2)
1 = 1

X1 = {d, e}, Queue = {b,d, e}

Wait for evaluator to return. . .

Y1 = {d}, Queue = {b, e}
f(d) ≥ f(c)
⇒ Unsuccessful

Figure 2b. Iteration k = 1 for example problem

x2 = c, δ2 = 1
2
, ε2 = 1

2

D2 = D1

∆
(1)
2 = 1

2
, ∆

(2)
2 = 1

X2 = {f}, Queue = {b, e, f}

Wait for evaluator to return. . .

Y2 = {f ,b}, Queue = {e}
f(b) < f(a)− ρ(∆

(1)
0) and f(b) < f(c)

⇒ Successful

Figure 2c. Iteration k = 2 for example problem

18

x3 = b, δ3 = 1, ε3 = 1

D3 =

{[
−1√

2
−1√

2

]
,

[
1
0

]}
∆

(1)
3 = ∆

(2)
3 = 1

X3 = {g,h}, Queue = {e,g,h}

Wait for evaluator to return. . .

Y3 = {e,g}, Queue = {h}
f(g), f(e) ≥ f(b)
⇒ Unsuccessful

Figure 2d. Iteration k = 3 for example problem

x4 = b, δ4 = 1
2

ε4 = 1
2

D4 =

{
D3,

[
1√
2

1√
2

]
,

[
1√
2

−1√
2

]}
∆

(i)
4 = 1

2
for i = 1, 3, 4, ∆

(2)
4 = 1

X4 = {i, j,k}, Queue = {h, i, j,k}

Wait for evaluator to return. . .

Y4 = {h}, Queue = {i, j,k}
f(h) ≥ f(b)
⇒ Unsuccessful

Figure 2e. Iteration k = 4 for example problem

x5 = b, δ5 = 1
2
, ε5 = 1

2

D5 = D4

∆
(i)
5 = 1

2
for i = 1, 2, 3, 4

And the process continues. . .

Figure 2f. Iteration k = 5 for example problem

19

unchanged, so D2 = D1. The step length corresponding to the first direction, ∆
(1)
2 ,

is reduced and a new trial point, f , is submitted to the queue. This time, two points
return as evaluated, f and b, the latter of which has the lower function value. In this
case, we check that b satisfies sufficient decrease with respect to its parent, a, and
that it also satisfies simple decrease with respect to the current best point, c. Both
checks are satisfied, so the iteration is successful.

In Figure 2d, we have a new best point, x3 = b. The value of δ3 is set to 1.0, the
step length that was used to generate the point b. Conforming search directions are
generated for the new ε-active constraints. The trial points {g,h} are submitted to
the evaluation queue. In this case, the points e and g are returned, but neither satisfies
sufficient decrease with respect to its parent. Thus, the iteration is unsuccessful.

In Figure 2e, the best point is unchanged, so x4 = x3 = b. However, though
our current point did not change, because δ4 = 1

2
is reduced, ε4 = 1

2
is also reduced.

In contrast to iteration 2, the ε-active constraints have changed. The generators for
T (x4,

1
2
) are {[

−1√
2

−1√
2

]
,

[
1√
2

1√
2

]
,

[
1√
2

−1√
2

]}
.

The first direction is already in D3; thus, we need only add the last two directions to
form D4. In this iteration, only the point h is returned, but it does not improve the
function value, so the iteration is unsuccessful.

For Figure 2f, we have δ5 = δ4, so there is no change in the search directions.
The only change is that the step corresponding to direction 2 is reduced. And the
iterations continue.

20

3 Theoretical properties

In this section we prove global convergence for the asynchronous GSS algorithm de-
scribed in Algorithm 1. A key theoretical difference between GSS and asynchronous
GSS is that all the points at iteration k may not be evaluated by iteration k + 1.
This necessitates having multiple sets of directions in Dk corresponding to different
ε-tangent cones.

3.1 Definitions and terminology

3.1.1 ε-normal and ε-tangent cones

Integral to GSS convergence theory in [18] are the concepts of tangent and normal
cones. A cone K is a set in Rn that is closed under nonnegative scalar multiplication;
that is, αx ∈ K if α ≥ 0 and x ∈ K. The polar of a cone K, denoted by K◦, is
defined by

K◦ =
{

w | wT v ≤ 0 ∀ v ∈ K
}

and is itself a cone. Given a convex cone K and any vector v, there is a unique
closest point of K to v called the projection of v onto K and denoted vK . Given a
vector v and a convex cone K, there exists an orthogonal decomposition such that
v = vK + vK◦ , vT

KvK◦ = 0, with vK ∈ K and vK◦ ∈ K◦. A set G is said to generate a
cone K if K is the set of all nonnegative combinations of vectors in G.

For a given x, we are interested in the ε-tangent cone, which is the tangent cone
of the nearby constraints. Following [18], we define the ε-normal cone N(x, ε) to be
the cone generated by the outward pointing normals of constraints within distance ε
of x. The ε-tangent cone is its polar, i.e., T (x, ε) ≡ N(x, ε)◦.

We can form the generators for N(x, ε) explicitly from the rows of AI and AE as
follows. Let (AI)i denote the ith row of AI and let (AI)S denote the submatrix of AI

with rows specified by S. For a given x and ε we can then define the index sets of
ε-active constraints for AI as

EB = {i : | (AI)ix− (cU)i | ≤ ε‖ (AI)i ‖ and

| (AI)ix− (cL)i | ≤ ε‖ (AI)i ‖} (both)

EU = {i : | (AI)ix− (cU)i | ≤ ε‖ (AI)i ‖} \ EB (only upper)

EL = {i : | (AI)ix− (cL)i | ≤ ε‖ (AI)i ‖} \ EB (only lower) ,

and matrices VP and VL as

VP =

[
(AI)EU

−(AI)EL

]T

and VL =

[
AE

(AI)EB

]T

. (5)

21

Then the set
V(x, ε) = { v | v is a column of [VP , VL,−VL] }

generates the cone N(x, ε). We delay the description of how to form generators for
the polar T (x, ε) until §4.4 because the details of its construction is not necessary for
the theory.

The following measure of the quality of a given set of generators G will be needed
in the analysis that follows and comes from [18, 22, 19]. For any finite set of vectors
G, we define

κ(G) ≡ inf
v∈Rn

vK 6=0

max
d∈G

vT d

‖ vK ‖‖ d ‖
, where K is the cone generated by G. (6)

It can be shown that κ(G) > 0 if G 6= {0} [18, 23]. As in [18] we make use of the
following definition:

νmin = min{κ(V) : V = V(x, ε), x ∈ Ω, ε ≥ 0, V(x, ε) 6= 0}, (7)

which provides a measure of the quality of the constraint normals serving as generators
for their respective ε-normal cones. Because only a finite number of constraints exists,
there are a finite number of possible normal cones. Since κ(V) > 0 for each normal
cone, we must have that νmin > 0. We will need the following proposition in the
analysis that follows:

Proposition 3.1 ([18]) If x ∈ Ω, then for all ε ≥ 0,

max
x+w∈Ω
‖w‖=1

wT v ≤ ‖vT (x,ε)‖+
ε

νmin

‖vN(x,ε)‖

where νmin is defined in (7).

3.1.2 A measure of stationarity

In our analysis, we use the first-order optimality measure

χ(x) ≡ max
x+w∈Ω
‖w‖≤1

−∇f(x)T w,

that has been used in previous analyses of GSS methods in the context of general
linear constraints [19, 17, 18, 22]. This measure was introduced in [6, 5] and has the
following three properties:

1. χ(x) ≥ 0,

2. χ(x) is continuous (if ∇f(x) is continuous), and

3. χ(x) = 0 for x ∈ Ω if and only if x is a KKT point.

Thus any sequence {xk} satisfying limk→∞ χ(xk) = 0 necessarily converges to a first-
order stationary point.

22

3.2 Assumptions and conditions

3.2.1 Conditions on the generating set

As in [18, 22], we require that κ(Gk), where Gk denotes the conforming directions
generated in Steps 1, 13, and 22 of Algorithm 1, be uniformly bounded below.

Condition 3.2 There exists a contact κmin, independent of k, such that for
every k for which T (xk, εk) 6= {0}, the set Gk generates T (xk, εk) and satisfies
κ(Gk) ≥ κmin, where κ(·) is defined in (6).

3.2.2 Conditions on the forcing function

Convergence theory for GSS methods typically requires either that all search di-
rections lie on rational lattice or that a sufficient decrease condition be imposed
[19, 18]. This latter condition ensures that f(x) is sufficiently reduced at each suc-
cessful iteration. Both rational lattice and sufficient decrease conditions are mecha-
nisms for globalization, i.e., ensuring that the step size ultimately becomes arbitrarily
small [19, 18, 17]. Because it is both theoretically and computationally simpler than
the alternative, we only consider the sufficient decrease case. Specifically, we use the
forcing function

ρ(∆) = α∆2,

where α > 0 is specified by the user in Algorithm 3. In general, the forcing function
ρ(·) must satisfy Condition 3.3.

Condition 3.3 Requirements on the forcing function ρ(·):
1. ρ(·) is a nonnegative continuous function on [0, +∞).
2. ρ(·) is o(t) as t ↓ 0; i.e., lim

t↓0
ρ(t) / t = 0.

3. ρ(·) is nondecreasing; i.e., ρ(t1) ≤ ρ(t2) if t1 ≤ t2.
4. ρ(·) is such that ρ(t) > 0 for t > 0.

Any forcing function may be substituted in Algorithm 3. For example, another
valid forcing function is

ρ(∆) =
α∆2

β + ∆2
(8)

for α, β > 0. The latter may offer some advantages because it is less restrictive on
larger step sizes.

23

3.2.3 Assumptions on the objective function

We need to make some standard assumptions regarding the objective function. The
first two assumptions do not require any continuity; only the third assumption requires
that the gradient be Lipschitz continuous.

Assumption 3.4 The set F = { x ∈ Ω | f(x) ≤ f(x0) } is bounded.

Assumption 3.5 The function f is bounded below on Ω.

Assumption 3.6 The gradient of f is Lipschitz continuous with constant
M on F .

As in [18] we combine Assumptions 3.4 and 3.6 to assert the existence of a constant
γ > 0 such that

‖∇f(x) ‖ ≤ γ, (9)

for all x ∈ F .

3.2.4 Assumptions on the asynchronicity

In the synchronous case, we implicitly assume that the evaluation time for any single
function evaluation is finite. However, in the asynchronous case, that assumption
must be made explicit.

Condition 3.7 If a trial point is submitted to the evaluation queue at
iteration k, either its evaluation will have been completed or it will have been
pruned from the evaluation queue by iteration k + η.

24

3.3 Bounding a measure stationarity

In this section, we prove global convergence for Algorithm 1 by showing (in Theo-
rem 3.10) that χ(xk) can be bounded in terms of the step size.

Synchronous GSS algorithms obtain optimality information at unsuccessful itera-
tions, when all points corresponding to the ε-tangent cone have been evaluated and
rejected. In this case, we can bound χ(x) in terms of the step size ∆k [18]. In asyn-
chronous GSS, however, multiple unsuccessful iterations may pass before all points
corresponding to generators of a specific ε-tangent cone have been evaluated. Propo-
sition 3.8 says when we may be certain that all relevant points with respect to a
specific ε-tangent cone have been evaluated and rejected.

Proposition 3.8 Suppose Algorithm 1 is applied to the optimization problem (1).
Furthermore, at iteration k suppose we have

∆̂k ≡ max
1≤i≤pk

{
2∆

(i)
k

}
≤ min(∆min, εmax).

Let G be the set of generators for T (xk, ∆̂k). Then G ⊆ Dk and

f(xk)− f(xk + ∆̂kd) ≥ ρ(∆̂k) for all d ∈ G. (10)

Proof. Let k∗ ≤ k be the most recent successful iteration. Then x` = xk for
all ` ∈ {k∗, . . . , k}. Since ∆̂k ≤ ∆min, there exists k̂ with k∗ ≤ k̂ ≤ k such that
δk̂ = ∆̂k in either Step 12 or Step 21 of Algorithm 1. Moreover, since ∆̂k ≤ εmax, we

have εk̂ = ∆̂k as well. Recalling G is the set of generators for T (xk, ∆̂k) = T (xk̂, εk̂),
we have then that G was appended to Dk̂ (in either Step 14 or Step 23). Therefore,
G ⊆ Dk because there has been no successful iteration in the interim.

Now, every direction in G was appended with an initial step length greater than
or equal to ∆̂k. And all the current step lengths are strictly less that ∆̂k. Therefore,
every point of the form

xk + ∆̂kd, d ∈ G,
has been evaluated. (Note that, by definition of T (xk, ∆̂k), xk + ∆̂kd ∈ Ω for all
d ∈ G. Hence ∆̃k = ∆̂k for all d ∈ G.) None of these points has produced a
successful iteration, and every one has parent xk, therefore, (10) follows directly from
Algorithm 3. �

Using the previous result, we can now show that the projection of the gradient
onto a particular ε-tangent cone is bounded as a function of the step length ∆k.

Theorem 3.9 Consider the optimization problem (1), satisfying Assumption 3.6
along with Conditions 3.2 and 3.3. If

∆̂k ≡ max
1≤i≤pk

{
2∆

(i)
k

}
≤ min(∆min, εmax),

25

then

‖ [−∇f(xk)]T (xk,∆̂k) ‖ ≤
1

κmin

(
M∆̂k +

ρ(∆̂k)

∆̂k

)
where the constant κmin is from Condition 3.2 and the constant M is from Assump-
tion 3.6.

Proof. Using Proposition 3.8, the proof is essentially the same as [18, Theorem
6.3]. Let G denote the set of generators for T (xk, ∆̂k). By Condition 3.2 and (2),
there exists a d̂ ∈ G such that

κmin ‖ [−∇f(xk)]T (xk,∆̂k) ‖ ≤ −∇f(xk)
T d̂. (11)

Proposition 3.8 ensures that

f(xk + ∆̂kd̂)− f(xk) ≥ −ρ(∆̂k).

By the mean value theorem, there exists α ∈ (0, 1) such that

f(xk + ∆̂kd̂)− f(xk) = ∆̂k∇f(xk + α∆̂kd̂)T d̂.

Thus,

∇f(xk + α∆̂kd̂)T d̂ =
f(xk + ∆̂kd̂)− f(xk)

∆̂k

≥ −ρ(∆̂k)

∆̂k

Subtracting ∇f(xk)
T d̂ from both sides and rearranging yields

−∇f(xk)
T d̂ ≤ (∇f(xk + α∆̂kd̂)−∇f(xk))

T d̂ +
ρ(∆̂k)

∆̂k

.

Lipschitz continuity from Assumption 3.6 then implies

−∇f(xk)
T d̂ ≤M∆̂k +

ρ(∆̂k)

∆̂k

.

Combining this with (11) yields the desired result. �

The previous result involves a specific ε-tangent cone. The next result generalizes
this to our desired use of the measure of stationarity χ(xk), which is also bounded in
terms of the step length ∆k.

Theorem 3.10 Suppose Assumptions 3.4 and 3.6 hold for (1) and that Algorithm 1
satisfies Conditions 3.2 and 3.3. Then if

∆̂k ≡ max
1≤i≤pk

{
2∆

(i)
k

}
≤ min(∆min, εmax).

we have

χ(xk) ≤
(

M

κmin

+
γ

νmin

)
∆̂k +

1

κmin

ρ(∆̂k)

∆̂k

(12)

26

Proof. This proof follows [18, Theorem 6.4]. From Proposition 3.1 we have

χ(xk) ≤
∥∥∥[−∇f(xk)]T (x,∆̂k)

∥∥∥+
∆̂k

νmin

∥∥∥[−∇f(xk)]N(x,∆̂k)

∥∥∥
From Theorem 3.9, we have

∥∥∥[−∇f(xk)]T (x,∆̂k)

∥∥∥ ≤ 1

κmin

(
M∆̂k +

ρ(∆̂k)

∆̂k

)
.

The result follows the observation that∥∥∥[−∇f(xk)]N(x,∆̂k)

∥∥∥ ≤ ‖∇f(xk)‖ ≤ γ,

using the constant from (9). �

3.4 Globalization

Next, in Theorem 3.12, we show that the maximum step size can be made arbitrarily
close to zero. This is the globalization of GSS methods [19]. The proof hinges upon
the following two properties of Algorithm 1 when Condition 3.7 holds:

1. The current smallest step length decreases by at most a factor of two at each
unsuccessful iteration.

2. The current largest step-size decrease by at least a factor of two after every η
consecutive unsuccessful iterations.

Before proving Theorem 3.12 we first prove the following proposition which says that,
given any integer M , one can find a sequence of M or more consecutive unsuccessful
iterations, i.e., the number of consecutive unsuccessful iterations necessarily becomes
arbitrarily large.

Proposition 3.11 Suppose that Assumption 3.5 holds for problem (1) and that Al-
gorithm 1 satisfies Condition 3.3 and Condition 3.7. Let S = {k1, k2, . . . } denote the
subsequence of successful iterations. If the number of successful iterations is infinite,
then

lim sup
i→∞

(ki − ki−1) =∞.

Proof. Suppose not. Then there exists an integer J > 0 such that ki − ki−1 < J
for all i. We know that, at each unsuccessful iteration, the smallest step size either

27

has no change or decreases by a factor of two. Furthermore, for any k ∈ S, we have
∆

(i)
k ≥ ∆min. Therefore, since a success must occur every J iterations, we have

min
1≤i≤|Dk|

{
∆

(i)
k

}
≥ 2−J∆min, for all k.

Note the previous bound holds for all iterations, successful and unsuccessful.

Let Ŝ = {`1, `2, . . . } denote an infinite subsequence of S with the additional
property that its members are at least η apart, i.e.,

`i − `i−1 ≥ η.

Since the parent of any point xk can be at most η iterations old by Condition 3.7,
this sequence has the property that

f(x`i−1
) ≥ ParentFx(x`i

) for all i.

Combining the above with the fact that ρ(·) is nondecreasing from Condition 3.3,
we have

f(x`i
)− f(x`i−1

) ≤ f(x`i
)−ParentFx(x`i

) ≤ −ρ(∆̂) ≤ −ρ(2−J∆min) ≡ −ρ?

where ∆̂ = Step(x`i
). Therefore,

lim
i→∞

f(x`i
)− f(x0) = lim

i→∞

i∑
j=1

f(x`j
)− f(x`j−1

) ≤ lim
i→∞
−iρ? = −∞,

contradicting Assumption 3.5. �

Theorem 3.12 Suppose that Assumption 3.5 holds for problem (1) and that Algo-
rithm 1 satisfies Condition 3.3 and Condition 3.7. Then

lim inf
k→∞

max
1≤i≤pk

{
∆

(i)
k

}
= 0.

Proof. Condition 3.7 implies that the current largest step-size decreases by at
least a factor of two after every η consecutive unsuccessful iterations. Proposition 3.11
implies that number of consecutive unsuccessful iterations can be made arbitrarily
large. Thus the maximum step size can be made arbitrarily small and the result
follows. �

3.5 Global convergence

Finally, we can combine Theorem 3.10 and Theorem 3.12 to immediately get our
global convergence result.

28

Theorem 3.13 If problem (1) satisfies Assumptions 3.4, 3.5, and 3.6 and Algo-
rithm 1 satisfies Conditions 3.2, 3.3, and 3.7, then

lim inf
k→∞

χ(xk) = 0.

29

This page intentionally left blank.

30

4 Implementation Details

In this section we provide details of the implementation. For the most part we
integrate the strategies outlined in [11, 14, 22].

4.1 Scaling

GSS methods are extremely sensitive to scaling, so it is important to use an appropri-
ate scaling to get the best performance. As in [22], we construct a positive, diagonal
scaling matrix S = diag(s) ∈ Rn×n and a shift r ∈ Rn to define the transformed
variables as

x̂ = S−1x− r,

Once we have computed an appropriate scaling matrix S and shift vector r, we
transform (1) to

minimize f̂(x̂)

subject to ĉL ≤ ÂI x̂ ≤ ĉU

ÂEx̂ = b̂,

(13)

where

f̂(x̂) ≡ f(Sx̂ + r) ÂI ≡ AIS

ÂE ≡ AES ĉL ≡ cL − AIr

b̂ ≡ b− AEr ĉU ≡ cU − AIr.

Ideally, the simple bounds are transformed to the unit hypercube:

{ x̂ | 0 ≤ x̂ ≤ e } .

In the numerical experiments in §5, we used

si =

{
ui − `i if ui, `i are finite

1 otherwise,
and ri =

{
`i if `i > −∞
0 otherwise.

From this point forward, we will still use the notation in (1) but assume that the
problem is appropriately scaled, i.e., as in (13).

31

4.2 Function value caching

In the context of generating set search algorithms, we frequently re-encounter the
same trial points. In order to avoid repeating expensive function evaluations, we
cache the function value of every point that is evaluated. The cached points are
stored in a splay tree for efficient look-up. Moreover, cached values can be used
across multiple optimization runs.

An important feature of our implementation is that we do not require that points
be exactly equal in order to use the cache. Instead, we say that two points, x and y,
are ξ-equal if

|yi − xi| ≤ ξ si, for i = 1, 2, . . . , n.

Here ξ is the cache comparison tolerance, which defaults to .5∆tol, and si is the scaling
of the ith variable. For further details, see [14].

4.3 Snapping to the boundary

In Algorithm 2, we modify the step length so that we step exactly to the boundary
whenever the full step would have produced an infeasible trial point. Conversely, it is
sometimes useful to “snap” feasible trial points to the boundary when they are very
close to it because, in real-world applications, it is not uncommon for the objective
function to be highly sensitive to whether or not a constraint is active. For example,
an “on/off” switch may be activated in the underlying simulation only if a given xi

lies on its bound. A further somewhat subtle point is that if a function value cache
like that in §4.2 is used, it may become impossible to evaluate certain points on the
boundary if they lie within the cache tolerance setting of a previously evaluated point
that is not on the boundary.

Suppose that x is a trial point produced by Algorithm 2. We further change the
point x as follows. Let S denote the set of constraints within a distance εsnap of x.
Then consider,

(AI)Sz = (cI)S (14)

Here (cI) represents the appropriate lower or upper bound, whichever is active. We
prune dependent rows from (14) so that the matrix has full row rank. LAPACK
is then used to solve the generalized least squares problem ‖ y − z ‖, subject to the
constraint (14). If the solution z to the above least-squares problem is feasible for
(1), then we reset x = z before sending the trial point to the evaluation queue.

4.4 Generating conforming search directions

In Steps 1, 13, and 22, we have to compute generators for the tangent cones corre-
sponding to ε-active constraints. In the unconstrained and bound-constrained cases,

32

the 2n coordinate directions always include an appropriate set of generators. For
linear constraints, however, this is not the case; instead, the set of directions depends
on AI and AE. We know that the total number of directions that will potentially be
needed is finite (see [18]). Most problems (even degenerate ones) require a modest
number of search directions; however, there are rare cases where the number of direc-
tions needed to generate the appropriate cone is quite large. Our numerical results
in §5 verify these claims; the only problematic case was the problem MAKELA that
required more than 220 generators. In the nondegenerate case, the maximum number
of generators needed at any single iteration is 2n; moreover, adding linear constraints
can only reduce the number of search directions (see Corollary 4.2).

Our method for generating appropriate conforming search directions follows [22].
Let VP and VL be formed as in (5). If the directions defining the normal cone are not
degenerate, then the following theorem may be used.

Theorem 4.1 ([22]) Suppose N(x, ε) is generated by the positive span of the columns
of the matrix VP and the linear span of the columns of the matrix VL :

N(x, ε) = {v | v = VP λ + VLα, λ ≥ 0}.

Let Z be a matrix whose columns are a basis for the nullspace of V T
L , and N be a

matrix whose columns are a basis for the nullspace of V T
P Z. Finally, suppose a right

inverse R exists for V T
P Z. Then T (x, ε) is the positive span of the columns of −ZR

together with the linear span of the columns of ZN :

T (x, ε) = {w | − ZRu + ZNξ, u ≥ 0}.

Thus whenever a right inverse for V T
P Z exists, we use the linear algebra software

package LAPACK [1] to compute generators for T (x, ε). However, if V T
P Z fails to have

a right inverse, signifying that the ε-active constraints are degenerate, we need to use
a different method. In the degenerate case we use the C-library cddlib develop by
Komei Fukuda [8], which implements the double description method of Motzkin et
al. [27]. The following corollary follows immediately from Theorem 4.1 and a simple
dimensionality argument.

Corollary 4.2 Suppose that generators Gk for the tangent cone T (x, ε) are computed
according to Theorem 4.1. Then

|Gk| ≤ 2n.

In particular, if only ε−active inequality constraints are active then

|Gk| = 2n− r

where r equals the number of ε−active inequality constraints.

33

Proof. We know that the magnitude of Gk is given by number of columns in R
plus twice the number of columns in N . Since R denotes the pseudoinverse of V T

p Z
and N its nullspace basis matrix we must have that R is an nz × nr matrix and N
an nz × (nz − r) matrix where

nz = dim(null(V T
L))

nr = dim(V T
p Z).

Thus the total number of generators is given by

nr + 2(nz − nr) = 2nz − nr.

The largest nz can be however is n and the proof follows. �

4.5 Direction caching

Further efficiency can be achieved through the caching of tangent cone generators.
Every time a new set of generators is computed, it can be cached according to the
set of active constraints. Moreover, even when εk changes, it is important to track
whether or not the set of active constraints actually changes. Results on using cached
directions are reported in §5. In problem EXPFITC, the search directions are modified
to incorporate new ε-active constraints 98 times. However, because generators are
cached, new directions are only computed 58 times, and the cache is used 40 times.

Though the work required to compute generators is typically nominal compared
to the costs of function evaluations, there are still occasions when the cost is non-
trivial (possibly significantly so in the degenerate case). Moreover, cached directions
can be reused across multiple optimizations when a sequence of objective functions
are minimized for the same set of linear constraints. For example, the augmented
Lagrangian approach in [20] requires such a sequence of solutions.

4.6 Augmenting the search directions

The purpose of forming generators for T (xk, εk) is to allow tangential movement along
nearby constraints ensuring that the locally feasible region is sufficiently explored.
This can, however, make it difficult to approach optimal points that lie directly on
nearby constraints. In order to allow boundary points to be approached directly,
additional search directions may be added; two possible candidates for extra search
directions are shown in Figure 3. In our experiments the (projected) constraints
normals were added to the corresponding set of conforming search directions. That
is, we append the columns of the matrix (ZZ)T VP , where Z and VP are defined in
Theorem 4.1.

34

Figure 3. Two options for additional search directions are
the coordinate directions (left) or the normals to the linear
inequality constraints (right).

35

This page intentionally left blank.

36

5 Numerical results

Our goal is to numerically verify the effectiveness of the asynchronous GSS algorithm
for linearly-constrained problems. Algorithm 1 is implemented in APPSPACK Ver-
sion 5.0, including all the implementation enhancements outlined in §4. All problems
were tested on Sandia’s Institutional Computing Cluster (ICC) with 3.06GHz Xeon
processors and 2GB RAM per node.

5.1 Test Problems

We test our method on problems from the CUTEr (Constrained and Unconstrained
Testing Environment, revisited) test set. We selected every problem with general
linear constraints and 1000 or fewer variables, for a total of 119 problems. We divide
these problems into three groups:

• Small (1–10 variables): 72 (6 have empty or single point feasible regions)

• Medium (11–100 variables): 24

• Large (101–1000 variables): 23

The CUTEr test set is specifically designed to challenge even the most robust,
derivative-based optimization codes. Consequently, we do not expect to be able to
solve all of the test problems. Instead, our goal is to demonstrate that we can solve
a majority of the problems, including problems with degeneracies. To the best of our
knowledge, this is the largest set of test problems ever attempted with a derivative-free
method for linearly-constrained optimization.

5.2 Choosing a starting point

In general, we used the initial points provided by CUTEr. If the provided point
was infeasible, however, we instead found a starting point by solving the following
program using MATLAB’s linprog function:

minimize 0

subject to
cL ≤ AIx ≤ cU

AEx = b.

(15)

If the computed solution to the first problem was still infeasible, we applied MAT-
LAB’s quadprog function to

minimize ‖x− x0 ‖22

subject to
cL ≤ AIx ≤ cU

AEx = b.

(16)

37

Here, x0 is the (infeasible) initial point provided by CUTEr. Using this approach, we
were able to find feasible starting points for every problem save ACG, HIMMELBJ,
and NASH.

5.3 Parameter Choices

The following parameters were used to initialize Algorithm 1: (a) ∆tol = 1.0× 10−5,
(b) ∆min = 2.0 × 10−5, (c) δ0 = 1, (d) εmax = 2.0 × 10−5, (e) qmax = number of
processors, and (f) α = 0.01. Additionally, for the snap procedure outlined in §4.3,
we used εsnap = 0.5 × 10−5, and we limited the number of function evaluations to
106. For extra search directions, as described in §4.6, we added the outward pointing
constraint normals.

5.4 Numerical results

Numerical results on all the test problems are presented in Tables 1–4. Detailed
descriptions of what each column indicates are shown in Figure 4. Note that the sum
of F-Evals and F-Cached yields the total number of function evaluations; likewise, the
sum of D-LAPACK, D-CDDLIB, and D-Cached is the number of times that directions
needed to be computed because the set of ε-active constraints changed.

Because each run of an asynchronous algorithm can be different, we ran each
problem a total of ten times and present averaged results. The exception in the
objective value f(x∗), for which we present the best solution. Problems which had
multiple local minima (i.e., whose relative difference between best and worst objective
value is greater than 10−5) are denoted in the tables by an asterisk and Table 5
explicitly gives the differences for those cases.

5.4.1 Group 1: 1–10 Variables

Consider first Tables 1a and 1b, which show results for 72 linearly-constrained CUTEr
problems with up to 10 variables. Note that some of the problems had as many as 2000
inequality constraints. Six of the problems had non-existent or trivial feasible regions
and so are excluded from our analysis. Of the 66 remaining problems, APPSPACK
was able to solve 63 (95%).

Considering the solution accuracy, the final objective function obtained by APPSPACK
was as good or better as that obtained by SNOPT, a derivative-based code. We com-
pare against SNOPT only to illustrate that it is possible to obtain the same objective
values. In general, if derivatives are readily available, using a derivative-based code
such as SNOPT is preferred. We do note, however, that APPSPACK converged to

38

Problem n/mb/me/ mi f(x∗) So
ln

.
A

cc
.

F
-E

va
ls

F
-C

ac
he

d

T
im

e(
se

c)

D
-L

A
PA

C
K

D
-C

D
D

L
IB

D
-C

ac
he

d

D
-M

ax
Si

ze

D
-A

pp
en

ds

AVGASA 8/ 16/ 0/ 10 -4.6e+00 -6e-11 518/ 60 2.6 8/ 2/ 2 16 0
AVGASB 8/ 16/ 0/ 10 -4.5e+00 2e-11 462/ 51 2.3 8/ 0/ 0 16 0
BIGGSC4 4/ 8/ 0/ 13 -2.4e+01 0 117/ 11 1.7 4/ 0/ 0 8 0
BOOTH 2/ 0/ 2/ 0 Failed — equality constraints determine solution
BT3 5/ 0/ 3/ 0 4.1e+00 -5e-11 145/ 38 2.3 1/ 0/ 0 4 0
DUALC1 9/ 18/ 1/214 6.2e+03 -5e-12 557/ 80 2.1 11/ 0/ 0 16 0
DUALC2 7/ 14/ 1/228 3.6e+03 -3e-12 304/ 40 2.8 10/ 0/ 0 12 0
DUALC5 8/ 16/ 1/277 4.3e+02 -5e-10 533/ 59 2.7 5/ 1/ 0 15 0
DUALC8 8/ 16/ 1/502 1.8e+04 -2e-11 488/ 56 3.7 9/ 0/ 4 14 0
EQC 9/ 0/ 0/ 3 Failed — upper bound less than lower bound
EXPFITA 5/ 0/ 0/ 22 1.1e-03 -3e-10 1437/ 625 2.4 13/ 0/ 1 10 0
EXPFITB 5/ 0/ 0/102 5.0e-03 -5e-10 431/ 170 2.6 29/ 0/ 1 10 0
EXPFITC∗ 5/ 0/ 0/502 2.3e-02 -3e-08 3042/1584 5.4 20/36/277 31 135
EXTRASIM 2/ 1/ 1/ 0 1.0e+00 0 18/ 1 2.3 2/ 0/ 1 2 0
GENHS28 10/ 0/ 8/ 0 9.3e-01 -2e-10 168/ 47 4.2 1/ 0/ 0 4 0
HATFLDH 4/ 8/ 0/ 13 -2.4e+01 0 116/ 11 1.7 4/ 0/ 0 8 0
HIMMELBA 2/ 0/ 2/ 0 Failed — upper bound less than lower bound
HONG 4/ 8/ 1/ 0 2.3e+01 -3e-10 191/ 36 2.0 4/ 0/ 1 6 0
HS105 8/ 16/ 0/ 1 1.0e+03 -1e-11 1606/ 199 3.3 6/ 0/ 0 16 0
HS112 10/ 10/ 3/ 0 -4.8e+01 -2e-09 2206/ 184 1.9 13/ 0/ 1 14 0
HS21 2/ 4/ 0/ 1 -1.0e+02 -8e-10 88/ 29 2.9 2/ 0/ 0 4 0
HS21MOD 7/ 8/ 0/ 1 -9.6e+01 -1e-16 1481/ 231 2.4 4/ 0/ 3 14 0
HS24 2/ 2/ 0/ 3 -1.0e+00 -4e-10 64/ 10 2.3 1/ 0/ 0 4 0
HS268 5/ 0/ 0/ 5 Failed — evaluations exhausted
HS28 3/ 0/ 1/ 0 0.0e+00 0 152/ 50 2.7 1/ 0/ 0 4 0
HS35 3/ 3/ 0/ 1 1.1e-01 1e-10 180/ 34 2.2 1/ 0/ 0 6 0
HS35I 3/ 6/ 0/ 1 1.1e-01 -9e-10 136/ 34 2.6 1/ 0/ 0 6 0
HS35MOD 3/ 4/ 0/ 1 2.5e-01 0 87/ 4 2.3 3/ 0/ 1 4 0
HS36 3/ 6/ 0/ 1 -3.3e+03 0 88/ 2 3.5 3/ 0/ 0 6 0
HS37 3/ 6/ 0/ 2 -3.5e+03 -8e-11 135/ 24 2.6 1/ 0/ 0 6 0
HS41 4/ 8/ 1/ 0 1.9e+00 -5e-11 172/ 33 2.2 3/ 0/ 1 6 0
HS44∗ 4/ 4/ 0/ 6 -1.5e+01 0 137/ 11 3.0 7/ 0/ 0 8 0
HS44NEW∗ 4/ 4/ 0/ 6 -1.5e+01 0 132/ 12 2.6 4/ 0/ 0 8 0
HS48 5/ 0/ 2/ 0 0.0e+00 0 264/ 61 3.1 1/ 0/ 0 6 0
HS49 5/ 0/ 2/ 0 1.6e-07 -2e-07 25015/8392 4.8 1/ 0/ 0 6 0
HS50 5/ 0/ 3/ 0 0.0e+00 0 327/ 113 2.1 1/ 0/ 0 4 0

Table 1a. CUTEr problems with 10 or fewer variables,
tested on 20 processors.

39

Problem n/mb/me/ mi f(x∗) So
ln

.
A

cc
.

F
-E

va
ls

F
-C

ac
he

d

T
im

e(
se

c)

D
-L

A
PA

C
K

D
-C

D
D

L
IB

D
-C

ac
he

d

D
-M

ax
Si

ze

D
-A

pp
en

ds

HS51 5/ 0/ 3/ 0 0.0e+00 0 132/ 31 2.7 1/ 0/ 0 4 0
HS52 5/ 0/ 3/ 0 5.3e+00 -9e-11 141/ 42 2.3 1/ 0/ 0 4 0
HS53 5/ 10/ 3/ 0 4.1e+00 -2e-09 127/ 43 2.7 2/ 0/ 1 4 0
HS54 6/ 12/ 1/ 0 -1.9e-01 2e-01 249/ 39 2.8 3/ 0/ 1 10 0
HS55 6/ 8/ 6/ 0 6.3e+00 5e-11 19/ 0 2.0 1/ 1/ 0 3 0
HS62 3/ 6/ 1/ 0 -2.6e+04 -9e-10 553/ 205 3.3 2/ 0/ 1 4 0
HS76 4/ 4/ 0/ 3 -4.7e+00 4e-11 253/ 38 2.3 5/ 0/ 0 8 0
HS76I 4/ 8/ 0/ 3 -4.7e+00 4e-11 233/ 47 2.5 6/ 0/ 0 8 0
HS86 5/ 5/ 0/ 10 -3.2e+01 -3e-11 156/ 23 3.1 6/ 1/ 0 11 0
HS9 2/ 0/ 1/ 0 -5.0e-01 0 60/ 5 2.2 1/ 0/ 0 2 0
HUBFIT 2/ 1/ 0/ 1 1.7e-02 -1e-10 84/ 18 2.8 2/ 0/ 0 4 0
LIN 4/ 8/ 2/ 0 -2.0e-02 -8e-07 22875/21193 5.4 1/ 2/ 1 6 0
LSQFIT 2/ 1/ 0/ 1 3.4e-02 -1e-10 84/ 20 2.2 2/ 0/ 0 4 0
ODFITS 10/ 10/ 6/ 0 -2.4e+03 1e-12 15818/ 4693 4.5 1/ 0/ 0 8 0
OET1 3/ 0/ 0/1002 5.4e-01 3e-10 754/ 168 4.0 0/ 19/ 0 8 0
OET3 4/ 0/ 0/1002 4.5e-03 -6e-07 1355/ 388 4.5 2/ 8/ 0 104 1
PENTAGON 6/ 0/ 0/ 15 1.4e-04 -3e-10 2205/ 527 2.2 6/ 0/ 0 12 0
PT 2/ 0/ 0/ 501 1.8e-01 4e-10 504/ 179 2.4 0/ 27/ 0 9 0
QC 9/ 18/ 0/ 4 -9.6e+02 4e-12 181/ 9 2.7 10/ 0/ 0 14 0
QCNEW 9/ 0/ 0/ 3 Failed — upper bound less than lower bound
S268 5/ 0/ 0/ 5 Failed — evaluations exhausted
SIMPLLPA 2/ 2/ 0/ 2 1.0e+00 0 439/ 111 3.0 2/ 0/ 0 4 0
SIMPLLPB 2/ 2/ 0/ 3 1.1e+00 0 388/ 97 2.9 3/ 0/ 0 4 0
SIPOW1 2/ 0/ 0/2000 -1.0e+00 0 171/ 324 4.0 0/151/ 0 6 0
SIPOW1M 2/ 0/ 0/2000 -1.0e+00 0 185/ 350 6.4 0/163/ 0 6 0
SIPOW2 2/ 0/ 0/2000 -1.0e+00 0 184/ 327 4.6 149/ 0/ 1 4 0
SIPOW2M 2/ 0/ 0/2000 -1.0e+00 0 178/ 327 4.7 149/ 0/ 0 4 0
SIPOW3∗ 4/ 0/ 0/2000 5.3e-01 -1e-10 760/ 188 5.4 70/ 15/ 0 459 1
SIPOW4 4/ 0/ 0/2000 Failed — empty tangent cone encountered
STANCMIN 3/ 3/ 0/ 2 4.2e+00 0 69/ 24 2.7 3/ 0/ 0 6 0
SUPERSIM 2/ 1/ 2/ 0 Failed — equality constraints determine solution
TAME 2/ 2/ 1/ 0 0.0e+00 0 51/ 22 2.8 2/ 0/ 0 2 0
TFI2 3/ 0/ 0/ 101 6.5e-01 0 713/ 175 2.0 36/ 0/ 0 6 0
TFI3 3/ 0/ 0/ 101 4.3e+00 7e-11 93/ 44 2.7 17/ 0/ 0 6 0
ZANGWIL3 3/ 0/ 0/ 3 Failed — equality constraints determine solution
ZECEVIC2 2/ 4/ 0/ 2 -4.1e+00 -7e-10 66/ 29 2.1 1/ 0/ 0 4 0

Table 1b. CUTEr problems with 10 or fewer variables,
tested on 20 processors.

40

• Problem: Name of the CUTEr test problem.
• n/mb/mi/me : Number of variables, bound constraints, inequality constraints, and
equality constraints, respectively.
• f(x∗) : Final solution
• Soln. Acc.: Relative accuracy of solution as compared to SNOPT [9]:

Re(α, β) =
α− β

max{1, |α|, |β|)}
,

where α is the final APPSPACK objective value and β is the final SNOPT objective value. A
positive value indicates that the APPSPACK solution is better than SNOPT’s.
• F-Evals: Number of actual function evaluations, i.e., not counting cached function values
• F-Cached: Number of times that cached function values were used.
• Time (sec): Total parallel run-time.
• D-LAPACK/D-CDDLIB: Number of times that LAPACK or CDDLIB was called,
respectively, to compute the search directions.
• D-Cached: Number of times that a cached set of search directions was used.
• D-MaxSize: Maximum number of search directions ever used for a single iteration.
• D-Appends: Number of times that additional search directions had to be appended in
Step 23.

Figure 4. Column descriptions for numerical results.

different solutions on different runs on four problems (denoted by asterisks). This is
possibly due to the problems having multiple local minima. Otherwise, APPSPACK
did at least as well as SNOPT on all 63 problems, comparing six digits of relative
accuracy. In fact, the difference between objective values was greater than 10−6 on
only one problem, HS54. In this case APPSPACK converged to a value of -.19 while
SNOPT converged to 0. Again, we attribute such differences to these problems having
multiple local minima.

In a few cases, the number of function evaluations (F-Evals) is exceedingly high
(e.g., LIN or ODFITS). This is partly due to the tight stopping tolerance (∆max = 10−5).
In practice, we typically recommend a stop tolerance of ∆max = 10−2. GSS methods
share similar traits with steepest descent methods; consequently, they quickly find
the neighborhood of the solution but are slow to converge to the exact minimum. An
example of this behavior is provided, for example, in [22].

In general, the sets of search directions changed many times over the course of
the iterations. The sum of D-LAPACK and D-CDDLIB is the total number of times
an entirely new set of ε-active constraints was encountered. The value of D-Cached
is the number of time that a previously encountered set of ε-active constraints is
encountered again. In general, a new set of ε-active constraints will yield a different
set of search directions. In a few cases, only one set of search directions was needed
of the entire course of the iterations (cf., HS24/28/35, etc.), which can be due to

41

having a small number of constraints or only equality constraints. In other cases, a
large number of different sets of search direction was needed (cf., SIPOW1/1M/2/2M).
It is important to have the capability to handle degenerate vertices; 13 (20%) of the
problems that were solved required CDDLIB to generate search directions.

The total number of search directions required at any single iteration (D-MaxSize)
was 2n or less in 56 (85%) of the cases. The number of search directions can be larger
than 2n if constraint degeneracy is encountered and/or additional search directions
are appended in Step 23. Problems OET3 and SIPOW3 required 104 and 459 search
directions, respectively, at a single iteration. The need to append search directions
(D-Appends), which is unique to the asynchronous method, occurred in 16 (24%)
cases.

5.4.2 Group 2: 11–100 Variables

Of the 24 problems in this category, we were unable to identify feasible starting points
in 2 cases, so we ignore these for our analyses. We were able to solve 16 (73%) of
the remaining 22 problems. The problem of encountering an empty tangent cone,
which happened in 4 cases, is like the situation shown in Figure 1(d). It can happen
as a function of poor scaling of the variables when εmax is too large. The MAKELA is
famously degenerate and requires 220 + 1 generators [22].

In two of the 16 problems, APPSPACK converged to different solutions across
different runs. And on one of those two problems (KSIP), the solution was not as
good as that obtained by SNOPT. Otherwise, all the solutions were comparable to
that obtained by SNOPT.

Five problems (31%) require more than 50,000 function evaluations. We can
only hope that such behavior does not typify real-world problems with expensive
evaluations. As noted previously, the number of evaluations will be greatly reduced
if ∆tol is increased.

The number of search directions exceeded 2n for four problems. The problem
KSIP required 4126 search directions at one iteration. The problem DUAL1 required
249 appends to the search directions, indicating that it was near the solution for some
time before it finally converged.

In Table 3, we compare synchronous and asynchronous runs of GSS; Correspond-
ing bar graphs of the time and function evaluation comparisons are given in Figure 5.
For these runs, artificial time delays have been added to simulate more expensive
function evaluations. The time delay was selected randomly per evaluation to be be-
tween 5 and 15 seconds. We ran each problem on 5, 10, and 20 processors. Two things
are worth noting here. One is that, in many cases, the asynchronous approach used
a greater number of function evaluations. Second, despite evaluating more function
values, the asynchronous approach took less time to solve the problem in every case

42

Problem n/ mb/me/ mi f(x∗) So
ln

.
A

cc
.

F
-E

va
ls

F
-C

ac
he

d

T
im

e(
se

c)

D
-L

A
PA

C
K

D
-C

D
D

L
IB

D
-C

ac
he

d

D
-M

ax
Si

ze

D
-A

pp
en

ds

AVION2 49/ 98/ 15/ 0 Failed — evaluations exhausted
DEGENLPA 20/ 40/ 15/ 0 Failed — empty tangent cone encountered
DEGENLPB 20/ 40/ 15/ 0 Failed — empty tangent cone encountered
DUAL1 85/170/ 1/ 0 3.5e-02 -2e-07 474829/2992 268.8 138/1/688 301 249
DUAL2 96/192/ 1/ 0 3.4e-02 -6e-08 176396/ 999 123.7 149/1/ 22 191 0
DUAL4 75/150/ 1/ 0 7.5e-01 -3e-08 56328/3584 32.3 91/1/ 15 283 1
FCCU 19/ 19/ 8/ 0 1.1e+01 -9e-11 4469/ 352 3.1 7/2/ 3 23 0
GOFFIN 51/ 0/ 0/ 50 0.0e+00 0e+00 13876/1339 6.0 2/0/ 0 102 0
HIMMELBI∗ 100/200/ 0/ 12 -1.7e+03 -8e-10 120273/2478 77.5 93/0/ 7 200 0
HIMMELBJ 45/ 0/ 14/ 0 Failed — could not find initial feasible point
HS118 15/ 30/ 0/ 29 6.6e+02 -2e-16 634/ 64 2.7 24/0/ 0 36 0
HS119 16/ 32/ 8/ 0 2.4e+02 -3e-11 472/ 37 2.6 16/0/ 0 16 0
KSIP∗ 20/ 0/ 0/1001 1.0e+00 -3e-01 3161/ 124 142.0 2/4/ 0 4126 0
LOADBAL 31/ 42/ 11/ 20 4.5e-01 4e-09 53777/3189 11.2 13/0/ 0 40 0
LOTSCHD 12/ 12/ 7/ 0 2.4e+03 -1e-11 306/ 28 2.6 6/0/ 0 10 0
MAKELA4 21/ 0/ 0/ 40 Failed — too many generators
NASH 72/ 0/ 24/ 0 Failed — could not find initial feasible point
PORTFL1 12/ 24/ 1/ 0 2.0e-02 -3e-10 989/ 77 2.7 11/0/ 1 22 0
PORTFL2 12/ 24/ 1/ 0 3.0e-02 1e-09 879/ 85 2.7 6/0/ 1 22 0
PORTFL3 12/ 24/ 1/ 0 3.3e-02 4e-10 984/ 66 2.7 10/0/ 1 22 0
PORTFL4 12/ 24/ 1/ 0 2.6e-02 -1e-10 945/ 67 2.7 7/0/ 1 22 0
PORTFL6 12/ 24/ 1/ 0 2.6e-02 4e-09 984/ 70 3.6 8/0/ 1 22 0
QPCBLEND 83/ 83/ 43/ 31 Failed — empty tangent cone encountered
QPNBLEND 83/ 83/ 43/ 31 Failed — empty tangent cone encountered

Table 2. CUTEr problems with 11–100 variables, tested on
40 processors.

43

Problem n/mb/me/mi S
y
n
c/

A
sy

n
c

P
ro

ce
ss

o
rs

F
-E

v
a
ls

F
-C

a
ch

ed

T
im

e
(s

ec
)

D
-L

A
P
A

C
K

D
-C

D
D

L
IB

D
-C

a
ch

ed

D
-M

a
x
S
iz

e

D
-A

p
p
en

d
s

FCCU 19/ 19/ 8/ 0 S 5 4445/348 15281.6 7/2/ 1 23 0
A 5 3579/219 11199.8 16/1/ 8 23 0
S 10 4442/351 7893.5 7/2/ 1 23 0
A 10 4038/185 5627.1 25/1/58 23 0
S 20 4441/352 4587.4 7/2/ 1 23 0
A 20 4962/246 3277.1 16/1/61 22 0

HS118 15/ 30/ 0/ 29 S 5 616/ 73 2153.7 21/1/ 0 43 0
A 5 536/ 76 1681.8 42/0/ 2 30 0
S 10 616/ 73 1155.8 21/1/ 0 43 0
A 10 645/ 94 913.1 47/0/ 2 30 0
S 20 616/ 73 750.4 21/1/ 0 43 0
A 20 783/158 588.9 48/0/ 1 30 0

HS119 16/ 32/ 8/ 0 S 5 466/ 33 1659.3 13/0/ 0 16 0
A 5 476/ 39 1469.9 18/0/ 0 16 0
S 10 466/ 35 982.7 13/0/ 0 16 0
A 10 524/ 46 750.9 20/0/ 1 16 0
S 20 472/ 36 780.6 13/0/ 0 16 0
A 20 607/ 65 530.1 19/0/ 0 16 0

LOTSCHD 12/ 12/ 7/ 0 S 5 268/ 25 1103.8 6/0/ 0 10 0
A 5 339/ 38 1081.9 6/0/ 8 10 0
S 10 268/ 25 701.9 6/0/ 0 10 0
A 10 395/ 39 673.5 7/0/10 10 0
S 20 268/ 25 558.5 6/0/ 0 10 0
A 20 465/ 46 568.0 7/0/11 10 0

PORTFL1 12/ 24/ 1/ 0 S 5 917/112 3237.8 9/0/ 2 22 0
A 5 1014/ 95 3206.8 10/0/ 1 22 0
S 10 918/111 1745.2 9/0/ 2 22 0
A 10 1177/109 1642.3 10/0/ 2 22 0
S 20 916/113 1136.4 9/0/ 2 22 0
A 20 1545/114 1089.4 11/0/ 5 22 0

PORTFL2 12/ 24/ 1/ 0 S 5 960/114 3360.9 8/0/ 0 22 0
A 5 807/ 90 2552.1 6/0/ 0 22 0
S 10 960/114 1864.4 8/0/ 0 22 0
A 10 978/ 85 1359.1 6/0/ 0 22 0
S 20 962/112 1199.7 8/0/ 0 22 0
A 20 1644/117 1142.8 10/0/ 4 22 0

PORTFL3 12/ 24/ 1/ 0 S 5 969/115 3419.3 11/0/ 0 22 0
A 5 774/ 78 2444.2 7/0/ 0 22 0
S 10 969/115 1849.6 11/0/ 0 22 0
A 10 971/ 88 1362.2 8/0/ 1 22 0
S 20 970/114 1189.0 11/0/ 0 22 0
A 20 1402/ 91 984.1 13/0/ 6 22 0

PORTFL4 12/ 24/ 1/ 0 S 5 874/ 94 3131.1 7/0/ 0 22 0
A 5 1135/109 3617.8 11/0/ 4 22 0
S 10 874/ 94 1627.5 7/0/ 0 22 0
A 10 1091/ 87 1539.2 11/0/ 4 22 0
S 20 874/ 94 1059.8 7/0/ 0 22 0
A 20 1214/ 82 871.1 8/0/ 0 22 0

PORTFL6 12/ 24/ 1/ 0 S 5 1215/127 4259.4 9/0/ 0 22 0
A 5 987/108 3083.0 6/0/ 0 22 0
S 10 1216/126 2309.1 9/0/ 0 22 0
A 10 1204/121 1671.2 8/0/ 2 22 0
S 20 1216/126 1434.9 9/0/ 0 22 0
A 20 1418/102 996.6 10/0/ 6 22 0

Table 3. CUTEr problems with an artificial time delay,
testing synchronus and asynchronous implementations on 5,
10, and 20 processors.

44

Synchronous 5
Asynchronous 5
Synchronous 10
Asynchronous 10
Synchronous 20
Asynchronous 20

 0

 2,000

 4,000

 6,000

 8,000

 10,000

 12,000

 14,000

 16,000

FC
C

U

H
S1

18

H
S1

19

L
O

T
SC

H
D

PO
R

T
FL

1

PO
R

T
FL

2

PO
R

T
FL

3

PO
R

T
FL

4

PO
R

T
FL

6

 T
im

e(
se

c)

Synchronous 5
Asynchronous 5
Synchronous 10
Asynchronous 10
Synchronous 20
Asynchronous 20

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

 5,000

FC
C

U

H
S1

18

H
S1

19

L
O

T
SC

H
D

PO
R

T
FL

1

PO
R

T
FL

2

PO
R

T
FL

3

PO
R

T
FL

4

PO
R

T
FL

6

 F
un

ct
io

n
E

va
lu

at
io

ns

Figure 5. Comparisons of wall clock time (top) and func-
tion evaluations (bottom) for synchronous and asynchronous
runs on 5, 10, and 20 processors.

45

save two (PORTFL4 on 5 processors and LOTSCHD on 20 processors). Thus the
asynchronous approach was not only gaining more information in less time, but solv-
ing each problem in less time. This suggest that comparisons between asynchronous
methods and synchronous methods based merely upon function evaluations may be
almost irrelevant. Note that for the sake of time, to demonstrate this feature, we
have used relatively low time delays, 5-15 seconds. In real life problems these time
delays can be measured in minutes, hours, and even days.

5.4.3 Group 3: 101–1000 Variables

Problem n/ mb/ me/ mi f(x∗) So
ln

.
A

cc
.

F
-E

va
ls

F
-C

ac
he

d

T
im

e(
se

c)

D
-L

A
PA

C
K

D
-C

D
D

L
IB

D
-C

ac
he

d

D
-M

ax
Si

ze

D
-A

pp
en

ds

AGG 163/ 0/ 36/ 452 Failed — could not find initial feasible point
DUAL3 111/ 222/ 1/ 0 1.4e-01 -8e-08 245923/ 1148 203.4 198/1/ 82 262 18
GMNCASE1 175/ 0/ 0/ 300 2.7e-01 4e-07 469060/ 1725 1398.9 282/0/106 538 49
GMNCASE2 175/ 0/ 0/1050 -9.9e-01 -1e-09 245306/ 522 2513.4 176/0/ 3 350 0
GMNCASE3∗ 175/ 0/ 0/1050 1.5e+00 -3e-09 374004/14820 12462.6 109/1/ 0 350 0
GMNCASE4 175/ 0/ 0/ 350 Failed — empty tangent cone encountered
HYDROELM 505/1010/ 0/1008 -3.6e+06 -3e-07 55373/ 3512 4273.5 287/1/ 2 1422 2
HYDROELS 169/ 338/ 0/ 336 -3.6e+06 3e-12 9922/ 645 53.0 96/0/ 0 334 0
PRIMAL1 325/ 1/ 0/ 85 -3.5e-02 -8e-10 402563/10355 5108.1 82/0/592 1031 301
PRIMAL2 649/ 1/ 0/ 96 Failed — scaling: iterates became infeasible
PRIMAL3 745/ 1/ 0/ 111 Failed — scaling: iterates became infeasible
PRIMALC1 230/ 215/ 0/ 9 -1.1e+00 -1e-00 73774/ 2550 292.1 4/0/ 10 460 0
PRIMALC2 231/ 229/ 0/ 7 -2.3e+03 -3e-01 637764/ 1049 1417.4 3/0/ 0 462 0
PRIMALC5 287/ 278/ 0/ 8 -1.3e+00 -1e-00 16955/ 925 206.9 2/0/ 0 574 0
PRIMALC8 520/ 503/ 0/ 8 Failed — max wall-time hit
QPCBOEI1 384/ 540/ 9/ 431 Failed — scaling: iterates became infeasible
QPCBOEI2 143/ 197/ 4/ 181 Failed — scaling: iterates became infeasible
QPCSTAIR 467/ 549/209/ 147 Failed — scaling: iterates became infeasible
QPNBOEI1 384/ 540/ 9/ 431 Failed — scaling: iterates became infeasible
QPNBOEI2 143/ 197/ 4/ 181 Failed — scaling: iterates became infeasible
QPNSTAIR 467/ 549/209/ 147 Failed — scaling: iterates became infeasible
SSEBLIN∗ 194/ 364/ 48/ 24 7.9e+07 -8e-01 851858/47582 1824.9 157/0/ 7 307 0
STATIC3 434/ 144/ 96/ 0 Failed — scaling: iterates became infeasible

Table 4. CUTEr problems with 100 or more variables,
tested on 60 processors.

46

Problem (n ≤ 10) Rel. Diff.
EXPFITC 3e-4
HS44 .13
HS44NEW .13
SIPOW3 .43
Problem (10 < n ≤ 100) Rel. Diff.
HIMMELBI 2e-5
KSIP .29
Problem (n > 100) Rel. Diff.
GMNCASE3 .54
SSEBLIN .038

Table 5. Problems whose best and worst objective value,
obtained from 10 separate asynchronous runs, had a relative
difference greater than 10−5.

Though the primary focus of our numerical section is on the subset CUTEr test
problem with 100 variables or less, we did explore the possibility of solving even
larger problems. In this case, we were able to solve 11 (48%) of the 23 problems.
However, four of those 11 did not have solutions that were as good as SNOPT was
able to obtain. Of the remaining 7 problems, the largest had 505 variables and 1008
inequality constraints.

For the problems we could not solve, we supspect the issue depend largely on the
effects of inadequate scaling — i.e., the different parameters are based on entirely
different scales and cannot be directly compared. As a result, our check for feasibility
of the trial points fails because we are unable to appropriately perform this check.
In general, we obtain scalings from the bound constraints. However, in the cases
where we do not have complete scaling information (which was the case in all four
failed problems), we must instead rely on problem-specific information, which would
typically be provided for real-world applications, but is not available here.

In nearly all cases, the number of function evaluations was exceedingly large due
to the curse of dimensionality. However, we were able to solve problem HYDROELS,
with 169 parameters, using only 9,922 function evaluations.

47

This page intentionally left blank.

48

6 Conclusions

We have presented an asynchronous generating set search algorithm for linearly con-
strained optimization that is provably convergent to first-order optimal points; fur-
thermore, we have demonstrated its effectiveness on a wide range of CUTEr test
problems. This paper serves to bridge the gap between existing synchronous GSS
methods that support linear constraints [19, 22, 23] and asynchronous GSS methods
that support bound constraints [11, 17]. Synchronous methods work with a single
step size at each iteration and so need only consider one tangent cone at a time
(though that tangent cone may change from iteration to iteration). Asynchronous
methods for bound-constrained problems rely on the fact that, even though multiple
step sizes are in play, a single fixed set of generators is sufficient in all situations
(namely, the coordinate search directions). In this paper, we have bridged the gaps
between these two approaches. We developed a strategy to handle multiple tangent
cones simultaneously by appending additional search directions when needed.

In addition to theoretical results, we have also provided practical implementation
details that can have a huge impact on overall efficiency and performance, includ-
ing scaling, function caching, snapping to the boundary, augmenting search direc-
tions, and direction caching. All of the enhancements have been implemented in
APPSPACK. Beyond linear constraints, we expect that these features will also prove
useful in solving the subproblems that typically arise in methods that support non-
linear constraints such as [20].

We have also provided an extensive numerical study of the ability of GSS meth-
ods to handle linear constraints, extending results in [22, 16]. To the best of our
knowledge, this is the most extensive study of direct search methods for linearly-
constrained optimization problems. The results demonstrate the ability to reliably
obtain (as theory predicts) optimal objective values. Furthermore, we have once
again [15, 17] shown the benefits of the asynchronous approach, which nearly always
reduces the overall execution time, in many cases by 25% or more.

49

This page intentionally left blank.

50

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney,
and D. Sorensen, LAPACK Users’ Guide, SIAM, Philadelphia, PA, third ed.,
1999.

[2] C. Audet and J. E. Dennis, Jr., Analysis of generalized pattern searches,
SIAM J. Optimiz., 13 (2003), pp. 889–903.

[3] S. I. Chernyshenko and A. V. Privalov, Internal degrees of freedom of an
actuator disk model, J. Propul. Power., 20 (2004), pp. 155–163.

[4] M. L. Chiesa, R. E. Jones, K. J. Perano, and T. G. Kolda, Parallel
optimization of forging processes for optimal material properties, in NUMIFORM
2004: The 8th International Conference on Numerical Methods in Industrial
Forming Processes, vol. 712, 2004, pp. 2080–2084.

[5] A. Conn, N. Gould, A. Sartenaer, and P. Toint, Convergence properties
of an augmented Lagrangian algorithm for optimization with a combination of
general equality and linear constraints, SIAM J. Optimiz., 6 (1996), pp. 674–703.

[6] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods,
SIAM, Philadelphia, PA, 2000.

[7] G. Croue, Optimisation par la méthode APPS d’un problème de propagation
d’interfaces (in French), master’s thesis, Ecole Centrale de Lyon, France, 2003.

[8] K. Fukuda, cdd and cddplus homepage. From McGill University, Montreal,
Canada Web page: http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.
html, 2005.

[9] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm
for large-scale constrained optimization, SIAM Rev., 47 (2005), pp. 99–131.

[10] N. I. M. Gould, D. Orban, and Ph. L. Toint, CUTEr and SifDec: a
constrained and unconstrained testing environment, revisited, ACM T. Math.
Software, 29 (2003), pp. 373–394.

[11] G. A. Gray and T. G. Kolda, Algorithm 8xx: APPSPACK 4.0: Asyn-
chronous parallel pattern search for derivative-free optimization, ACM T. Math.
Software. To appear. Preprint at http://csmr.ca.sandia.gov/~tgkolda/ref#
ACM-TOMS-APPSPACK4.

[12] G. A. Gray, T. G. Kolda, K. L. Sale, and M. M. Young, Optimizing an
empirical scoring function for transmembrane protein structure determination,
INFORMS J. Comput., 16 (2004), pp. 406–418. Special Issue on Computational
Molecular Biology/Bioinformatics.

51

http://dx.doi.org/10.1137/S1052623400378742
http://dx.doi.org/10.1063/1.1766841
http://dx.doi.org/10.1063/1.1766841
http://locus.siam.org/SIOPT/volume-06/art_0806037.html
http://locus.siam.org/SIOPT/volume-06/art_0806037.html
http://locus.siam.org/SIOPT/volume-06/art_0806037.html
http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html
http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.1137/S0036144504446096
http://dx.doi.org/10.1145/962437.962439
http://dx.doi.org/10.1145/962437.962439
http://csmr.ca.sandia.gov/~tgkolda/ref#ACM-TOMS-APPSPACK4
http://csmr.ca.sandia.gov/~tgkolda/ref#ACM-TOMS-APPSPACK4
http://dx.doi.org/10.1287/ijoc.1040.0102
http://dx.doi.org/10.1287/ijoc.1040.0102

[13] C. Hernández, Stereo and Silhouette Fusion for 3D Object Modeling from Un-
calibrated Images Under Circular Motion, PhD thesis, Ecole Nationale Supŕieure
des Télécommunications, May 2004.

[14] P. D. Hough, T. G. Kolda, and H. A. Patrick, Usage manual for
APPSPACK 2.0, Tech. Report SAND2000-8843, Sandia National Laboratories,
Albuquerque, NM and Livermore, CA, 2000.

[15] P. D. Hough, T. G. Kolda, and V. J. Torczon, Asynchronous parallel
pattern search for nonlinear optimization, SIAM J. Sci. Comput., 23 (2001),
pp. 134–156.

[16] M. Jacobsen, Real time drag minimization with linear equality constraints,
Tech. Report TRITA-AVE 2005:44, Aeronautical and Vehicle Engineering, Kung-
liga Tekniska Högskolan, Stockholm, Sweden, Dec. 2005.

[17] T. G. Kolda, Revisiting asynchronous parallel pattern search for nonlinear
optimization, SIAM J. Optimiz., 16 (2005), pp. 563–586.

[18] T. G. Kolda, R. M. Lewis, and V. Torczon, Stationarity results for gen-
erating set search for linearly constrained optimization, SIAM J. Optimiz. To
appear. Preprint at http://csmr.ca.sandia.gov/~tgkolda/ref#SIAM-43363.

[19] , Optimization by direct search: new perspectives on some classical and mod-
ern methods, SIAM Rev., 45 (2003), pp. 385–482.

[20] , Convergence properties of an augmented Lagrangian direct search algorithm
for optimization with a combination of general equality and linear constraints. In
preparation, 2005.

[21] M. A. Kupinksi, E. Clarkson, J. W. Hoppin, L. Chen, and H. H.
Barrett, Experimental determination of object statistics from noisy images, J.
Opt. Soc. Am. A, 20 (2003), pp. 421–429.

[22] R. M. Lewis, A. Shepherd, and V. Torczon, Implementing generating
set search methods for linearly constrained minimization, Tech. Report WM-CS-
2005-01, Department of Computer Science, College of William & Mary, Williams-
burg, VA, July 2005.

[23] R. M. Lewis and V. Torczon, Pattern search methods for linearly constrained
minimization, SIAM J. Optimiz., 10 (2000), pp. 917–941.

[24] J. Liang and Y.-Q. Chen, Optimization of a fed-batch fermentation process
control competition problem using the NEOS server, P. I. Mech. Eng. I-J. Sys.,
217 (2003), pp. 427–342.

[25] G. Mathew, L. Petzold, and R. Serban, Computational techniques for
quantification and optimization of mixing in microfluidic devices. Available at
http://www.engineering.ucsb.edu/~cse/Files/MixPaper.pdf, July 2002.

52

http://csmr.ca.sandia.gov/~tgkolda/ref#SAND2000-8843
http://csmr.ca.sandia.gov/~tgkolda/ref#SAND2000-8843
http://dx.doi.org/10.1137/S1064827599365823
http://dx.doi.org/10.1137/S1064827599365823
http://dx.doi.org/10.1137/040603589
http://dx.doi.org/10.1137/040603589
http://csmr.ca.sandia.gov/~tgkolda/ref#SIAM-43363
http://dx.doi.org/10.1137/S003614450242889
http://dx.doi.org/10.1137/S003614450242889
http://www.opticsinfobase.org/abstract.cfm?URI=josaa-20-3-421
http://www.cs.wm.edu/~va/research/#25
http://www.cs.wm.edu/~va/research/#25
http://dx.doi.org/10.1137/S1052623497331373
http://dx.doi.org/10.1137/S1052623497331373
http://journals.pepublishing.com/link.asp?id=p172255148687565
http://journals.pepublishing.com/link.asp?id=p172255148687565
http://www.engineering.ucsb.edu/~cse/Files/MixPaper.pdf

[26] D. McKee, A dynamic model of retirement in Indonesia, Tech. Report CCPR-
005-06, California Center for Population Research On-Line Working Paper Series,
Feb. 2006.

[27] T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall, The
double description method, in Contributions to Theory of Games, H. W. Kuhn
and A. W. Tucker, eds., vol. 2, Princeton University Press, 1953.

[28] S. O. Nielsen, C. F. Lopez, G. Srinivas, and M. L. Klein, Coarse grain
models and the computer simulation of soft materials, J. Phys.-Condens. Mat.,
16 (2004), pp. R481–R512.

[29] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Opti-
miz., 7 (1997), pp. 1–25.

53

http://www.eldis.org/static/DOC21374.htm
http://dx.doi.org/10.1088/0953-8984/16/15/R03
http://dx.doi.org/10.1088/0953-8984/16/15/R03
http://epubs.siam.org/sam-bin/dbq/article/25078

	Front Page
	Abstract
	Acknowledgments
	Contents
	Figures
	Tables
	Algorithms
	Introduction
	Asynchronous GSS for problems with linear constraints
	Initializing the algorithm
	Updating the search directions
	Trial Points
	Successful Iterations
	Unsuccessful Iterations
	An illustrated example

	Theoretical properties
	Definitions and terminology
	Assumptions and conditions
	Bounding a measure stationarity
	Globalization
	Global convergence

	Implementation Details
	Scaling
	Function value caching
	Snapping to the boundary
	Generating conforming search directions
	Direction caching
	Augmenting the search directions

	Numerical results
	Test Problems
	Choosing a starting point
	Parameter Choices
	Numerical results

	Conclusions
	References

