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Abstract

Semidefinite relaxations of the quadratic assignment problem (QAP ) have recently turned out
to provide good approximations to the optimal value of QAP . We take a systematic look at various
conic relaxations of QAP . We first show that QAP can equivalently be formulated as a linear
program over the cone of completely positive matrices. Since it is hard to optimize over this cone,
we also look at tractable approximations and compare with several relaxations from the literature.
We show that several of the well-studied models are in fact equivalent. It is still a challenging task
to solve the strongest of these models to reasonable accuracy on instances of moderate size.
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1 Introduction

The quadratic assignment problem (QAP ) is a standard problem in location theory and is very famous
because of its hardness. Koopmans and Beckmann [12] introduced it in 1957 in the following form:

(QAP ) OPTQAP = min {
∑
i,j

aijbπ(i)π(j) +
∑
i

ci,π(i) : π a permutation},

where A,B,C are n× n matrices. We make the standard assumption that A and B are symmetric.
Recent surveys about QAP are given for instance in [6, 21], and most recently in [14].

We may represent each permutation π by a permutation matrix X ∈ {0, 1}n×n, defined by xij =
1 ⇐⇒ π(i) = j. If we denote the set of all permutation matrices by Π, then we may formulate QAP
as follows

(QAP ) OPTQAP = min {〈X, AXB + C〉 : X ∈ Π},
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where 〈·, ·〉 stands for the standard inner product, i.e. 〈X, Y 〉 = trace(XTY ) for X,Y ∈ Rm×n.
QAP is known to be very hard from a theoretical and practical point of view. Problems of size

n ≥ 25 are currently still considered as difficult. Sahni and Gonzales [23] showed that even finding an
ε-approximate solution for QAP is NP-hard. Solving QAP in practice is usually based on the Branch
and Bound (B&B) algorithm. The performance of B&B algorithms depends on the computational
quality and efficiency of lower bounds (see [1] for a summary of recent advances in the solution of
QAP by B&B). The study of lower bounds for QAP is therefore very important for the development
of B&B algorithms.

The most recent and promising trends of research for the bounding methods for QAP are based
on semidefinite programming. Zhao et al., Sotirov and Rendl [24, 22, 26] lifted the problem from the
vector space Rn×n to the cone of positive semidefinite matrices of order n2 +1 and formulated several
semidefinite relaxations which give increasingly tight lower bounds for QAP . They used interior point
methods [26] and the bundle method [22] to solve these programs. The computational results show
that these lower bounds are among the strongest known but also the most expensive to compute
(state-of-the-art computers could compute the strongest of these bounds only for n ≤ 35).

Recently Burer and Vandenbusshe [4] applied the lift-and-project technique, introduced by Lovász
and Schrijver [15] to QAP . They used the Augmented Lagrangian method to solve the resulting
semidefinite programs and this way obtained lower bounds for QAP , which are somewhat tighter
than the bounds from [22], but the practical upper bound for solving the tighter semidefinite lower
bound remains n = 35.

Our contribution in this paper to the literature on semidefinite programming lower bounds consists
of the following results:

• In Section 2 we show that solving QAP amounts to solving a linear program over the cone of
completely positive matrices of order n2. This linear program is actually the Lagrangian dual
of the Lagrangian dual of the QAP , if we rewrite QAP as a quadratically constrained quadratic
problem with some additional redundant quadratic constraints. This does not make the problem
tractable since optimization over the cone of completely positive matrices is intractable, but
this result shows new possibilities on how to solve QAP , approximately.

• In Section 3 we consider the semidefinite relaxations of QAP , obtained from the copositive
representation of QAP from Section 2. We suggest two new semidefinite programs, denoted
by QAPZKRW1 and QAPAW+, which both follow from the copositive representation of QAP .
The relaxation QAPAW+ is a simple improvement of the Anstreicher-Wolkowicz relaxation [2]
and can be computed efficiently. It has the same computational cost as the bound QAPR0 from
[22], but is often much tighter.

• After describing various previously published relaxations in Sections 4 and 5, we compare these
relaxations in Section 6. We show that the strongest model QAPK0∗

n
introduced in the present

paper is equivalent to the strongest relaxations from [4, 22, 26]. We also show that QAPZKRW1

is in fact equivalent to the model QAPR2 from [22, 26].

1.1 Notation

We denote the ith standard unit vector by ei and when we index components by 0, 1, . . . , n, then e0
is the first unit vector. The vector of all ones is un ∈ Rn (or u if the dimension n is obvious). The
square matrix of all ones is Jn (or J), the identity matrix is I and Eij = eie

T
j .

In this paper we consider the following sets of matrices:
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• The vector space of real symmetric n× n matrices: Sn = {X ∈ Rn×n : X = XT },

• the cone of n× n symmetric nonnegative matrices: Nn = {X ∈ Sn : xij ≥ 0,∀i, j},

• the cone of n× n positive semidefinite matrices: S+
n = {X ∈ Sn : yTXy ≥ 0,∀y ∈ Rn},

• the cone of n× n copositive matrices: Cn = {X ∈ Sn : yTXy ≥ 0,∀y ∈ Rn
+},

• the cone of n×n completely positive matrices: C∗n = conv{yyT : y ∈ Rn
+}, where conv(A) stands

for the convex hull of A.

The dual cone K∗ of a given cone K ⊂ Rm×n is define as follows: K∗ = {Y ∈ Rm×n : 〈X,Y 〉 ≥
0, ∀X ∈ K}. Note that the cone of completely positive matrices is dual to the cone of copositive
matrices. This justifies the notation C∗n. The cones of symmetric non-negative matrices and positive
semidefinite matrices are self-dual, i.e. N ∗ = N and (S+

n )∗ = S+
n .

We also use X � 0 for X ∈ S+
n and X ≥ 0 for X ∈ N . A linear program over S+

n is called a
semidefinite program while a linear program over Cn or C∗n is called a copositive program.

The sign ⊗ stands for Kronecker product. When we consider matrix A ∈ Rm×n as a vector from
Rmn obtained from A columnwise, we write this vector as vec(A) or a. For matrix columns and rows
we use the matlab notation. Hence X(i, :) and X(:, i) stand for ith row and column, respectively,
and X(i : j, p : q) is a submatrix of X, which consists of elements xst, for i ≤ s ≤ j and p ≤ t ≤ q. If
a ∈ Rn, then Diag(a) is a n×n diagonal matrix with a on the main diagonal and diag(X) is a vector
containing the main diagonal of a square matrix X.

For a matrix Z ∈ Sk2+1, with k ≥ 1, we often use the following block notation:

Z =


Z00 Z01 · · · Z0k

Z10 Z11 · · · Z1k

...
...

. . .
...

Zk0 Zk1 · · · Zkk

 , (1)

where Zi0 ∈ Rk, 1 ≤ i ≤ k and Zij ∈ Rk×k, 1 ≤ i, j ≤ k. Since Z00 ∈ R, we denote it also by Z00.
Similarly we address component blocks of a matrix Z ∈ Sk2 via

Z =

 Z11 · · · Z1k

...
. . .

...
Zk1 · · · Zkk

 , (2)

where Zij ∈ Rk×k.
When P or Psubscript is the name of the optimization problem, then OPTP or OPTsubscript,

respectively, denote their optimal values.

1.2 Technical preliminaries

In the proofs of Theorems 3, 7 and 8, which contain the main results of the paper, we need the
following technical lemmas.

Lemma 1 Let Y ∈ S+
k with diag(Y ) = a and

∑
i,j Yij = (

∑
i

√
ai)2. Then Yij = √aiaj, for 1 ≤

i, j ≤ k, or equivalently, Y = yyT for yi =
√
ai, 1 ≤ i ≤ k.
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Proof: Since Y � 0 we know that |Yij | ≤
√
YiiYjj = √aiaj and

∑
i,j Yij ≤

∑
i,j |Yij | ≤

∑
i,j
√
aiaj =

(
∑

i

√
ai)2. The equality holds throughout if and only if Yij = √aiaj . 2

Lemma 2 Let

Ỹ =
[
Y 11 Y 12

Y 21 Y 22

]
∈ S+

2n

with Y 11 = Diag(a) ∈ S+
n , Y 12 ∈ Rn×n and Y 22 = Diag(b) ∈ S+

n . If uTa = α2, uT b = β2 and
uTY 12u = αβ, then Y 12u = β/α · a and uTY 12 = α/β · b.

Proof: Without loss of generality we can assume ai > 0 and bi > 0, for all i. From Y � 0
it follows by using Schur complement [10, Theorem 7.7.6] that Y 11 − Y 12(Y 22)−1Y 21 � 0, hence
uT (Y 11 − Y 12(Y 22)−1Y 21)u ≥ 0. But

uT (Y 11 − Y 12(Y 22)−1Y 21)u = α2 −
n∑
i=1

(Y 21(i, :)u)2

bi

= α2 −
n∑
i=1

(Y 21(i, :)u
bi

)2
bi ≤ α2 −

(∑n
i=1 Y

21(i, :)u
)2∑

i bi

= α2 − α2β2

β2
= 0

with equality holding if and only if Y 21(i, :)u/bi = Y 21(j, :)u/bj , ∀i, j. Since

αβ =
∑
i

Y 21(i, :)u =
∑
i

Y 21(i, :)u
bi

bi

=
Y 21(1, :)u

b1

∑
i

bi =
Y 21(1, :)u

b1
β2

it follows Y 21(1, :)u/b1 = α/β and consequently Y 21u = α/β ·b. The second part of the lemma follows
by using Y 22 − Y 21(Y 11)−1Y 12 � 0. 2

2 QAP as a copositive program

In this section, we first formulate QAP as a quadratically constrained quadratic program. A restricted
Lagrangian dual is a copositive program. Our main result shows that there is a zero duality gap
between this copositive program and its dual.

Every permutation matrix has in each row and column exactly one non-zero element, which is
equal to 1. Therefore the rows and columns are orthonormal. In fact, this is already a complete
characterization of the set of permutation matrices: Π = {X ∈ Rn×n : XTX = I, X ≥ 0}.

Anstreicher and Wolkowicz [2] added to this description of Π the redundant constraint XXT = I
and showed that the Lagrangian dual of the resulting quadratic program (with the sign constraints
omitted) yields a semidefinite program with the optimal value equal to the well-known Hoffman-
Wielandt eigenvalue lower bound (see also [20] for further reading about this topic).
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We add one more redundant constraint. Since the sum of all elements in X is n, uTXu = n, we
include the constraint 〈X, JXJ〉 = n2, which follows from 〈X, JXJ〉 = (uTXu)2. Every permuta-
tion matrix obviously satisfies this constraint. We can therefore represent QAP as a quadratically
constrained quadratic program

OPTQAP = min {〈X, AXB + C〉 : XTX = XXT = I, 〈X, JXJ〉 = n2, X ≥ 0}. (3)

In the sequel we use the facts that 〈C, X〉 =
∑

i,j cijxij =
∑

i,j cijx
2
ij = 〈Diag(c), xxT 〉 for X ∈ Π

and 〈X, PXQ〉 = 〈QT ⊗ P, xxT 〉, for any X, where x = vec(X) and c = vec(C).
We dualize (3) as follows:

OPTQAP =

= min
X≥0

{
〈B ⊗A+ Diag(c), xxT 〉+ max

S,T∈Sn,v∈R
{〈S, I −XXT 〉+ 〈T, I −XTX〉+ v(n2 − 〈X, JXJ〉)}

}
≥ max

S,T∈Sn,v∈R

{
trace(S) + trace(T ) + n2 v + min

x∈Rn2
+

{xT (B ⊗A+ Diag(c)− I ⊗ S − T ⊗ I − vJn2)x}
}

= max
{

trace(S) + trace(T ) + n2 v : S, T ∈ Sn, B ⊗A+ Diag(c)− I ⊗ S − T ⊗ I − vJn2 ∈ Cn2

}
= min

{
〈B ⊗A+ Diag(c), Y 〉 :

∑
i Y

ii = I, 〈I, Y ij〉 = δij , ∀i, j, 〈Jn2 , Y 〉 = n2, Y ∈ C∗n2

}
.

We denote the last problem by QAPCP . In the equations in QAPCP we use the block description of
Y , introduced in (2). Note that the equality constraints based on the blocks of Y first appeared in
[26].

The first inequality above is due to exchanging min and max. The second equality follows from
the fact that the inner minimization problem is bounded from below on the nonnegative orthant if
and only if the matrix B⊗A+Diag(c)−I⊗S−T⊗I−vJn2 is copositive (this is exactly the definition
of copositive matrices). The last two problems are conic duals to each other. The last equality above
follows from strict feasibility of the last but one problem, i.e., for T = S = −αI and u = 0 the matrix
B ⊗ A + Diag(c) − I ⊗ S − T ⊗ I is positive definite for α sufficiently large, hence in the interior of
Cn2 and therefore strictly feasible. So, strong duality holds.

By construction it follows that OPTQAP ≥ OPTCP , but we will see below that we have in fact
equality. First we study the feasible set F for QAPCP :

F := {Y ∈ C∗n2 : Y feasible for QAPCP }.

We have the following description of F .

Theorem 3
F = conv{xxT : x = vec(X), X ∈ Π}.

Proof: The “ ⊇ ” part is obvious. Let us consider now the opposite direction. Let Y be arbitrary
from F . From the definition of the cone C∗n2 it follows that there exists r ≥ 1 and non-zero vectors
y1, . . . , yr ∈ Rn2

+ such that Y =
∑r

k=1 y
k(yk)T . We will find numbers λk ∈ [0, 1] and vectors xk ∈ Rn2

+

such that yk(yk)T = λkx
k(xk)T , 1 ≤ k ≤ r,

∑r
k=1 λk = 1 and each xk is a vector representation of

some permutation matrix Xk. This will prove the theorem.
We consider each vector yk as vec(Y k) for some Y k ∈ Rn×n, therefore we index components of each

yk by two indices such that yk(i, j) is (i, j)th component of Y k. We will also call, by abuse of notation,
the components yk(1, i), . . . , yk(n, i) by “ith column” of yk and components yk(j, 1), . . . , yk(j, n) by
“jth row” of yk.
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From Y ∈ C∗n2 it follows Y ≥ 0 and Y � 0. Constraints
∑

i Y
ii = I and 〈I, Y ij〉 = δij therefore

imply that Y ii is diagonal for all i and diag(Y ij) = 0 for i 6= j. We know that yk ≥ 0, hence if we had
in the ith column of yk two non-zero components, then their product would be positive and would
lie out of the main diagonal of the (i, i)th block. This is not possible, since the sum of (i, i) blocks of
yk(yk)T is a diagonal matrix. Therefore we have in each column of yk one non-zero element at most.
Similar arguments imply that each row of yk has one non-zero element at most.

We may write Y =
∑

i,j Eij ⊗ Y ij and Y � 0 implies that the matrix Ỹ , defined by

Ỹ = (I ⊗ uTn )Y (I ⊗ uTn )T =
∑
i,j

〈J, Y ij〉Eij ,

is positive semidefinite and satisfies the assumptions of Lemma 1. Therefore we have Ỹij = 〈J, Y ij〉 =
1.

Let us fix i and j, i 6= j, and denote by ak and bk the maximum of the components in the ith and
jth column of yk, respectively. The (i, i)th block of yk(yk)T is therefore diagonal and has one non-zero
component at most, which is exactly a2

k and lies on the main diagonal of the block. Similarly the
(i, j)th block of yk(yk)T has one non-zero component akbk at most. If it is not 0, then it is off-diagonal
in the block. For chosen i 6= j the matrix Y therefore satisfies:

1 = 〈I, Y ii〉 =
∑r

k=1 a
2
k

1 = 〈I, Y jj〉 =
∑r

k=1 b
2
k

1 = 〈J, Y ij〉 =
∑r

k=1 akbk.

The Cauchy-Schwarz inequality [10, p. 15], applied to vectors a = (a1, . . . , ar) and b = (b1, . . . , br),
implies ak = bk for 1 ≤ k ≤ r. Since i and j were arbitrary and none of yk is a zero vector, we have
that each yk has in each “row” and “column” exactly one non-zero component and all non-zeros are
equal (we keep the notation and denote them by ak). Vectors xk = yk/ak therefore correspond to per-
mutation matrices. Let λk = a2

k. Then Y =
∑

k y
k(yk)T =

∑
k λkx

k(xk)T and
∑

k λk =
∑

k a
2
k = 1. 2

Clearly QAP may be written equivalently as

OPTQAP = min
{
〈B ⊗A+ Diag(c), Y 〉 : Y ∈ conv{xxT : x = vec(X) for X ∈ Π}

}
.

The following corollary therefore follows immediately.

Corollary 4 The optimal value of QAP is equal to the optimal value of QAPCP .

Remark 1 This copositive representation again confirms the importance of copositive programming
in combinatorial optimization which was first suggested by De Klerk and Pasechnik [11] on the stability
number problem and further illustrated by Povh and Rendl for the graph partitioning problem [19].

De Klerk and Pasechnik proved that computing the stability number of a graph is equivalent to
solving a copositive program and then presented a hierarchy of linear and positive semidefinite relax-
ations, which follow from this approach and are strongly connected with the ϑ-function. Povh and
Rendl reformulated the 3-partitioning problem as a copositive program, then showed that the simplest
(semidefinite) relaxation of the copositive program is exactly the eigenvalue lower bound from [8] and
suggested stronger relaxations which are still efficiently computable.

Remark 2 While this paper was under peer review, Burer [3] presented an interesting paper, in which
he generalized results from [11, 19]. He proved that any quadratic programming problem with linear
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constraints, possibly containing binary variables, can be rewritten as a copositive program. Since QAP
can be restated in the following way

OPTQAP = min {〈X, AXB + C〉 : X ∈ {0, 1}n×n, Xu = u, XTu = u}, (4)

we can apply Burer’s result to obtain a different copositive representation of QAP:

(QAPCP1)

OPTQAP = min 〈L,Z〉
s. t. Z0iu = 1,∀i,

∑
i Z

0i = uT ,
〈J, Zii〉 = 1,∀i, diag(

∑
i,j Z

ij) = u,

diag(Zii) = Zi0,∀i, Z ∈ C∗n2+1,

where we use the block notation from (1) and the matrix L is from (9) below.
Burer used a similar proof technique as we did in the present paper and in [19]. His proof, reduced

to QAP, implies that the feasible solutions for QAPCP1 are exactly those Z ∈ Sn2+1 which can be
written as

Z =
∑
k

λk

[
1
zk

]
·
[

1
zk

]T
, (5)

for some zk = vec(Zk), Zk ∈ Π, where
∑

k λk = 1, λk ≥ 0, ∀k. Using Theorem 3 we see that
Z ∈ Sn2+1 is feasible for QAPCP1 if and only if Y =

∑
k λkz

k(zk)T is feasible for QAPCP , where λk
and zk are from (5), hence QAPCP and QAPCP1 are equivalent in the sense that the feasible sets are
in bijective correspondence and each pair of corresponding solutions gives the same objective values.

3 A hierarchy of semidefinite relaxations for QAP

In this section we take the formulation QAPCP as a starting point for tractable relaxations. A simple
relaxation is obtained by changing Y ∈ C∗n2 to the weaker condition Y � 0.

(QAPAW+)

min 〈B ⊗A+ Diag(c), Y 〉
s. t.

∑
i Y

ii = I,
〈I, Y ij〉 = δij , ∀i, j,
〈Jn2 , Y 〉 = n2,

Y ∈ S+
n2 .

This relaxation corresponds to the Anstreicher-Wolkowicz relaxation for QAP [2], modified by
the single equation

〈Jn2 , Y 〉 = n2.

We therefore denote it by QAPAW+. It is remarkable that this single additional equation often yields
a substantial improvement of the bound. We note in particular that this semidefinite program has
only O(n2) equality constraints.

A systematic way to replace the intractable constraint Y ∈ C∗n2 with weaker tractable constraints
was recently suggested by Parrilo [16, 11]. He pointed out the fact that a given matrix X ∈ Sn
is copositive is equivalent to the condition that the polynomial P (z) =

∑n
i,j=1 xijz

2
i z

2
j in variables

(z1, . . . , zn) is non-negative. While checking whether this is true is also intractable, we can efficiently
check by semidefinite programming whether this polynomial is a sum of squares (SOS), i.e. if there
exist (real) polynomials q1, q2, . . . such that P (z) =

∑
i qi(z)

2.

7



If a symmetric matrix X yields a SOS polynomial, then X is copositive while the converse is
not necessarily true. We can further weaken this constraint by demanding only that the polynomial
Pr(z) = P (z)(

∑
i z

2
i )r, r ∈ N, is SOS.

This gives the following hierarchy of cones K0
n ⊂ K1

n ⊂ · · · ⊂ Cn, where

Krn = {X ∈ Sn : (
n∑

i,j=1

xijz
2
i z

2
j )(

n∑
i=1

z2
i )r is a SOS},

which approximates the copositive cone Cn from the inside arbitrarily closely, point-wise.
The hierarchy of dual cones Kr∗n approximates the cone C∗n from the outside. We will focus on

these cones. The first member in this hierarchy is the cone of symmetric doubly nonnegative matrices
K0∗
n = Nn ∩ S+

n (see [16]). Our next model will therefore be:

(QAPK0∗
n

)

min 〈B ⊗A+ Diag(c), Y 〉
s. t.

∑
i Y

ii = I,
〈I, Y ij〉 = δij , ∀i, j,
〈Jn2 , Y 〉 = n2,

Y ∈ Nn2 ∩ S+
n2 ,

We have to emphasize that this is already a computationally expensive model since the constraint
Y ∈ Nn2 implies O(n4) linear inequalities.

Trading quality of the relaxation for more computational efficiency, we follow the approach from
Zhao et al. [26], and observe the following zero pattern for matrices feasible for QAPK0∗

n
:

Y ii
jk = 0, Y jk

ii = 0 ∀j 6= k, ∀i.

Collecting all these O(n3) equations symbolically in the map G(Y ) = 0, we get the relaxation
QAPZKRW1:

(QAPZKRW1)

min 〈B ⊗A+ Diag(c), Y 〉
s. t.

∑
i Y

ii
jj = 1, 〈I, Y jj〉 = 1, ∀j,

〈Jn2 , Y 〉 = n2, G(Y ) = 0
Y ∈ S+

n2

We use the acronym ZKRW1 to emphasize that this model is inspired by Zhao et al. [26]. We will
show in the following sections that this model is in fact equivalent to the ’gangster-model’ from [26].

The relaxation QAPZKRW1 has ’only’ O(n3) constraints, but solving it is still a computational
challenge. We address this issue in some more detail in Section 7 below.

4 Other semidefinite relaxations for QAP

In this section we review the semidefinite relaxations introduced in [26] and further investigated in
[22]. The key features of this approach consist in lifting the problem into the space of matrices of
order n2 + 1 and using a parametrization which reflects the assignment constraints. To be specific,
the polytope

P := conv
{[1

x

]
·
[

1
x

]T
: x = vec(X), X ∈ Π

}
(6)
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is replaced by a larger convex set

P̂ :=
{
Y ∈ Sn2+1 : ∃Z ∈ S+

(n−1)2+1
s. t. Z00 = 1 and Y = V̂ ZV̂ T

}
⊂ S+

n2+1
,

where

V̂ =
[
eT0
W

]
, W =

[
1
n
un2 | V ⊗ V

]
and V =

[
In−1

−uTn−1

]
. (7)

It is crucial to understand the semidefinite programs which are based on P̂, therefore we add an
explicit description of P̂ here. We note however, that the ’only if’ part of the result below was already
proved in [26].

Lemma 5 A matrix Y ∈ S+
n2+1

is in P̂ if and only if Y satisfies

(i) Y00 = 1, Y 0iu = 1, 1 ≤ i ≤ n,
∑n

i=1 Y0i = uT .

(ii) Y 0j = uTY ij, 1 ≤ i, j ≤ n.

(iii)
∑n

i=1 Y
ij = uY 0j, 1 ≤ j ≤ n.

Proof: The “only if ” part is done in [26]. We add it here for the sake of completeness. Let
Y = V̂ ZV̂ T . From Z00 = 1 it follows that Y00 = 1. Let us define the operator T : R(n2+1)×(n2+1) →
R2n×(n2+1) as T (X) = T̂X, where

T̂ =
[
−un I ⊗ uTn
−un uTn ⊗ I

]
∈ R2n×(n2+1).

A short calculation shows that T (V̂ ) = 0, hence T̂ Y = 0. The second and third property from (i) are
just the equations T̂ Y (:, 0) = 0 in explicit form. The equations from (ii) are exactly the equations
[−un | I ⊗ uTn ] · Y (:, 1 : n2) = 0 and similarly the equations from (iii) are obtained by expanding the
constraint [−un |uTn ⊗ I] · Y (:, 1 : n2) = 0.

Let us consider the opposite direction. Let Y ∈ S+
n2+1

satisfy (i)–(iii). Then we have T̂ Y = 0,
hence the columns of Y are in Ker(T̂ ). Since Ker(T̂ ) is spanned by the columns of V̂ , which are
also linearly independent (see [26, Theorem 3.1]), there exists Λ ∈ R((n−1)2+1)×(n2+1) such that
Y = V̂ Λ = ΛT V̂ T (Y is also symmetric). In addition, we can find the matrix V̂ −1 ∈ R((n−1)2+1)×(n2+1)

such that V̂ −1V̂ = I(n−1)2+1. Therefore we have Λ = V̂ −1ΛT V̂ T and Y = V̂ Λ = V̂ (V̂ −1ΛT )V̂ T , which
means that Y is equal to V̂ ZV̂ T for Z = V̂ −1ΛT . From Y � 0 and Y00 = 1 it follows that Z � 0 and
Z00 = 1. 2

Remark 3 In Lemma 5 we used Y � 0 only to prove Z � 0. Hence if Y ∈ Sn2+1 is not positive
semidefinite and satisfies (i)–(iii) from Lemma 5, then we can still write it as Y = V̂ ZV̂ T for
Z ∈ S(n−1)2+1 with Z00 = 1.

In the sequel we list some semidefinite relaxations, summarized from [22, 26]. They are obtained
by considering QAP , lifted into the space Sn2+1 as follows:

OPTQAP = min {〈L, Y 〉 : Y ∈ P}, (8)
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where

L =
[

0 1
2c
T

1
2c B ⊗A

]
. (9)

To get relaxations, the constraint Y ∈ P is replaced by Y ∈ P̂ and some cutting planes are added.
We follow the notation from [22] and denote them by QAPR0 , QAPR2 and QAPR3 :

(QAPR0) min {〈L, Y 〉 : Y ∈ P̂, Arrow(Y ) = 0},
(QAPR2) min {〈L, Y 〉 : Y ∈ P̂, Arrow(Y ) = 0, G(Y ) = 0},
(QAPR3) min {〈L, Y 〉 : Y ∈ P̂, Arrow(Y ) = 0, G(Y ) = 0, Y ≥ 0}.

All optimization problems above are semidefinite programs. The constraint Arrow(Y ) = 0 demands
that in the matrix Y ∈ Sn2+1 with the block structure from (1) the first row must be equal to the
diagonal, i. e. Y 0i = diag(Y ii), 1 ≤ i ≤ n. The constraint G(Y ) = 0 is exactly the same as in
QAPZKRW1 and assures the right zero pattern in the right-lower block of Y . The new constraint in
QAPR3 is due to the observation that any matrix from P has only non-negative components.

5 Lovász-Schrijver relaxation for QAP

In this section we briefly review the Lovász-Schrijver hierarchy of relaxations applied to QAP and
recall the semidefinite approximations for QAP from Burer and Vandenbussche [4]. Burer and Van-
denbussche [4] report good computational results in solving relaxations for QAP , based on the Lovász-
Schrijver hierarchy of relaxations for general 0-1 polyhedra [13, 15].

Let K ⊂ Rn2
be the convex set of doubly stochastic matrices in a vector representation:

K = {x : x = vec(X), Xu = u, XTu = u, X ≥ 0}.

We may express K also as K = {x : Ax = u2n, x ≥ 0} for

A =
[
I ⊗ uTn
uTn ⊗ I

]
∈ R2n×n2

. (10)

The intersection K ∩ {0, 1}n2
is exactly the set of all permutation matrices in a vector form.

Following Lovász and Schrijver we may get a hierarchy of linear and semidefinite relaxations for
the following 0-1 polytope

P := conv{K ∩ {0, 1}n2} = conv{x : x = vec(X), X ∈ Π}.

The first members of these hierarchies are

N(K) :=
{
x ∈ Rn :

[
1
x

]
= diag(Y ) for some Y ∈M(K)

}
N+(K) :=

{
x ∈ Rn :

[
1
x

]
= diag(Y ) for some Y ∈M+(K)

}
,

where

M(K) := {Y ∈ Sn2+1 : Y e0 = diag(Y ), Y ei ∈ K̂, Y (e0 − ei) ∈ K̂, i = 1, . . . , n2}
M+(K) := M(K) ∩ S+

n2+1
and

K̂ := {λ
[

1
x

]
: λ ≥ 0, x ∈ K}. (11)
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We can get higher order linear and semidefinite relaxations for K recursively:

Nk(K) := N(Nk−1(K)), with N1(K) = N(K),
Nk

+(K) := N+(Nk−1
+ (K)), with N1

+(K) = N+(K).

In the case of QAP we have a quadratic objective function, hence we are not interested in linear
and semidefinite relaxations for P but we need relaxations for P from (6). The hierarchy from above
yields the following linear relaxation for P:

{Y ∈ Sn2+1 : Y ∈M(K), Y00 = 1}

and the semidefinite relaxation for P:

{Y ∈ Sn2+1 : Y ∈M+(K), Y00 = 1}.

The semidefinite program from [4] (we denote it by QAPLS) is obtained by taking the semidefinite
relaxation from above

(QAPLS) min {〈L, Y 〉 : Y ei ∈ K̂, Y (e0 − ei) ∈ K̂, i = 1, . . . , n2, Y00 = 1, Y ∈ S+
n2+1
},

where L is from (9).

Remark 4 For our particular K we may replace the constraints Y ei ∈ K̂, Y (e0 − ei) ∈ K̂,
i = 1, . . . , n2, by the following linearly independent set of constraints Y ei ∈ K̂, i = 0, 1, . . . , n2.

6 Comparing the relaxations

In this section we show that QAPZKRW1 and QAPR2 are equivalent and QAPK0∗
n

, QAPR3 and QAPLS
are also equivalent. The difference in favor of QAPLS , noticed in [4], is therefore due to computational
reasons (Sotirov [22] used the bundle method which is known to be very slowly converging close to
the optimum, making accurate computation of optimal values difficult).

We need the following lemma.

Lemma 6 A matrix Y ∈ S+
n2 is feasible for QAPZKRW1 if and only if Y satisfies

(i) G(Y ) = 0, trace(Y ii) = 1 for 1 ≤ i ≤ n,
∑

i diag(Y ii) = u,

(ii) uTY ij = diag(Y jj)T for 1 ≤ i, j ≤ n,

(iii)
∑

i Y
ij = udiag(Y jj)T for 1 ≤ j ≤ n.

Proof: If Y satisfies (i)–(iii), then obviously Y is feasible for QAPZKRW1 (feasibility for all but the
last constraint follows from (i), while the last is a simple corollary of (i) and (ii)).

The opposite direction is less obvious. Let Y ∈ S+
n2 be feasible for QAPZKRW1. Property (i)

contains only constraints from QAPZKRW1, hence is satisfied.
The property (ii) follows from the fact that the matrix

Ỹ =
∑
i,j

〈J, Y ij〉 · Eij = (I ⊗ uT )Y (I ⊗ uT )T

11



is positive semidefinite and satisfies all assumptions from Lemma 1, therefore we have Ỹij = 1 (we
used this fact also in the proof of Theorem 3). This implies that for any i 6= j the matrix[

Y ii Y ij

Y ji Y jj

]
satisfies the assumptions of Lemma 2, hence the property (ii) follows.

We prove (iii) by considering Ŷ =
∑

i,j Y
ij = (uT ⊗ I)Y (uT ⊗ I)T and repeating the arguments

from the previous paragraph. 2

We now have the tools to compare the semidefinite and Lovász–Schrijver relaxations for QAP .

Theorem 7 The semidefinite program QAPR2 is equivalent to QAPZKRW1 in the sense that feasible
sets are in bijective correspondence and OPTR2 = OPTZKRW1.

Proof: First we show that for any feasible Y ∈ S+
n2+1

for QAPR2 we can find exactly one matrix
Z = Z(Y ) ∈ S+

n2 , feasible for QAPZKRW1 and vice versa. We address the components of Y and Z
via the block structure, described in (1) and (2). The correspondence is as follows:

Y 7→ Z = Z(Y ) = [Y ij ]1≤i,j≤n and Z 7→ Y = Y (Z) =
[
1 zT

z Z

]
, z = diag(Z). (12)

If Y is feasible for QAPR2 , then Z = Z(Y ) � 0 and Lemma 5 implies that Z satisfies (i)–(iii)
from Lemma 6. Hence Z is feasible for QAPZKRW1.

Let Z be feasible for QAPZKRW1. Then we have Arrow(Y ) = 0 and from Lemma 6 it follows
that Y satisfies (i)–(iii) from Lemma 5, hence by using Remark 3 we have Y = V̂ RV̂ T for some
R ∈ S(n−1)2+1 with R00 = 1. It remains to show that Y � 0. From the block structure of Y and V̂
it follows that

Y =
[
1 zT

z Z

]
=
[
eT0Re0 eT0RW

T

WRe0 WRW T

]
,

where W is from (7). Since Z = WRW T � 0, we have R � 0 and consequently Y � 0.
For any pair (Y,Z) of feasible solutions for QAPR2 and QAPZKRW1, which satisfy (12), we have

〈B ⊗A+ Diag(c), Z〉 = 〈L, Y 〉.

The equality OPTR2 = OPTZKRW1 is therefore an immediate consequence of the first part of the
proof. 2

In the following theorem we compare semidefinite programs QAPR3 , QAPK0∗
n

and QAPLS .

Theorem 8 The semidefinite programs QAPK0∗
n

, QAPR3 and QAPLS are equivalent, i.e. the feasible
sets are in bijective correspondence and OPTR3 = OPTK0∗

n
= OPTLS .

Proof: The programs QAPR3 and QAPK0∗
n

are obtained from the models QAPR2 and QAPZKRW1 by
adding the sign constraint Y ≥ 0. The equivalence therefore follows from the equivalence of models
QAPR2 and QAPZKRW1, proven in Theorem 7.

It remains to show equivalence of models QAPK0∗
n

and QAPLS . Let Y ∈ S+
n2+1

be feasible for
QAPLS and Z the matrix, obtained from Y by deleting the first row and column. According to Remark
4 we know that Y ≥ 0, Y e0 = diag(Y ) and Y ei ∈ K̂ for 0 ≤ i ≤ n2 and K̂ from (11). Therefore
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Z ≥ 0 and if we prove that Z is feasible for QAPZKRW1, then Z is feasible also for QAPK0∗
n

, since
QAPZKRW1 was obtained from QAPK0∗

n
by omitting the sign constraint for non-diagonal entries in

the non-diagonal blocks.
It is sufficient to show that Z satisfy properties (i)–(iii) from Lemma 6. Constraints Y e0 ∈ K̂

together with Y00 = 1 implies that AY (1 : n2, 0) = u2n, where A is from (10). This equations can
be written equivalently as uTY i,0 = 1 for 1 ≤ i ≤ n and

∑
i Y

i0 = u. By using Y e0 = diag(Y ) we
get that the main diagonal of Z satisfies the property (i) from Lemma 6. Similarly we see that for
any 1 ≤ i ≤ n2 the matrix Y satisfy Y ei ∈ K̂, or equivalently AY (1 : n2, i) = Y (0, i)u2n. Expanding
this terms yields exactly the properties (ii) and (iii) from Lemma 6 for the matrix Z. For feasibility
for QAPZKRW1 it remains to show G(Z) = 0. Let us consider the diagonal block Zii. Since we know
that components of Z are non-negative, the property uTZii = diag(Zii) implies that Ziijk = 0 for
j 6= k. Similarly we get from

∑
i Z

ij = udiag(Zjj)T that
∑

i diag(Zij) = diag(Zjj) which means that
all diagonal elements in any non-diagonal block must be zero.

Therefore Z is feasible for QAPK0∗
n

and gives the same value of objective function. The reverse
direction, i. e. proving that the feasible solution Z for QAPK0∗

n
yields a feasible solution Y for QAPLS

via

Y =
[
1 zT

z Z

]
, z = diag(Z),

is easy and again relies on Lemma 6. 2

7 Summary and practical implications

We now summarize the equivalences shown in the previous sections and draw some practical con-
clusions. In Table 1, we collect in the same line problems which we showed to be equivalent. The
last column refers to the theorem which shows the equivalence. All relaxations are formulated in the
space of symmetric matrices of order n2 (or n2 + 1), hence each relaxation has O(n4) variables. The
weakest relaxation has O(n2) constraints, while the strongest ones all have O(n4) constraints.

The two weakest, but computationally cheapest models can be solved easily by interior point
methods. The other models (with at least O(n3) constraints) cannot be solved by interior point
methods. In [22] the bundle method is suggested to solve both QAPR2 and QAPR3 with low accuracy
by considering the Lagrangian dual, which is obtained by dualizing all constraints except those from
QAPR0 . Thus a function evaluation of the Lagrangian amounts to solving QAPR0 . In [22] it is
reported that after about 150 bundle iterations, i.e. function evaluations of QAPR0 , one has a rough
estimate of the respective relaxations.

The strongest models are still considered a computational challenge. Currently, the augmented
Lagrangian method proposed by Burer and Vandenbussche leads to moderately accurate solutions of
QAPLS . The bundle method [22] seems to be slightly faster, but gives less accurate results. During
the revision process of this paper, Zhao, Sun and Toh [27] proposed a new method, again based on the
Augmented Lagrangian method, and provide accurate solutions of the strongest relaxation QAPR3.

In Table 2 we summarize the currently strongest bounds on some standard test instances from the
Nugent collection, and indicate the size of each instance in column 2. The bounds in column 3 and 4
are reasonably tight, but their efficient computation still has to be considered a serious computational
challenge. The values of QAPR2 are taken from [22], those of QAPR3 from [27]. We emphasize that we
considered only SDP based bounds in this paper. The QAPLIB website [5] maintains the development
of all bounds available for QAP.
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problems hardness equivalence
QAP QAPCP NP-hard Theorem 3
QAPR3 QAPK0∗

n
QAPLS O(n4) Theorem 7

QAPR2 QAPZKRW1 O(n3) Theorem 8
QAPAW+ n2 + n

QAPR0 n2 + 1

Table 1: Problems in the same line are equivalent

name n OPTR2 OPTR3 OPTQAP
nug15 15 1069 1139 1150
nug20 20 2386 2503 2570
nug25 25 3454 3662 3744
nug30 30 5695 5944 6124

Table 2: The strongest SDP bounds for some instances of the Nugent collection.
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