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Abstract. We study in this paper a Markov Decision Problem (MDP) with continuous state space and
discrete decision variables. We propose an extension of the Q-learning algorithm introduced to solve
this problem by Watkins in 1989 for completely discrete MDPs.

Our algorithm relies on stochastic approximation and functional estimation, and uses kernels to
locally update the Q-functions. We give a convergence proof for this algorithm under usual assumptions.
Finally, we illustrate our algorithm by solving the classical moutain car task with continuous state space.

1. Introduction

In a Markov Decision Problem (MDP), an agent wanders in a markovian environment and tries to
maximize its expected long-term reward (or to minimize its long-term cost), by performing actions that
have to depend only on the current state.

Simple examples of MDPs are concerned with leading an agent moving on a surface to a certain goal
in shortest time, when its trajectory may be affected by some sort of deterministic or stochastic process
(wind for example). More complicated tasks may be written using the mathematical model of MDPs,
such as controlling an hydro-power plant that has to satisfy a demand over a certain period of time, while
minimizing the cost of the thermal power production if the hydro-power plant cannot supply the demand
completely.

Dynamic programming is a powerful methodology for dealing with sequential decision making problems
under uncertainty like MDPs. In the case of a continuous state space, the usual approach is to discretize
the state space and to apply recursively the Bellman operator. This discretization usually leads to
very large state spaces. It is known as the curse of dimensionality. An additional complexity arises in
the stochastic case, since the conditional expectation appearing in the Bellman equation must also be
approximated through a discretization of the dynamics.

However, in the MDP setting, reinforcement learning combined with the theory of dynamic pro-
gramming led to very efficient algorithms in the case of a discrete state, via the TD(λ) algorithm of
Sutton [Sut88] and the Q-learning algorithm of Watkins [Wat89]. Moreover, it is proved that Q-learning
[Wat89, WD92] and TD(λ) [Tsi93, JJS94] algorithms converge with probability one.

Unfortunately, in the case where the state space is continuous, discretizing can only lead to near-
optimal solutions. Ormoneit et al. [OS99] [OG00] recently proposed to estimate the value functions using
non-parametric regression methods, such as kernel-based methods. They showed that their algorithm
could be applied even when classical algorithms based on discretization of the state space failed to con-
verge. A major drawback is that the method is not recursive: it approximates the value function using
estimation points, and when one wants to increase the number of estimation points, the previous estimate
cannot be used to derive the new one.

We present an algorithm that extends Q-learning to the case of a continuous state space, by using local
updates with kernels to estimate the value functions. Our method is recursive and non-parametric. It is
based on stochastic approximation (see [RM51], or [Lai03] for an historical survey of these techniques).
Since we avoid the space discretization, our method leads to the optimal solution of the original problem.
Moreover, it is convenient from a practical point of view since it avoids discretizing the dynamics.

In section 2, we present the Q-learning formulation. Then we introduce the Robbins-Monro and the
TD(0) algorithms, which are closely related to our proposed method. In the same section, we present our
kernel method and provide a convergence proof for this algorithm under assumptions that are classical in
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stochastic approximation. Then, in section 3, we solve the mountain car task with the newly presented
algorithm.

2. Theoretical Framework

2.1. The Q-learning formulation. Let us consider an optimal control problem with a finite set of
decision dates {0, 1, . . . , T}. The uncertainties W are supposed to be independent random variables
(Wj)j∈{0,1,...,T} with values in Rm. Let (Xj)j∈{0,1,...,T} be the controlled random process with values in
S ⊆ Rd defined by:

Xj+1 = fj (Xj , γj (Xj) ,Wj+1) ,∀j ∈ {0, . . . , T − 1},
with: γj : S → Uad

j the decision rule.
We denote by Lj (Xj , γj (Xj) ,Wj+1) the cost at state Xj , when action γj (Xj) is taken, and uncertainty

Wj+1 occurs. We also consider a cost at final time denoted G (XT ). Our aim is to minimize the expected
global cost, starting from a state x ∈ S, i.e.:

(1)
V ∗

0 (x) = min
(γj)j=0,...,T

E

T−1∑
j=0

Lj (Xj , γj (Xj) ,Wj+1) + G (XT )

∣∣∣∣∣X0 = x

 ,

with γj : S → Uad
j , ∀j = 0, . . . , T.

Now let us note V ∗
j (x) the expectation of the future cost under the optimal control policy, starting

from state x at time j. Equation (1) can be rewritten as a dynamic programming equation:

(2)


V ∗

j (x) = min
u∈Uad

j

E
[
Lj (x, u, Wj+1) + V ∗

j+1 (fj (x, u, Wj+1))
]
,∀j ∈ {0, . . . , T − 1},∀x ∈ S

V ∗
N (x) = G(x),∀x ∈ S.

We now present the Q-learning counterpart of equation (2). Let us denote by Q∗
j (x, u) the expectation

of the future cost starting from state x and taking action u at time j. We have the following relation
between Q∗

j and V ∗
j+1:

Q∗
j (x, u) = E

[
Lj (x, u, Wj+1) + V ∗

j+1(x)
]
,∀j ∈ {0, . . . , T − 1}.

Moreover, Q∗
j can be derived from Q∗

j+1 as follows:

(3)


Q∗

j (x, u) = E

[
Lj (x, u, Wj+1) + min

v∈Uad
j+1

Q∗
j+1 (fj (x, u, Wj+1) , v)

]
,∀j ∈ {0, . . . , T − 1},

∀x ∈ S,∀u ∈ Uad
j

Q∗
N (x, u) = G(x),∀x ∈ S.

Equation (3) can be seen as a fixed point equation on Q∗ = (Q∗
t )0≤t≤T .

2.2. The Robbins-Monro and TD(0) algorithms. We now consider the feasible decision sets
(
Uad

j

)
j=0,...,T

to be finite. At this step, the control policy γj at each time j is still a mapping from the state space S
into the feasible control set Uad

j . Two classical approaches apply in the case where the state space S is
discrete and not too large: The Robbins-Monro and the TD(0) algorithms.

In order to estimate Q∗
j (x, u), Robbins and Monro [RM51] introduced the following algorithm:

Qk+1
j (x, u) = Qk

j (x, u) + ρk+1 ∆k+1
j (x, u) , ∀ (x, u) ∈ S × Uad

j ,

where ∆k+1
j (x, u) =

(
Lj

(
x, u, W k+1

j+1

)
+ min

v∈Uad
j+1

Qk
j+1

(
fj

(
x, u, W k+1

j+1

)
, v
))

−Qk
j (x, u) ,
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and W k+1
j+1 is a realization of the process Wj+1. Note that at each iteration the update is performed

for every state and action (x, u), and each time step.

Instead of updating Qj for every state and action (x, u), Sutton [Sut88] proposed to randomize this
operation by drawing realizations Xk

j of the random variable Xj . The finite control space Uad is randomly
explored along the iterations as well by drawing possible decisions ui according to probabilities πui so that
P (u = ui) = πui ,∀ui ∈ Uad. We enforce πui > 0,∀ui ∈ Uad, so that, with an infinite number of iterations,
every possible strategy will be tested with probability 1. We hence obtain the TD(0) algorithm:

Qk+1
j (x, u) =

{
Qk

j

(
Xk

j , Uk
j

)
+ ρk+1

j ∆k+1
j

(
Xk

j , Uk
j

)
if
(
Xk

j , Uk
j

)
= (x, u),

Qk
j (x, u) else.

Unfortunately, this algorithm cannot be implemented if the state space is continuous and is untractable
if the state space is discrete but too large: the computational burden would be too important.

2.3. Q-learning with kernels. We propose an alternative approach that is non-parametric and avoids
any a priori discretization of the state space. However, control spaces

(
Uad

j

)
j=0,...,T

are still assumed
discrete. As in the TD(0) algorithm, we draw at each step of the algorithm realizations of the state x
and the control u so that P (u = ui) = πui

,∀ui ∈ Uad.
Our algorithm consists in replacing the pointwise updates in the TD(0) algorithm by local updates

with kernels Kk, whose bandwidths εk decrease along the iterations, using a well-known analysis result,
for kernels having certain properties, and for any function f regular enough (see e.g. [Boc55], Theorem
1.3.2):

f (·) = lim
k→+∞

E
(

f (X)
1
εk

Kk (X, ·)
)

.
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Figure 1. Gaussian kernels with several bandwidths.

This idea could a priori be applied to both the state x and the control u. However, the minimization
operation at each iteration min

v∈Uad
j+1

Qk
j+1

(
fj

(
x, u, W k+1

j+1

)
, v
)

would become hard to perform, since function

Qk
j+1 would not be convex in the control u. Hence it appears natural to consider a discrete control space,

in which case the minimization above can be performed more easily.

Our algorithm reads as follows:

Algorithm 2.1. Initialize Q0
j,u(·, ·) to 0 for all j ∈ {0, . . . , T − 1},

Step k + 1, k ≥ 0:

• Draw
(
W k+1

j

)
1≤j≤T

independently from the past drawings, then draw Uk+1 =
(
Uk+1

j

)
0≤j≤T−1

as

described above and finally compute Xk+1 =
(
Xk+1

j

)
0≤j≤T

according to:

Xk+1
j+1 = fj

(
Xk+1

j , Uk+1
j ,W k+1

j+1

)
.
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• Update the value functions Qk+1
j (·, ·) in a neighbourhood of the drawings

(
Xk+1

j

)
0≤j≤T

:

Qk
T (x, u) = G(x), ∀x, u,

Qk+1
T−1(·, ·) = Qk

T−1(·, ·) + ρk+1 ∆k+1
T−1 Kk+1

T−1(X
k+1
T−1, U

k+1
T−1, ·, ·),

...
Qk+1

j (·, ·) = Qk
j (·, ·) + ρk+1 ∆k+1

j Kk+1
j (Xk+1

j , Uk+1
j , ·, ·),

...
Qk+1

0 (·, ·) = Qk
0(·, ·) + ρk+1 ∆k+1

0 Kk+1
0 (Xk+1

0 , Uk+1
0 , ·, ·).

where, for all j ≤ T − 1:

∆k+1
j =

Lj

(
Xk+1

j , Uk+1
j ,W k+1

j+1

)
+ min

v∈Uad
j+1

Qk
j+1

fj

(
Xk+1

j , Uk+1
j ,W k+1

j+1

)︸ ︷︷ ︸
Xk+1

j+1

, v


−Qk

j

(
Xk+1

j , Uk+1
j

)
.

Functions Kk
j are kernels, i.e. bounded mappings. A typical choice for these mappings is Gaussian

function (see figure 1):

Kk+1
j (Xk+1

j , Uk+1
j , x, u) = δ{Uk+1

j =u}e
−

‚‚‚‚‚ x−X
k+1
j

ηk

‚‚‚‚‚
2

,

where ηk → 0 when k → +∞.

2.4. Convergence Proof. Since we draw the control u independently from the number of iterations k,
Xj follows a law of probability that is independant of k. Thus, we can define the following inner products
and norms:

∀j = 0, . . . , T − 1, 〈g, h〉µj
:= E

card(Uad)∑
i=1

πuig (Xj , ui) h (Xj , ui)

 ,

‖e‖νj
:= E

[
〈e (fj−1 (·, ·,Wj)) , e (fj−1 (·, ·,Wj))〉µj

]
,

Moreover, we introduce:

vk
j+1

(
fj

(
x, u, W k+1

j+1

))
= arg min

v∈Uad
j+1

Qk
j+1

(
fj

(
Xk+1

j , Uk+1
j ,W k+1

j+1

)
, v
)
,

and:

rk
j (x, u) = Ek

[
Lj

(
x, u, W k+1

j+1

)
+ Qk

j+1

(
fj

(
x, u, W k+1

j+1

)
, vk

j+1

(
fj

(
x, u, W k+1

j+1

)))]
−Qk

j (x, u) .

Finally, we denote by V k
j (x) := min

u∈Uad
Qk

j (x, u) the k-th approximation of the Bellman function on x.

Theorem 2.2. If, for all j ∈ {0, . . . , T}, there exists bj ∈ R such that :

∥∥∥∥rk
j (·, ·)− Ek

[
∆k+1

j

1
εk

Kk
(
Xk+1

j , Uk+1
j , ·, ·

)]∥∥∥∥
µj

≤ bjεk

(
1 +

∥∥V k
j+1 − V ∗

j+1

∥∥
νj+1

+
∥∥Qk

j −Q∗
j

∥∥
µj

)
,

(4a)

+∞∑
k=1

ρ2
kEk

[∥∥∆k+1
j Kk

(
Xk+1

j , Uk+1
j , ·, ·

)∥∥2

µj

]
< +∞,(4b)

εk −−−−−→
k→+∞

0,
∑
k∈N

ρkε2
k < +∞,

∑
k∈N

ρkεk = +∞,(4c)

then Q-functions Qk
j (·, ·) defined by Algorithm 2.1 converge a.s., when k → +∞, toward the solution(

Q∗
j (·, ·)

)
j=0,...,T

of equation (3).

Proof : For j ∈ {0, . . . , T −1}, we introduce ak
j =

‚‚Qk
j −Q∗j

‚‚2

µj
. We are going to prove the following property

for all j ∈ {0, . . . , T}:

(Pj)

+∞X
k=1

ρkεk

‚‚‚V k
j − V ∗j

‚‚‚2

νt

< +∞.
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Simultaneously, we are going to prove that for all j ∈ {0, . . . , T − 1} one has:

lim
k→+∞

ak
j = 0

1. Since the Bellman function V ∗N is perfectly determined via the final condition of the dynamic programming
equation (2), one has that property (PN ) is verified.

2. Now suppose (Pj+1) is true. Then, by Pythagore’s theorem:

ak+1
j = ak

j + 2ρkεk

*
∆k+1

j

εk
Kk

“
Xk+1

j , Uk+1
j , ·, ·

”
, Qk

j −Q∗j

+
µj| {z }

A

+ρ2
k

‚‚‚∆k+1
j Kk

“
Xk+1

j , Uk+1
j , ·, ·

”‚‚‚2

µj

,

Let us take the conditional expectation of A:

Ek [A] =

*
Ek

"
∆k+1

j

εk
Kk

“
Xk+1

j , Uk+1
j , ·, ·

”#
− rk

j (·, ·) , Qk
j −Q∗j

+
µj

+
D
rk

j (·, ·) , Qk
j −Q∗j

E
µj

,

≤ bεk

„
1 +

‚‚‚V k
j+1 − V ∗j+1

‚‚‚
νj

+
‚‚‚Qk

j −Q∗j

‚‚‚
µj

« ‚‚‚Qk
j −Q∗j

‚‚‚
µj

, (by (4a) and Cauchy-Schwarz inequality)

+
D

Ek
h
Qk

j+1

“
Y k+1

j+1 (·, ·) , vk
j+1

“
Y k+1

j+1 (·, ·)
””

−Q∗j+1

“
Y k+1

j+1 (·, ·) , v∗j+1

“
Y k+1

j+1 (·, ·)
””i

, Qk
j −Q∗j

E
µj| {z }

B

−
‚‚‚Qk

j −Q∗j

‚‚‚2

µj

, (by optimality of Q∗)

by noting Y k+1
j+1 (·, ·) = fj

`
·, ·, W k+1

j+1

´
in order to reduce expressions. By Cauchy-Schwarz inequality, and then by

Jensen inequality:

B ≤
‚‚‚Ek

h
Qk

j+1

“
Y k+1

j+1 (·, ·) , vk
j+1

“
Y k+1

j+1 (·, ·)
””

−Q∗j+1

“
Y k+1

j+1 (·, ·) , v∗j+1

“
Y k+1

j+1 (·, ·)
””i‚‚‚

µj

‚‚‚Qk
j −Q∗j

‚‚‚
µj

,

≤ Ek

»‚‚‚Qk
j+1

“
Y k+1

j+1 (·, ·) , vk
j+1

“
Y k+1

j+1 (·, ·)
””

−Q∗j+1

“
Y k+1

j+1 (·, ·) , v∗j+1

“
Y k+1

j+1 (·, ·)
””‚‚‚

µj

– ‚‚‚Qk
j −Q∗j

‚‚‚
µj

,

≤
‚‚‚Qk

j+1

“
·, vk

j+1 (·)
”
−Q∗j+1

`
·, v∗j+1 (·)

´‚‚‚
νj+1

‚‚‚Qk
j −Q∗j

‚‚‚
µj

, (by independence of the drawings)

=
‚‚‚V k

j+1 − V ∗j+1

‚‚‚
νj+1

‚‚‚Qk
j −Q∗j

‚‚‚
µj

.

So:

Ek [A] ≤ bεk

„
1 +

‚‚‚V k
j+1 − V ∗j+1

‚‚‚
νj+1

+
‚‚‚Qk

j −Q∗j

‚‚‚
µj

« ‚‚‚Qk
j −Q∗j

‚‚‚
µj

+
‚‚‚V k

j+1 − V ∗j+1

‚‚‚
νj+1

‚‚‚Qk
j −Q∗j

‚‚‚
µj

−
‚‚‚Qk

j −Q∗j

‚‚‚2

µj

.

By developping and using ab ≤ a2

2
+ b2

2
, for any real numbers a, b:

Ek [A] ≤ bεk

2
+

bεk

2

‚‚‚Qk
j −Q∗j

‚‚‚2

µj

+
bεk

2

‚‚‚V k
j+1 − V ∗j+1

‚‚‚2

νj+1

+
bεk

2

‚‚‚Qk
j −Q∗j

‚‚‚2

µj

+ bεk

‚‚‚Qk
j −Q∗j

‚‚‚2

µj

−
‚‚‚Qk

j −Q∗j

‚‚‚2

µj

+
1

2

‚‚‚V k
j+1 − V ∗j+1

‚‚‚2

νj+1

+
1

2

‚‚‚Qk
j −Q∗j

‚‚‚2

µj

.

Finally:

Ek
h
ak+1

j

i
≤ ak

j +
`
4bρkε2

k − ρkεk

´
ak

j + bρkε2
k

‚‚‚V k
j+1 − V ∗j+1

‚‚‚2

νj+1

+ bρkε2
k + ρkεk

‚‚‚V k
j+1 − V ∗j+1

‚‚‚2

νj+1

+ ρ2
kEk

»‚‚‚∆k+1
j Kk

“
Xk+1

j , Uk+1
j , ·, ·

”‚‚‚2

µj

–
.

Knowing the assumptions of the theorem and the property (Pj+1), one has by Robbins-Siegmund’s lemma [RS71]:

lim
k→+∞

ak
j = l, and

+∞X
k=1

ρkεkak
j < +∞.



6 K. BARTY, P. GIRARDEAU, J.-S. ROY, AND C. STRUGAREK

As

+∞X
k=1

ρkεk = +∞, one has necessarily lim
k→+∞

ak
j = 0. Moreover, one has:

˛̨̨
V k

j

“
Xk+1

j

”
− V ∗j

“
Xk+1

j

”˛̨̨2
≤ max

v∈Uad

˛̨̨
Qk

j

“
Xk+1

j , v
”
−Q∗j

“
Xk+1

j , v
”˛̨̨2

,

=
˛̨̨
Qk

j

“
Xk+1

j , v
”
−Q∗j

“
Xk+1

j , v
”˛̨̨2

,

≤ 1

πv

card(Uad)X
i=1

πvi

˛̨̨
Qk

j

“
Xk+1

j , vi

”
−Q∗j

“
Xk+1

j , vi

”˛̨̨2
,

Recall that πv depends on t. If we note π = minv∈Uad πv, we have that:
‚‚V k

j − V ∗j
‚‚2

L2 ≤ 1
π

‚‚Qk
j −Q∗j

‚‚2

µj
.

By using the dynamics on X and the fact that Wj does not depend on Xj−1 nor on Uj−1, we obtain:‚‚‚V k
j − V ∗j

‚‚‚2

L2
= Ek

»˛̨̨
V k

j

“
fj−1

“
Xk+1

j−1 , Uk+1
j−1 , W k+1

j

””
− V ∗j

“
fj−1

“
Xk+1

j−1 , Uk+1
j−1 , W k+1

j

””˛̨̨2–
,

= Ek

»
E

»˛̨̨
V k

j

“
fj−1

“
Xk+1

j−1 , Uk+1
j−1 , W k+1

j

””
− V ∗j

“
fj−1

“
Xk+1

j−1 , Uk+1
j−1 , W k+1

j

””˛̨̨2 ˛̨̨
W k+1

j ,Fk

––
,

= Ek

24E

24card(Uad)X
i=1

πvi

˛̨̨
V k

j

“
fj−1

“
Xk+1

j−1 , vi, W
k+1
j

””
− V ∗j

“
fj−1

“
Xk+1

j−1 , vi, W
k+1
j

””˛̨̨2 ˛̨̨
W k+1

j ,Fk

3535 ,

= Ek

»‚‚‚Vj

“
fj−1

“
·, ·, W k+1

j

””
− V ∗j

“
fj−1

“
·, ·, W k+1

j

””‚‚‚2

µj

–
,

=
‚‚‚V k

j − V ∗j

‚‚‚2

νj

.

So:
‚‚V k

j − V ∗j
‚‚2

νj
≤ 1

π

‚‚Qk
j −Q∗j

‚‚2

µj
,

and:
+∞X
k=1

ρkεk

‚‚‚V k
j − V ∗j

‚‚‚2

νj

< +∞.

Hence (Pj) is true. Simultaneously, we showed that: lim
k→+∞

ak
j = 0.

We have thus that functions Qk
j (·, ·) converge a.s. toward the solution

`
Q∗j (·, ·)

´
j=0,...,T

of Equation (3). 2

Remark 2.3. On-policy control drawings. For the efficient use of this algorithm, a question remains
open : how to draw policies efficiently ? The only condition we need for convergence is that every
possible policy shall be selected infinitely often. In the convergence proof this condition is written as
π = minv∈Uad πv > 0. There are two classical approaches to ensure this, which are often called on-policy
methods and off-policy methods.

Off-policy methods do not take into account the growth of our knowledge of the Q-functions along the
iterations. They typically consist in choosing an a priori distribution of the policies to be tested all along
the iterations.

On the contrary, on-policy methods aim at selecting more and more policies that seem relevant ac-
cording to our knowledge of the Q-functions at the current iteration. However, to ensure convergence,
we shall still sometimes test policies at random. This is what practitioners call soft on-policy control
methods.

We choose to test policies in a ε-greedy way, which is an example of soft on-policy method (see [SB98,
section 5.4] for more details). In most cases (with probability 1−ε), we choose the optimal policy according
to our estimate of the Q-functions at the current step, i.e. we choose u = argminv∈Uad

j
Qk

j (x, v). However,
to ensure the convergence of the algorithm, we draw random policies with probability ε.

This technique allows the algorithm to explore the areas where policies seem to be optimal more often.

3. The Mountain Car Task

This problem is explained in [SB98, example 8.2]. Consider the task of driving an underpowered car
up a steep mountain road. The difficulty is that gravity is stronger than the car’s engine, and even at
full throttle the car cannot accelerate up the steep slope. The solution divides in three parts. The point
is to build up enough inertia to be able to move up the steep slope to the goal. First, the car has to
move in the direction of the goal, and, at a precise point, it has to apply full throttle so that it will climb
a little higher up the opposite slope. At this point, the car has enough inertia to carry it up the steep
slope even though it is slowing down the whole way. This is a simple example of a continuous control
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task where things have to get worse in a sense (farther from the goal) before they can get better. Many
control methodologies have great difficulties with tasks of this kind unless explicitly aided by a human
designer.

There are three possible actions: full throttle forward (+1), full throttle reverse (−1), and zero throttle
(0). The car moves according to a simplified physics. Its position, xt, and velocity, ẋt, are updated by

xt+1 = bound [xt + ẋt+1] ,(5a)

ẋt+1 = bound [ẋt+1 + 0.001at − 0.0025 cos (3xt)] ,(5b)

where the bound enforces −1.2 ≤ xt+1 ≤ 0.5 and −0.07 ≤ ẋt+1 ≤ 0.07. When xt+1 reaches the left
bound, ẋt+1 is reset to zero. When it reaches the right bound, the goal is reached and the episode is
terminated. Each episode starts from a random position and velocity uniformly chosen from its feasibility
ranges.

To clarify, let us introduce the state variable st = (xt, ẋt). The problem can thus be written as a
minimization problem : 

min
T∈N,(at)t≤T∈{−1,0,1}T+1

T

st+1 = f (st, at) ,
s0 = s,
sT = S∗,

where T denotes the arrival time, S∗ denotes the goal area and f denotes the transportation equations
(5). Then we introduce the mapping Q defined by:

Q (s, a) =

{
1 + min

a′
Q (f (s, a) , a′) if s /∈ S∗,

0 if s ∈ S∗.

Then the update in the algorithm can be summed up as follows:

Qk+1 (·, ·) = Qk (·, ·) + ρk+1∆k+1Kk+1
(
sk+1, ak+1, ·, ·

)
,

with:

∆k+1 =

{ [
1 + min

a′
Qk
(
f
(
sk+1, ak+1

)
, a′
)]
−Qk

(
sk+1, ak+1

)
if sk+1 /∈ S∗,

0−Qk
(
sk+1, ak+1

)
if sk+1 ∈ S∗.

The algorithm randomly tries all possible strategies and updates the expected time left to the goal by
being at state sk and applying control ak.

We draw in figures 2 and 4 the evolution of the position and the optimal control, starting from the
bottom of the valley and using the optimal control found by our algorithm after respectively 2000 and
9000 episodes, corresponding to approximately 100 000 and 500 000 iterations. After 2000 episodes, the
car needs 108 time steps to reach the goal. After 9000, it needs 101 time steps.

As explained in the problem description, one can observe the complexity of the task by analyzing that
the car needs to first reach up the mountain on the right a little, to secondly reach up the left slope
sufficiently high, i.e. to gain sufficient inertia, to finally be able, by applying full throttle, to reach up the
goal on the right slope.

We draw in figure 5 the Bellman function, which here represents the expected time left to reach the
goal as a function of the state (position and speed of the car).
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Figure 2. Position and throttle of the car, starting from the bottom of the valley and
using the greedy policy found by our algorithm after 500 episodes
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Figure 3. Bellman function after 500 episodes
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