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Abstract. The regularization of a convex program is exact if all solutions of the regularized
problem are also solutions of the original problem for all values of the regularization parameter below
some positive threshold. For a general convex program, we show that the regularization is exact
if and only if a certain selection problem has a Lagrange multiplier. Moreover, the regularization
parameter threshold is inversely related to the Lagrange multiplier. We use this result to generalize an
exact regularization result of Ferris and Mangasarian (1991) involving a linearized selection problem.
We also use it to derive necessary and sufficient conditions for exact penalization, similar to those
obtained by Bertsekas (1975) and by Bertsekas, Nedić, and Ozdaglar (2003). When the regularization
is not exact, we derive error bounds on the distance from the regularized solution to the original
solution set. We also show that existence of a “weak sharp minimum” is in some sense close to
being necessary for exact regularization. We illustrate the main result with numerical experiments
on the ℓ1 regularization of benchmark (degenerate) linear programs and semidefinite/second-order
cone programs. The experiments demonstrate the usefulness of ℓ1 regularization in finding sparse
solutions.

Key words. convex program, conic program, linear program, regularization, exact penalization,
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1. Introduction. A common approach to solving an ill-posed problem—one
whose solution is not unique or is acutely sensitive to data perturbations—is to con-
struct a related problem whose solution is well behaved and deviates only slightly
from a solution of the original problem. This is known as regularization, and devia-
tions from solutions of the original problem are generally accepted as a trade-off for
obtaining solutions with other desirable properties. However, it would be more desir-
able if solutions of the regularized problem are also solutions of the original problem.
We study necessary and sufficient conditions for this to hold, and their implications
for general convex programs.

Consider the general convex program

(P) minimize
x

f(x)

subject to x ∈ C,

where f : R
n → R is a convex function, and C ⊆ R

n is a nonempty closed convex
set. In cases where (P) is ill-posed or lacks a smooth dual, a popular technique is to
regularize the problem by adding a convex function to the objective. This yields the
regularized problem

(Pδ) minimize
x

f(x) + δφ(x)

subject to x ∈ C,

where φ : R
n → R is a convex function and δ is a nonnegative regularization param-

eter. The regularization function φ may be nonlinear and/or nondifferentiable.
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In general, solutions of the regularized problem (Pδ) need not be solutions of
(P). (Here and throughout, “solution” is used in lieu of “optimal solution.”) We say
that the regularization is exact if the solutions of (Pδ) are also solutions of (P) for
all values of δ below some positive threshold value δ̄. We choose the term exact to
draw an analogy with exact penalization that is commonly used for solving constrained
nonlinear programs. An exact penalty formulation of a problem can recover a solution
of the original problem for all values of the penalty parameter beyond a threshold
value. See, for example, [4, 5, 9, 21, 24, 31] and, for more recent discussions, [7, 15].

Exact regularization can be useful for various reasons. If a convex program does
not have a unique solution, exact regularization may be used to select solutions with
desirable properties. In particular, Tikhonov regularization [45], which corresponds to
φ(x) = ‖x‖2

2, can be used to select a least two-norm solution. Specialized algorithms
for computing least two-norm solutions of linear programs (LPs) have been proposed
by [25, 26, 27, 30, 33, 48], among others. Saunders [42] and Altman and Gondzio
[1] use Tikhonov regularization as a tool for influencing the conditioning of the un-
derlying linear systems that arise in the implementation of large-scale interior-point
algorithms for LPs. Bertsekas [4, Proposition 4] and Mangasarian [30] use Tikhonov
regularization to form a smooth convex approximation of the dual LP.

More recently, there has been much interest in ℓ1 regularization, which corre-
sponds to φ(x) = ‖x‖1. Recent work related to signal processing has focused on
using LPs to obtain sparse solutions (i.e., solutions with few nonzero components)
of underdetermined systems of linear equations Ax = b (with the possible additional
condition x ≥ 0); for examples, see [13, 12, 14, 18]. In machine learning and statistics,
ℓ1 regularization of linear least-squares problems (sometimes called lasso regression)
plays a prominent role as an alternative to Tikhonov regularization; for examples,
see [19, 44]. Further extensions to regression and maximum likelihood estimation are
studied in [2, 41], among others.

There have been some studies of exact regularization for the case of differentiable
φ, mainly for LP [4, 30, 34], but to our knowledge there has been only one study,
by Ferris and Mangasarian [20], for the case of nondifferentiable φ. However, their
analysis is mainly for the case of strongly convex φ and thus is not applicable to regu-
larization functions such as the one-norm. In this paper, we study exact regularization
of the convex program (P) by (Pδ) for a general convex φ.

Central to our analysis is a related convex program that selects solutions of (P)
of least φ-value:

(Pφ) minimize
x

φ(x)

subject to x ∈ C, f(x) ≤ p∗,

where p∗ denotes the optimal value of (P). We assume a nonempty solution set of
(P), which we denote by S, so that p∗ is finite and (Pφ) is feasible. Clearly, any
solution of (Pφ) is also a solution of (P). The converse, however, does not generally
hold. In §2 we prove our main result: the regularization (Pδ) is exact if and only if
the selection problem (Pφ) has a Lagrange multiplier µ∗. Moreover, the solution set
of (Pδ) coincides with the solution set of (Pφ) for all δ < 1/µ∗; see Theorem 2.1 and
Corollary 2.2.

A particular case of special interest is conic programs, which correspond to

f(x) = cTx and C = {x ∈ K | Ax = b}, (1.1)
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where A ∈ R
m×n, b ∈ R

m, c ∈ R
n, and K ⊆ R

n is a nonempty closed convex cone. In
the further case where K is polyhedral, (Pφ) always has a Lagrange multiplier. Thus
we extend a result obtained by Mangasarian and Meyer for LPs [34, Theorem 1];
their (weaker) result additionally assumes differentiability (but not convexity) of φ
on S, and proves that existence of a Lagrange multiplier for (Pφ) implies existence
of a common solution x∗ of (P) and (Pδ) for all positive δ below some threshold. In
general, however, (Pφ) need not have a Lagrange multiplier even if C has nonempty
interior. This is because the additional constraint f(x) = cTx ≤ p∗ may exclude
points in the interior of C. We discuss this further in §2.

1.1. Applications. We present four applications of our main result. The first
three show how to extend existing results in convex optimization. The fourth shows
how exact regularization can be used in practice.

Linearized selection (§3). In the case where f is differentiable, C is polyhedral,
and φ is strongly convex, Ferris and Mangasarian [20, Theorem 9] show that the
regularization (Pδ) is exact if and only if the solution of (Pφ) is unchanged when f is
replaced by its linearization at any x̄ ∈ S. We generalize this result by relaxing the
strong convexity assumption on φ; see Theorem 3.2.

Exact penalization (§4). We show a close connection between exact regulariza-
tion and exact penalization by applying our main results to obtain necessary and
sufficient conditions for exact penalization of convex programs. The resulting condi-
tions are similar to those obtained by Bertsekas [4, Proposition 1], Mangasarian [31,
Theorem 2.1], and Bertsekas, Nedić, and Ozdaglar [7, §7.3]; see Theorem 4.2.

Error bounds (§5). We show that in the case where f is continuously differentiable,
C is polyhedral, and S is bounded, a necessary condition for exact regularization with
any φ is that f have a “weak sharp minimum” [10, 11] over C. In the case where the
regularization is not exact, we derive error bounds on the distance from each solution
of the regularized problem (Pδ) to S in terms of δ and the growth rate of f on C away
from S.

Sparse solutions (§6). As an illustration of our main result, we apply exact ℓ1
regularization to select sparse solutions of conic programs. In §6.1 we report numerical
results on a set of benchmark LPs from the Netlib [36] test set and on a set of randomly
generated LPs with prescribed dual degeneracy (i.e., nonunique primal solutions).
Analogous results are reported in §6.2 for a set of benchmark semidefinite programs
(SDPs) and second-order cone programs (SOCPs) from the DIMACS test set [37]. The
numerical results highlight the effectiveness of this approach for inducing sparsity in
the solutions obtained via an interior-point algorithm.

1.2. Assumptions. The following assumptions hold implicitly throughout.

Assumption 1.1 (Feasibility and finiteness). The feasible set C is nonempty and
the solution set S of (P) is nonempty.

Assumption 1.2 (Bounded level sets). The level set {x ∈ S | φ(x) ≤ β} is
bounded for each β ∈ R, and infx∈C φ(x) > −∞. (For example, this assumption holds
when φ is coercive.)

Assumption 1.1 implies that the optimal value p∗ of (P) is finite. Assumptions 1.1
and 1.2 together ensure that the solution set of (Pφ), denoted by Sφ, is nonempty and
compact, and that the solution set of (Pδ), denoted by Sδ, is nonempty and compact
for all δ > 0. The latter is true because, for any δ > 0 and β ∈ R, any point x in the
level set {x ∈ C | f(x) + δφ(x) ≤ β} satisfies f(x) ≥ p∗ and φ(x) ≥ infx′∈C φ(x′), so
that φ(x) ≤ (β − p∗)/δ and f(x) ≤ β − δ infx′∈C φ(x′). Assumptions 1.1 and 1.2 then
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imply that φ, f , and C have no nonzero recession direction in common, so the above
level set must be bounded [40, Theorem 8.7].

Our results can be extended accordingly if the above assumptions are relaxed to
the assumption that Sφ 6= ∅ and Sδ 6= ∅ for all δ > 0 below some positive threshold.

2. Main results. Ferris and Mangasarian [20, Theorem 7] prove that if the
objective function f is linear, then

⋂

0<δ<δ̄

Sδ ⊆ Sφ (2.1)

for any δ̄ > 0. However, an additional constraint qualification on C is needed to ensure
that the set on the left-hand side of (2.1) is nonempty (see [20, Theorem 8]). The
following example shows that the set can be empty:

minimize
x

x3 subject to x ∈ K, (2.2)

where K = {(x1, x2, x3) | x2
1 ≤ x2x3, x2 ≥ 0, x3 ≥ 0}, i.e., K defines the cone of 2× 2

symmetric positive semidefinite matrices. Clearly K has a nonempty interior, and the
solutions have the form x∗

1 = x∗
3 = 0, x∗

2 ≥ 0, with p∗ = 0. Suppose that the convex
regularization function φ is

φ(x) = |x1 − 1| + |x2 − 1| + |x3|. (2.3)

(Note that φ is coercive, but not strictly convex.) Then (Pφ) has the singleton solution
set Sφ = {(0, 1, 0)}. However, for any δ > 0, (Pδ) has the unique solution

x1 =
1

2(1 + δ−1)
, x2 = 1, x3 =

1

4(1 + δ−1)2
,

which converges to the solution of (Pφ) as δ → 0, but is never equal to it. Therefore
Sδ differs from Sφ for all δ > 0 sufficiently small.

Note that the left-hand side of (2.1) can be empty even when φ is strongly convex
and infinitely differentiable. As an example, consider the strongly convex quadratic
regularization function

φ(x) = |x1 − 1|2 + |x2 − 1|2 + |x3|
2.

As with (2.3), it can be shown in this case that Sδ differs from Sφ = {(0, 1, 0)} for
all δ > 0 sufficiently small. In particular, (δ/2, 1, δ2/4) is feasible for (Pδ), and its
objective function value is strictly less than that of (0, 1, 0). Thus the latter cannot
be a solution of (Pδ) for any δ > 0.

In general, one can show that as δ → 0, each cluster point of solutions of (Pδ)
belongs to Sφ. Moreover, there is no duality gap between (Pφ) and its dual because Sφ

is compact (see [40, Theorem 30.4(i)]). However, the supremum in the dual problem
might not be attained, in which case there would be no Lagrange multiplier for (Pφ)—
and hence no exact regularization property. Thus additional constraint qualifications
are needed when f is not affine or C is not polyhedral.

The following theorem and corollary are our main results. They show that the
regularization (Pδ) is exact if and only if the selection problem (Pφ) has a Lagrange
multiplier µ∗. Moreover, Sδ = Sφ for all δ < 1/µ∗. Parts of our proof bear similarity
to the arguments used by Mangasarian and Meyer [34, Theorem 1], who consider
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the two cases µ∗ = 0 and µ∗ > 0 separately in proving the “if” direction. However,
instead of working with the KKT conditions for (P) and (Pδ), we work with saddle-
point conditions.

Theorem 2.1.
(a) For any δ > 0, S ∩ Sδ ⊆ Sφ.
(b) If there exists a Lagrange multiplier µ∗ for (Pφ), then S ∩ Sδ = Sφ for all

δ ∈ (0, 1/µ∗].
(c) If there exists δ̄ > 0 such that S ∩ Sδ̄ 6= ∅, then 1/δ̄ is a Lagrange multiplier

for (Pφ), and S ∩ Sδ = Sφ for all δ ∈ (0, δ̄].
(d) If there exists δ̄ > 0 such that S ∩ Sδ̄ 6= ∅, then Sδ ⊆ S for all δ ∈ (0, δ̄).

Proof.

Part (a). Consider any x∗ ∈ S ∩ Sδ. Then, because x∗ ∈ Sδ,

f(x∗) + δφ(x∗) ≤ f(x) + δφ(x) for all x ∈ C.

Also, x∗ ∈ S, so f(x) = f(x∗) = p∗ for all x ∈ S. This implies that

φ(x∗) ≤ φ(x) for all x ∈ S.

Thus x∗ ∈ Sφ, and it follows that S ∩ Sδ ⊆ Sφ.

Part (b). Assume that there exists a Lagrange multiplier µ∗ for (Pφ). We consider
the two cases µ∗ = 0 and µ∗ > 0 in turn.

First, suppose that µ∗ = 0. Then, for any solution x∗ of (Pφ),

x∗ ∈ arg min
x∈C

φ(x),

or, equivalently,

φ(x∗) ≤ φ(x) for all x ∈ C. (2.4)

Also, x∗ is feasible for (Pφ), so x∗ ∈ S. Thus

f(x∗) ≤ f(x) for all x ∈ C.

Multiplying the inequality in (2.4) by δ ≥ 0 and adding it to the above inequality
yields

f(x∗) + δφ(x∗) ≤ f(x) + δφ(x) for all x ∈ C.

Thus x∗ ∈ Sδ for all δ ∈ [0,∞).
Second, suppose that µ∗ > 0. Then, for any solution x∗ of (Pφ),

x∗ ∈ arg min
x∈C

φ(x) + µ∗(f(x) − p∗),

or, equivalently,

x∗ ∈ arg min
x∈C

f(x) +
1

µ∗
φ(x).
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Thus

f(x∗) +
1

µ∗
φ(x∗) ≤ f(x) +

1

µ∗
φ(x) for all x ∈ C.

Also, x∗ is feasible for (Pφ), so that x∗ ∈ S. Therefore

f(x∗) ≤ f(x) for all x ∈ C.

Then, for any λ ∈ [0, 1], multiplying the above two inequalities by λ and 1 − λ,
respectively, and summing them yields

f(x∗) +
λ

µ∗
φ(x∗) ≤ f(x) +

λ

µ∗
φ(x) for all x ∈ C.

Thus x∗ ∈ Sδ for all δ ∈ [0, 1/µ∗].
The above arguments show that Sφ ⊆ Sδ for all δ ∈ [0, 1/µ∗], and therefore

Sφ ⊆ S∩Sδ for all δ ∈ (0, 1/µ∗]. By part (a) of the theorem, we must have Sφ = S∩Sδ

as desired.
Part (c). Assume that there exists δ̄ > 0 such that S ∩ Sδ̄ 6= ∅. Then for any

x∗ ∈ S ∩ Sδ̄, we have x∗ ∈ Sδ̄, and thus

x∗ ∈ arg min
x∈C

f(x) + δ̄φ(x),

or, equivalently,

x∗ ∈ arg min
x∈C

φ(x) +
1

δ̄
(f(x) − p∗).

By part (a), x∗ ∈ Sφ. This implies that any x ∈ Sφ attains the minimum because
φ(x) = φ(x∗) and f(x) = p∗. Therefore 1/δ̄ is a Lagrange multiplier for (Pφ). By
part (b), S ∩ Sδ = Sφ for all δ ∈ (0, δ̄].

Part (d). To simplify notation, define fδ(x) = f(x) + δφ(x). Assume that there
exists a δ̄ > 0 such that S ∩ Sδ̄ 6= ∅. Fix any x∗ ∈ S ∩ Sδ̄. For any δ ∈ (0, δ̄) and any
x ∈ C \ S, we have

fδ̄(x
∗) ≤ fδ̄(x) and f(x∗) < f(x).

Because 0 < δ/δ̄ < 1, this implies that

fδ(x
∗) =

δ

δ̄
fδ̄(x

∗) +

(
1 −

δ

δ̄

)
f(x∗) <

δ

δ̄
fδ̄(x) +

(
1 −

δ

δ̄

)
f(x) = fδ(x).

Because x∗ ∈ C, this shows that x ∈ C\S cannot be a solution of (Pδ), and so Sδ ⊆ S,
as desired.

Theorem 2.1 shows that existence of a Lagrange multiplier µ∗ for (Pφ) is necessary
and sufficient for exact regularization of (P) by (Pδ) for all 0 < δ < 1/µ∗. Coerciveness
of φ on S is needed only to ensure that Sφ is nonempty. If δ = 1/µ∗, then Sδ need
not be a subset of S. For example, suppose that

n = 1, C = [0,∞), f(x) = x, and φ(x) = |x − 1|.

Then µ∗ = 1 is the only Lagrange multiplier for (Pφ), but S1 = [0, 1] 6⊆ S = {0}. If
Sδ is a singleton for δ ∈ (0, 1/µ∗], such as when φ is strictly convex, then Theorem
2.1(b) and Sφ 6= ∅ imply that Sδ ⊆ S.
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The following corollary readily follows from Theorem 2.1(b)–(c) and Sφ 6= ∅.

Corollary 2.2.
(a) If there exists a Lagrange multiplier µ∗ for (Pφ), then Sδ = Sφ for all δ ∈

(0, 1/µ∗).
(b) If there exists δ̄ > 0 such that Sδ̄ = Sφ, then 1/δ̄ is a Lagrange multiplier for

(Pφ), and Sδ = Sφ for all δ ∈ (0, δ̄].

2.1. Conic programs. Conic programs (CPs) correspond to (P) with f and C
given by (1.1). They include several important problem classes. LPs correspond to
K = R

n
+ (the nonnegative orthant); SOCPs correspond to

K = K
soc

n1
× · · · × K

soc

nK
with K

soc

n :=

{
x ∈ R

n

∣∣∣∣∣

n−1∑

i=1

x2
i ≤ x2

n, xn ≥ 0

}

(a product of second-order cones); SDPs correspond to K = S
n
+ (the cone of symmetric

positive semidefinite n×n real matrices). CPs are discussed in detail in [3, 8, 35, 38],
among others.

It is well known that when K is polyhedral, the selection problem (Pφ), with f
and C given by (1.1), must have a Lagrange multiplier [40, Theorem 28.2]. In this
important case, Corollary 2.2 immediately yields the following exact-regularization
result for polyhedral CPs.

Corollary 2.3. Suppose that f and C have the form given by (1.1) and that K
is polyhedral. Then there exists a positive δ̄ such that Sδ = Sφ for all δ ∈ (0, δ̄).

Corollary 2.3 extends [34, Theorem 1], which additionally assumes differentiability
(though not convexity) of φ on S and proves a weaker result that there exists a common
solution x∗ ∈ S ∩ Sδ for all positive δ below some threshold. If S is furthermore
bounded, then an “excision lemma” of Robinson [39, Lemma 3.5] can be applied to
show that Sδ ⊆ S for all positive δ below some threshold. This result is still weaker
than Corollary 2.3 however.

2.2. Relaxing the assumptions on the regularization function. The as-
sumption that φ is coercive on S and is bounded from below on C (Assumption 1.2)
ensures that the selection problem (Pφ) and the regularized problem (Pδ) have so-
lutions. This assumption is preserved under the introduction of slack variables for
linear inequality constraints. For example, if C = {x ∈ K | Ax ≤ b} for some closed
convex set K, A ∈ R

m×n, and b ∈ R
m, then

φ̃(x, s) = φ(x) with C̃ = {(x, s) ∈ K × [0,∞)m | Ax + s = b}

also satisfies Assumption 1.2. Here φ̃(x, s) depends only on x. Can Assumption 1.2
be relaxed?

Suppose that φ(x) depends only on a subset of coordinates xJ and is coercive
with respect to xJ , where xJ = (xj)j∈J and J ⊆ {1, . . . , n}. Using the assumption
that (P) has a feasible point x∗, it is readily seen that (Pδ) has a solution with respect
to xJ for each δ > 0, i.e., the minimization in (Pδ) is attained at some xJ . For an LP
(f linear and C polyhedral) it can be shown that (Pδ) has a solution with respect to
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all coordinates of x. However, in general this need not be true, even for an SOCP.
An example is

n = 3, f(x) = −x2 + x3, C = {x |
√

x2
1 + x2

2 ≤ x3}, and φ(x) = |x1 − 1|.

Here, p∗ = 0 (since
√

x2
1 + x2

2 − x2 ≥ 0 always) and solutions are of the form (0, ξ, ξ)
for all ξ ≥ 0. For any δ > 0, (Pδ) has optimal value of zero (achieved by setting
x1 = 1, x3 =

√
1 + x2

2, and taking x2 → ∞) but has no solution. In general, if we
define

f̂(xJ) := min
(xj)j 6∈J |x∈C

f(x),

then it can be shown, using convex analysis results [40], that f̂ is convex and lower

semicontinuous—i.e., the epigraph of f̂ is convex and closed. Then (Pδ) is equivalent
to

minimize
xJ

f̂(xJ) + δφ(xJ),

with φ viewed as a function of xJ . Thus, we can in some sense reduce this case to
the one we currently consider. Note that f̂ may not be real-valued, but this does not
pose a problem with the proof of Theorem 2.1.

3. Linearized selection. Ferris and Mangasarian [20] develop a related exact-
regularization result for the special case where f is differentiable, C is polyhedral, and
φ is strongly convex. They show that (Pδ) is an exact regularization if the solution
set of the selection problem (Pφ) is unchanged when f is replaced by its linearization
at any x̄ ∈ S. In this section we show how Theorem 2.1 and Corollary 2.2 can be
applied to generalize this result. We begin with a technical lemma, closely related to
some results given by Mangasarian [32].

Lemma 3.1. Suppose that f is differentiable on R
n and is constant on the line

segment joining two points x∗ and x̄ in R
n. Then

∇f(x∗)T (x − x∗) = ∇f(x̄)T (x − x̄) for all x ∈ R
n. (3.1)

Moreover, ∇f is constant on the line segment.
Proof. Because f is convex differentiable and is constant on the line segment

joining x∗ and x̄, ∇f(x∗)T (x̄ − x∗) = 0. Because f is convex,

f(y) − f(x̄) ≥ f(y) − f(x∗) ≥ ∇f(x∗)T (y − x∗) for all y ∈ R
n.

Fix any x ∈ R
n. Taking y = x̄ + α(x − x̄) with α > 0 yields

f(x̄ + α(x − x̄)) − f(x̄) ≥ ∇f(x∗)T (x̄ + α(x − x̄) − x∗) = α∇f(x∗)T (x − x̄).

Dividing both sides by α and then taking α → 0 yields in the limit

∇f(x̄)T (x − x̄) ≥ ∇f(x∗)T (x − x̄) = ∇f(x∗)T (x − x∗). (3.2)

Switching x̄ and x∗ in the above argument yields an inequality in the opposite direc-
tion. Thus (3.1) holds, as desired.
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By taking x = α(∇f(x∗)−∇f(x̄)) in (3.2) (where the inequality is now replaced
by equality) and letting α → ∞, we obtain that ‖∇f(x∗) − ∇f(x̄)‖2

2 = 0 and hence
that ∇f(x∗) = ∇f(x̄). This shows that ∇f is constant on the line segment.

Suppose that f is differentiable at every x̄ ∈ S, and consider a variation of the
selection problem (Pφ) in which the constraint is linearized about x̄:

(Pφ,x̄) minimize
x

φ(x)

subject to x ∈ C, ∇f(x̄)T (x − x̄) ≤ 0.

Lemma 3.1 shows that the feasible set of (Pφ,x̄) is the same for all x̄ ∈ S. Since f
is convex, the feasible set of (Pφ,x̄) contains S, which is the feasible set of (Pφ). Let
Sφ,x̄ denote the solution set of (Pφ,x̄). In general Sφ 6= Sφ,x̄. In the case where φ is
strongly convex and C is polyhedral, Ferris and Mangasarian [20, Theorem 9] show
that exact regularization (i.e., Sφ = Sδ for all δ > 0 sufficiently small) holds if and
only if Sφ = Sφ,x̄. By using Theorem 2.1, Corollary 2.2, and Lemma 3.1, we can
generalize this result by relaxing the assumption that φ is strongly convex.

Theorem 3.2. Suppose that f is differentiable on C.
(a) If there exists a δ̄ > 0 such that Sδ̄ = Sφ, then

Sφ ⊆ Sφ,x̄ for all x̄ ∈ S. (3.3)

(b) If C is polyhedral and (3.3) holds, then there exists a δ̄ > 0 such that Sδ = Sφ

for all δ ∈ (0, δ̄).

Proof.
Part (a). Suppose that there exists a δ̄ > 0 such that Sδ̄ = Sφ. Then by Corol-

lary 2.2, µ∗ := 1/δ̄ is a Lagrange multiplier for (Pφ), and for any x∗ ∈ Sφ,

x∗ ∈ arg min
x∈C

φ(x) + µ∗f(x). (3.4)

Because φ and f are real-valued and convex, x∗ and µ∗ satisfy the optimality condition

0 ∈ ∂φ(x∗) + µ∗∇f(x∗) + NC(x∗).

Then x∗ satisfies the KKT condition for the linearized selection problem

minimize
x∈C

φ(x) subject to ∇f(x∗)T (x − x∗) ≤ 0, (3.5)

and is therefore a solution of this problem. By Lemma 3.1, the feasible set of this
problem remains unchanged if we replace ∇f(x∗)T (x−x∗) ≤ 0 with ∇f(x̄)T (x−x̄) ≤ 0
for any x̄ ∈ S. Thus x∗ ∈ Sφ,x̄. The choice of x∗ was arbitrary, and so Sφ ⊆ Sφ,x̄.

Part (b). Suppose that C is polyhedral and (3.3) holds. By Lemma 3.1, the solu-
tion set of (Pφ,x̄) remains unchanged if we replace ∇f(x̄)T (x− x̄) ≤ 0 by ∇f(x∗)T (x−
x∗) ≤ 0 for any x∗ ∈ Sφ. The resulting problem (3.5) is linearly constrained and there-
fore has a Lagrange multiplier µ̄ ∈ R. Moreover, µ̄ is independent of x∗. By Corollary
2.2(a), the problem

minimize
x∈C

φ(x) + µ∗∇f(x∗)T x
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has the same solution set as (3.5) for all µ∗ > µ̄. The necessary and sufficient opti-
mality condition for this convex program is

0 ∈ ∂φ(x) + µ∗∇f(x∗) + NC(x).

Because (3.3) holds, x∗ satisfies this optimality condition. Thus (3.4) holds for all
µ∗ > µ̄ or, equivalently, x∗ ∈ Sδ for all δ ∈ (0, 1/µ̄). Because µ̄ is independent of x∗,
this shows that Sφ ⊆ Sδ for all δ ∈ (0, 1/µ̄). And because ∅ 6= Sφ ⊆ S, it follows
that S ∩ Sδ 6= ∅ for all δ ∈ (0, 1/µ̄). By Theorem 2.1(a) and (d), Sδ ⊆ Sφ for all
δ ∈ (0, 1/µ̄). Therefore Sδ = Sφ for all δ ∈ (0, 1/µ̄).

In the case where φ is strongly convex, Sφ and Sφ,x̄ are both singletons, so (3.3)
is equivalent to Sφ = Sφ,x̄ for all x̄ ∈ S. Thus, when C is also polyhedral, Theorem
3.2 reduces to [20, Theorem 9]. Note that in Theorem 3.2(b) the polyhedrality of
C is needed only to ensure the existence of a Lagrange multiplier for (3.5), and can
be relaxed by assuming an appropriate constraint qualification. In particular, if C is
given by inequality constraints, then it suffices that (Pφ,x̄) has a feasible point that
strictly satisfies all nonlinear constraints [40, Theorem 28.2].

Naturally, (3.3) holds if f is linear. Thus Theorem 3.2(b) is false if we drop the
polyhedrality assumption on C, as we can find examples of convex coercive φ, linear
f , and closed convex (but not polyhedral) C for which exact regularization fails; see
example (2.2).

4. Exact penalization. In this section we show a close connection between
exact regularization and exact penalization by applying Corollary 2.2 to obtain nec-
essary and sufficient conditions for exact penalization of convex programs. Consider
the convex program

minimize
x

φ(x) subject to x ∈ C, g(x) :=
(
gi(x)

)m

i=1
≤ 0, (4.1)

where φ, g1, . . . , gm are real-valued convex functions defined on R
n, and C ⊆ R

n is a
nonempty closed convex set. The penalized form of (4.1) is

minimize
x

φ(x) + σP (g(x)) subject to x ∈ C, (4.2)

where σ is a positive penalty parameter and P : R
m → [0,∞) is a convex function

having the property that P (u) = 0 if and only if u ≤ 0; see [7, §7.3]. A well-known
example of such a penalty function is

P (u) = ‖max{0, u}‖p, (4.3)

where ‖ · ‖p is the p-norm (1 ≤ p ≤ ∞) [22, §14.3].
The conjugate and polar functions of P [40, §§12, 15] are defined, respectively, by

P ∗(w) := sup
u

wTu − P (u) and P ◦(w) := sup
u6≤0

wTu

P (u)
.

Note that P ◦(αw) = αP ◦(w) for all α ≥ 0. For P given by (4.3), P ◦(w) equals the
q-norm of w whenever w ≥ 0, where 1/p + 1/q = 1. The following lemma gives key
properties of these functions that are implicit in the analysis of [7, §7.3].

Lemma 4.1. Suppose that P : R
m → [0,∞) is a convex function and P (u) = 0 if

and only if u = 0. Then
(a) P (u) ≤ P (v) whenever u ≤ v; and
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(b)

P ∗(w)






= ∞ if w 6≥ 0;

> 0 if w ≥ 0 and P ◦(w) > 1;

= 0 if w ≥ 0 and P ◦(w) ≤ 1.

Proof.
Part (a). Fix any u, v ∈ R

m with u < v, and define

π(α) := P (u + α(v − u)) for all α ∈ R.

We have u + α(v − u) < 0 for all α < 0 sufficiently negative, in which case π(α) = 0.
Because π is convex, this implies that π is nondecreasing and hence π(0) ≤ π(1)—i.e.,
P (u) ≤ P (v). Thus P (u) ≤ P (v) whenever u < v. Because P is continuous on R

m

[40, Theorem 10.1], this yields P (u) ≤ P (v) whenever u ≤ v.
Part (b). Fix any w ∈ R

m. If wi < 0 for some i ∈ {1, . . . ,m}, then by letting
ui → −∞ and setting all other components of u to zero, we obtain wTu − P (u) =
wiui → ∞ and thus P ∗(w) = ∞. If w ≥ 0 and P ◦(w) > 1, then wTu > P (u) for
some u 6≤ 0 and thus P ∗(w) ≥ wTu − P (u) > 0. If w ≥ 0 and P ◦(w) ≤ 1, then
wTu ≤ 0 = P (u) for all u ≤ 0, and wTu ≤ P (u) for all u 6≤ 0, so that wTu ≤ P (u) for
all u ∈ R

m (with equality holding when u = 0). Therefore P ∗(w) = 0.

Theorem 4.2. Suppose that (4.1) has a nonempty compact solution set. If there
exist Lagrange multipliers y∗ for (4.1), then the penalized problem (4.2) has the
same solution set as (4.1) for all σ > P ◦(y∗). Conversely, if (4.1) and (4.2) have
the same solution set for some σ = µ∗ > 0, then (4.1) and (4.2) have the same
solution set for all σ ≥ µ∗, and there exists a Lagrange multiplier vector y∗ for
(4.1) with µ∗ ≥ P ◦(y∗).

Proof. Set f(x) = P
(
g(x)

)
for all x ∈ R

n. By the convexity of g1, . . . , gm,
P , and Lemma 4.1(a), f is a convex function and thus (4.2) is a convex program.
Moreover, any feasible point x∗ of (4.1) is a solution of (P) with optimal value p∗ = 0.
Accordingly, we identify (4.2) with (Pδ) (where φ is the regularization function and
δ = 1/σ is the regularization parameter), and we identify the problem

minimize
x

φ(x) subject to x ∈ C, P
(
g(x)

)
≤ 0 (4.4)

with (Pφ). Assumptions 1.1 and 1.2 are satisfied because (4.1) has a nonempty com-
pact solution set.

A primal-dual solution pair (x∗, y∗) of (4.1) satisfies the KKT conditions

0 ∈ ∂φ(x) +

m∑

i=1

yi∂gi(x) + NC(x), y ≥ 0, g(x) ≤ 0, yTg(x) = 0. (4.5)

By [40, Theorem 23.5], the subdifferential of P at u has the expression ∂P (u) = {w |
wTu = P (u) + P ∗(w)}. If u ≤ 0, then P (u) = 0 and, by Lemma 4.1(b), wTu = P ∗(w)
only if w ≥ 0 and P ◦(w) ≤ 1. This implies that

∂P (u) = {w | w ≥ 0, P ◦(w) ≤ 1, wTu = 0} for all u ≤ 0.
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We can then express the KKT conditions for (4.4) as

0 ∈ ∂φ(x) + µ
m∑

i=1

wi∂gi(x) + NC(x),






w ≥ 0

P ◦(w) ≤ 1

µ ≥ 0





, g(x) ≤ 0, wTg(x) = 0.

(4.6)
Comparing (4.5) and (4.6) and using the positive homogeneous property of P ◦, we see
that they are equivalent in the sense that (x∗, y∗) satisfies (4.5) if and only if (x∗, µ∗)
satisfies (4.6), where

µ∗w∗ = y∗ and µ∗ = P ◦(y∗),

for some w∗ ≥ 0 with P ◦(w∗) ≤ 1. Note that µ∗ is a Lagrange multiplier for (4.4).
Therefore, by Corollary 2.2(a), (4.2) and (4.4) have the same solution set for all
σ > µ∗ = P ◦(y∗).

Conversely, suppose that (4.2) and (4.4) have the same solution set for σ = µ∗ > 0.
Then (Pδ) and (Pφ) have the same solution set for δ = 1/µ∗. By Corollary 2.2(b),
µ∗ is a Lagrange multiplier for (Pφ), and (Pδ) and (Pφ) have the same solution set
for all δ ∈ (0, 1/µ∗]. Therefore, (4.1) and (4.2) have the same solution set for all
σ ≥ µ∗. Moreover, for any x∗ ∈ Sφ there exists a vector w∗ such that (x∗, µ∗, w∗)
satisfies (4.6), and so y∗ := µ∗w∗ is a Lagrange multiplier vector for (4.1) that satisfies
P ◦(y∗) = µ∗P ◦(w∗) ≤ µ∗.

We can consider a minimum P ◦-value Lagrange multiplier vector y∗ and, similarly,
a minimum exact penalty parameter σ. Theorem 4.2 asserts that these two quantities
are equal—that is,

{
inf P ◦(y∗)
such that y∗ ∈ R

m is a Lagrange
multiplier for (4.1)

}
=

{
inf σ
such that (4.2) has the same

solution set as (4.1)

}
.

Theorem 4.2 shows that the existence of Lagrange multipliers y∗ with P ◦(y∗) < ∞
is necessary and sufficient for exact penalization. There has been much study of
sufficient conditions for exact penalization; see, e.g., [4], [5, Proposition 4.1], and [9].
The results in [4, Propositions 1 and 2] assume the existence of Lagrange multipliers
y∗ and, for the case of separable P (i.e., P (u) =

∑
i Pi(ui)), prove necessary and

sufficient conditions on P and y∗ for exact penalization. For separable P , the condition
P ◦(y∗) ≤ σ reduces to

y∗
i ≤ σ lim

ui↓0

Pi(ui)

ui

, i = 1, . . . ,m, (4.7)

as derived in [4, Proposition 1]. A similar result was obtained in [31, Theorem 2.1]
for the further special case of Pi(ui) = max{0, ui}. Thus Theorem 4.2 may be viewed
as a generalization of these results. (For the standard quadratic penalty Pi(ui) =
max{0, ui}

2, the right-hand side of (4.7) is zero, so (4.7) holds only if y∗
i = 0, i.e., the

constraint gi(x) ≤ 0 is redundant.)
The results in [9, Corollary 2.5.1 and Theorem 5.3] assume either the linear-

independence or Slater constraint qualifications in order to ensure existence of La-
grange multipliers. Theorem 4.2 is partly motivated by and very similar to the neces-
sary and sufficient conditions obtained in [7, Proposition 7.3.1]. The connection with
exact regularization, however, appears to be new.
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Although our results for exact regularization can be used to deduce results for
exact penalization, the reverse direction does not appear possible. In particular,
applying exact penalization to the selection problem (Pφ) yields a penalized problem
very different from (Pδ).

5. Error bounds and weak sharp minimum. Even when exact regularization
cannot be achieved, we can still estimate the distance from Sδ to S in terms of δ and
the growth rate of f away from S. We study this type of error bound in this section.

Theorem 5.1.
(a) For any δ̄ > 0, ∪0<δ≤δ̄Sδ is bounded.
(b) Suppose that there exist τ > 0, γ ≥ 1 such that

f(x) − p∗ ≥ τ dist(x,S)γ for all x ∈ C, (5.1)

where dist(x,S) = minx∗∈S ‖x−x∗‖2. Then, for any δ̄ > 0 there exists τ ′ > 0
such that

dist(xδ,S)γ−1 ≤ τ ′δ for all xδ ∈ Sδ, δ ∈ (0, δ̄].

Proof.
Part (a). Fix any x∗ ∈ S and any δ̄ > 0. For any δ ∈ (0, δ̄] and xδ ∈ Sδ,

f(x∗) + δφ(x∗) ≥ f(xδ) + δφ(xδ) ≥ f(x∗) + δφ(xδ),

and thus φ(x∗) ≥ φ(xδ). Using φ(xδ) ≥ infx∈C φ(x), we have, similarly, that

f(xδ) ≤ f(x∗) + δ
(
φ(x∗) − inf

x∈C
φ(x)

)
≤ f(x∗) + δ̄

(
φ(x∗) − inf

x∈C
φ(x)

)
.

This shows that ∪0<δ≤δ̄Sδ ⊆ {x ∈ C | φ(x) ≤ β, f(x) ≤ β} for some β ∈ R. Since
φ, f , and C have no nonzero recession direction in common (see Assumptions 1.1 and
1.2), the second set is bounded and therefore so is the first set.

Part (b). For any δ > 0 and xδ ∈ Sδ, let x∗
δ ∈ S satisfy ‖xδ − x∗

δ‖2 = dist(xδ,S).
Then

f(x∗
δ) + δφ(x∗

δ) ≥ f(xδ) + δφ(xδ)

≥ f(x∗
δ) + τ‖xδ − x∗

δ‖
γ
2 + δφ(xδ),

which implies that

τ‖xδ − x∗
δ‖

γ
2 ≤ δ

(
φ(x∗

δ) − φ(xδ)
)
.

Because φ is convex and real-valued,

φ(xδ) ≥ φ(x∗
δ) + ηT

δ (xδ − x∗
δ) ≥ φ(x∗

δ) − ‖ηδ‖2‖xδ − x∗
δ‖2,

for some ηδ ∈ ∂φ(x∗
δ). Combining the above two inequalities yields

τ‖xδ − x∗
δ‖

γ−1
2 ≤ δ‖ηδ‖2.

By part (a), xδ lies in a bounded set for all δ > 0, so x∗
δ lies in a bounded subset of

S for all δ > 0. Then ηδ lies in a bounded set [40, Theorem 24.7], so that ‖ηδ‖2 is
uniformly bounded. This proves the desired bound.
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Error bounds of the form (5.1) have been much studied, especially in the cases of
linear growth (γ = 1) and quadratic growth (γ = 2); see [6, 10, 11, 28, 29, 46] and
references therein. In general, it is known that (5.1) holds for some τ > 0 and γ ≥ 1
whenever f is analytic and C is bounded [28, Theorem 2.1].

Theorem 5.1 does not make much use of the convexity of f and φ, and it readily
extends to nonconvex f and φ. In the case of γ = 1 in (5.1) (i.e., f has a “weak sharp
minimum” over C), Theorem 5.1(b) implies that dist(xδ,S) = 0 for all xδ ∈ Sδ—i.e.,
Sδ ⊆ S, whenever δ < 1/τ ′. In this case, then, Sδ = Sφ whenever δ < 1/τ ′ and
Sδ 6= ∅. This gives another exact-regularization result.

The following result shows that it is nearly necessary for f to have a weak sharp
minimum over C in order for there to be exact regularization by any strongly convex
quadratic regularization function.

Theorem 5.2. Suppose that f is continuously differentiable on R
n and S is

bounded. If there does not exist τ > 0 such that (5.1) holds with γ = 1, then
either

(i) there exists a strongly convex quadratic function of the form φ(x) = ‖x− x̂‖2
2

(x̂ ∈ R
n) and a scalar δ̄ > 0 for which Sδ 6= Sφ for all δ ∈ (0, δ̄];

or
(ii) for every sequence xk ∈ C \ S, k = 1, 2, . . . , satisfying

f(xk) − p∗

dist(xk,S)
→ 0, (5.2)

and every cluster point (x∗, v∗) of {(sk, xk−sk

‖xk−sk‖2

)}, we have x∗ + αv∗ 6∈ C

for all α > 0, where sk ∈ S satisfies ‖xk − sk‖2 = dist(xk,S).

If case (ii) occurs, then C is not polyhedral, and for any x̄ ∈ S,

S = arg min
x∈C

∇f(x̄)Tx. (5.3)

Proof. Suppose that there does not exist τ > 0 such that (5.1) holds with γ = 1.
Then there exists a sequence xk ∈ C \ S, k = 1, 2, . . . , that satisfies (5.2). Let sk ∈ S
satisfy ‖xk − sk‖2 = dist(xk,S). Let vk = (xk − sk)/‖xk − sk‖2, so that ‖vk‖2 = 1.
Because S is bounded, {sk} is bounded. By passing to a subsequence if necessary, we
can assume that (sk, vk) → some (x∗, v∗). Because sk is the nearest point projection
of xk onto S, we have vk ∈ NS(sk), i.e., (x − sk)T vk ≤ 0 for all x ∈ S. Taking the
limit yields v∗ ∈ NS(x∗), i.e., (x − x∗)T v∗ ≤ 0 for all x ∈ S.

Note that {xk} need not converge to x∗ or even be bounded. Now, consider the
auxiliary sequence

yk = sk + ǫk(xk − sk) with ǫk =
1

max{k, ‖xk − sk‖2}
,

k = 1, 2, . . . . Then ǫk ∈ (0, 1], yk ∈ C \ S, (yk − sk)/‖yk − sk‖2 = vk for all k, and
yk − sk → 0 (so yk → x∗). Also, the convexity of f implies f(yk) ≤ (1 − ǫk)f(sk) +
ǫkf(xk) which, together with ‖yk − sk‖2 = ǫk‖xk − sk‖2 and f(sk) = p∗, implies

0 ≤
f(yk) − f(sk)

‖yk − sk‖2
≤

ǫkf(xk) − ǫkf(sk)

‖yk − sk‖2
=

f(xk) − p∗

dist(xk,S)
→ 0. (5.4)
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Because f(yk) − f(sk) = ∇f(sk)T (yk − sk) + o(‖yk − sk‖2) and f is continuously
differentiable, (5.4) and yk − xk → 0 yield, in the limit,

∇f(x∗)T v∗ = 0. (5.5)

Let fδ(x) = f(x) + δφ(x), with

φ(x) = ‖x − (x∗ + v∗)‖2
2.

Because v∗ ∈ NS(x∗), we have Sφ = {x∗}.
Suppose that there exists α > 0 such that x∗ +αv∗ ∈ C. Then, for any β ∈ (0, α],

fδ(x
∗ + βv∗) = f(x∗ + βv∗) + ‖βv∗ − v∗‖2

2

= f(x∗) + β∇f(x∗)T v∗ + o(β) + δ(β − 1)2‖v∗‖2
2

= f(x∗) + o(β) + δ(1 − 2β + β2)

= fδ(x
∗) + o(β) − δβ(2 − β),

where the third equality uses (5.5) and ‖v∗‖2 = 1. Thus x∗ + βv∗ ∈ C and fδ(x
∗ +

βv∗) < fδ(x
∗) for all β > 0 sufficiently small, implying Sδ 6= Sφ. Therefore, if case (ii)

does not occur, then case (i) must occur.
Suppose that case (ii) occurs. First, we claim that, for any x̄ ∈ S,

∇f(x̄)T (x − x̄) > 0 for all x ∈ C \ S.1

Fix any x̄ ∈ S. Because ∇f(x̄)T (x − x̄) = 0 for all x ∈ S, this yields (5.3). Next, we
claim that C cannot be polyhedral. If C were polyhedral, then the minimization in
(5.3) would be an LP, for which weak sharp minimum holds. Then there would exist
τ > 0 such that

∇f(x̄)T (x − x̄) ≥ τ dist(x,S) for all x ∈ C.

Because f is convex and thus f(x)− p∗ = f(x)− f(x̄) ≥ ∇f(x̄)T (x− x̄) for all x ∈ C,
this would imply that (5.1) holds with γ = 1, contradicting our assumption.

An example of case (ii) occurring in Theorem 5.2 is

n = 2, f(x) = x2, and C = {x ∈ R
2 | x2

1 ≤ x2}.

Here S = {(0, 0)}, p∗ = 0, and

f(x) − p∗

dist(x,S)
=

x2

‖x‖2
=

1√
(x1/x2)2 + 1

for all x ∈ C \ S.

The right-hand side goes to 0 if and only if x1/x2 → ∞, in which case x/‖x‖2 →
(±1, 0), and α(±1, 0) 6∈ C for all α > 0. Interestingly, we can still find φ(x) =

1If this were false, then there would exist x̄ ∈ S and x ∈ C \ S such that ∇f(x̄)T (x − x̄) = 0.
(∇f(x̄)T (x − x̄) < 0 cannot occur because x̄ ∈ S.) Let s ∈ S satisfy ‖x − s‖2 = dist(x,S).
By Lemma 3.1, ∇f(s)T (x − s) = 0. Then for xk = s + (x − s)/k, we would have xk ∈ C \ S,
f(xk)− f(s) = o(1/k), and dist(xk,S) = ‖x− s‖2/k, so xk satisfies (5.2) and sk = s for k = 1, 2, . . . .

Because (sk, x
k−s

k

‖xk−sk‖2

) → (s, x−s

‖x−s‖2
) and s + α x−s

‖x−s‖2
∈ C for all α ∈ (0, ‖x − s‖2], this would

contradict case (ii) occurring.
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‖x − x̂‖2
2 for which Sδ 6= Sφ for all δ > 0 sufficiently small. For example, take

φ(x) = (x1 − 1)2 + (x2 − 1)2. Then (Pδ) becomes

minimize
x

x2 + δ(x1 − 1)2 + δ(x2 − 1)2 subject to x2
1 ≤ x2.

It is straightforward to check that (0, 0) does not satisfy the necessary optimality
conditions for (Pδ) for all δ > 0. This raises the question of whether case (ii) is
subsumed by case (i) when C is not polyhedral. In §8, we give an example showing
that the answer is “no”.

6. Sparse solutions. In this section we illustrate a practical application of
Corollary 2.2. Our aim is to find sparse solutions of linear and conic programs that
may not have unique solutions. To this end, we let φ(x) = ‖x‖1, which clearly satisfies
the required Assumption 1.2. (In general, however, some components of x may be
more significant or be at different scales, in which case we may not wish to regularize
all components or regularize them equally.)

Regularization based on the one-norm has been used in many applications, with
the goal of obtaining sparse or even sparsest solutions of underdetermined systems of
linear equations and least-squares problems. Some recent examples include [14, 16,
17, 18].

The AMPL model and data files and the Matlab scripts used to generate all
of the numerical results presented in the following subsections can be obtained at
http://www.cs.ubc.ca/∼mpf/exactreg/.

6.1. Sparse solutions of linear programs. For underdetermined systems of
linear equations Ax = b that arise in fields such as signal processing, the studies in
[13], [14], and [18] advocate solving

minimize
x

‖x‖1 subject to Ax = b (and possibly x ≥ 0), (6.1)

in order to obtain a sparse solution. This problem can be recast as an LP and be
solved efficiently. The sparsest solution is given by minimizing the so-called zero-
norm, ‖x‖0, which counts the number of nonzero components in x. However, the
combinatorial nature of this minimization makes it computationally intractable for
all but the simplest instances. Interestingly, there exist reasonable conditions under
which a solution of (6.1) is a sparsest solution; see [13, 18].

Following this approach, we use Corollary 2.2 as a guide for obtaining least one-
norm solutions of a generic LP,

minimize
x

cTx subject to Ax = b, l ≤ x ≤ u, (6.2)

by solving its regularized version,

minimize
x

cTx + δ‖x‖1 subject to Ax = b, l ≤ x ≤ u. (6.3)

The vectors l and u are lower and upper bounds on x. In many of the numerical
tests given below, the exact ℓ1 regularized solution of (6.2) (given by (6.3) for small-
enough values of δ) is considerably sparser than the solution obtained by solving (6.2)
directly. In each instance, we solve the regularized and unregularized problems with
the same interior-point solver. We emphasize that, with an appropriate choice of the
regularization parameter δ, the solution of the regularized LP is also a solution of the
original LP.
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We use two sets of test instances in our numerical experiments. The instances
of the first set are randomly generated using a degenerate LP generator described
in [23]. Those of the second set are derived from the infeasible LPs in the Netlib
collection (http://www.netlib.org/lp/infeas/). Both sets of test instances are
further described in §§6.1.1–6.1.2.

We follow the same procedure for each test instance. First, we solve the LP
(6.2) to obtain an unregularized solution x∗ and the optimal value p∗ := cTx∗. Next,
we solve (Pφ), reformulated as an LP, to obtain a Lagrange multiplier µ∗ and the
threshold value δ̄ = 1/µ∗. Finally, we solve (6.3) with δ := δ̄/2, reformulated as an
LP, to obtain a regularized solution x∗

δ .
We use the log-barrier interior-point algorithm implemented in CPLEX 9.1 to

solve each LP. The default CPLEX options are used, except for crossover = 0 and
comptol = 1e-10. Setting crossover = 0 forces CPLEX to use the interior-point
algorithm only, and to not “cross over” to find a vertex solution. In general, we
expect the interior-point algorithm to find the analytic center of the solution set (see
[47, Theorems 2.16 and 2.17]), which tends to be less sparse than vertex solutions.
The comptol option tightens CPLEX’s convergence tolerance from its default of 1e-8
to its smallest allowable setting. We do not advocate such a tight tolerance in practice,
but the higher accuracy aids in computing the sparsity of a computed solution, which
we determine as

‖x‖0 = card{xi | |xi| > ǫ }, (6.4)

where ǫ = 10−8 is larger than the specified convergence tolerance.

6.1.1. Randomly generated LPs. Six dual-degenerate LPs were constructed
using Gonzaga’s Matlab generator [23]. This Matlab program accepts as inputs
the problem size and the dimensions of the optimal primal and dual faces, Dp and
Dd, respectively. Gonzaga shows that these quantities must satisfy

0 ≤ Dp ≤ n − m − 1 and 0 ≤ Dd ≤ m − 1. (6.5)

The six LPs are constructed with parameters n = 1000, m = 100, Dd = 0, and various
levels of Dp set as 0%, 20%, 40%, 60%, 80%, and 100% of the maximum of 899 (given
by (6.5)). The instances are respectively labeled random-0, random-20, random-40, and
so on.

Table 6.1 summarizes the results. We confirm that in each instance the optimal
values of the unregularized and regularized problems are nearly identical (at least to
within the specified tolerance), so each regularized solution is exact. Except for the
“control” instance random-0, the regularized solution x∗

δ has a strictly lower one-norm,
and is considerably sparser than the unregularized solution x∗.

6.1.2. Infeasible LPs. The second set of test instances is derived from a subset
of the infeasible Netlib LPs. For each infeasible LP, we discard the original objective,
and instead form the problem

minimize
x

‖Ax − b‖1 subject to l ≤ x ≤ u, (P
inf

)

and its regularized counterpart

minimize
x

‖Ax − b‖1 + δ‖x‖1 subject to l ≤ x ≤ u. (P
inf

δ )
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Table 6.1
Randomly generated LPs with increasing dimension of the optimal primal face. The arrows

indicate differences between values in neighboring columns: → indicates that the value to the right
is the same; ց indicates that the value to the right is lower; ր indicates that the value to the right
is larger.

LP c
T
x
∗

c
T
x
∗
δ ‖x∗‖1 ‖x∗

δ‖1 ‖x∗‖0 ‖x∗
δ‖0 δ̄

random-0 2.5e−13 1.0e−13 9.1e+01 → 9.1e+01 100 → 100 1.5e−04
random-20 5.6e−13 6.6e−13 2.9e+02 ց 2.0e+02 278 ց 100 2.2e−02
random-40 3.8e−12 3.7e−12 4.9e+02 ց 2.9e+02 459 ց 100 2.9e−02
random-60 3.9e−14 9.2e−11 6.7e+02 ց 3.6e+02 637 ց 101 3.3e−02
random-80 9.1e−12 8.4e−13 8.9e+02 ց 4.6e+02 816 ց 100 2.1e−01
random-100 1.8e−16 3.2e−12 1.0e+03 ց 5.4e+02 997 ց 102 1.1e−01

The unregularized problem (P
inf

) models the plausible situation where we wish to fit
a set of infeasible equations in the least one-norm sense. But because the one-norm

is not strictly convex or the equations are underdetermined, a solution of (P
inf

) may

not be unique, and the regularized problem (P
inf

δ ) is used to further select a sparse
solution.

The following infeasible Netlib LPs were omitted because CPLEX returned an

error message during the solution of (P
inf

) or (P
inf

δ ): lpi-bgindy, lpi-cplex2, lpi-gran,
lpi-klein1, lpi-klein2, lpi-klein3, lpi-qual, lpi-refinery, and lpi-vol1.

Table 6.2 summarizes the results. We can see that the regularized solution x∗
δ

is exact (i.e., cTx∗
δ = cTx∗) and has a one-norm lower than or equal to that of the

unregularized solution x∗ in all instances. In twelve of the twenty instances, x∗
δ is

sparser than x∗. In five of the instances, they have the same sparsity. In three of
the instances (lpi-galenet, lpi-itest6, and lpi-woodinfe), x∗

δ is actually less sparse,
even though its one-norm is lower.

6.2. Sparse solutions of semidefinite/second-order cone programs. In
§6.1 we used Corollary 2.2 to find sparse solutions of LPs. In this section, we report
our numerical experience in finding sparse solutions of SDPs and SOCPs that may
not have unique solutions. These are conic programs (P) with f and C given by (1.1),
and K being the Cartesian product of real space, orthant, second-order cones, and
semidefinite cones.

The regularized problem (Pδ) can be put in the conic form

minimize
x,u,v

cTx + δeT(u + v)

subject to Ax = b, x − u + v = 0,

(x,u, v) ∈ K × [0,∞)2n,

(6.6)

where e is the vector of ones. The selection problem (Pφ) can also be put in conic
form:

minimize
x,u,v,s

eT(u + v)

subject to Ax = b, x − u + v = 0, cTx + s = p∗,

(x,u, v, s) ∈ K × [0,∞)2n+1.

(6.7)

As in §6.1, we first solve (P) to obtain x∗ and the optimal value p∗ := cTx∗. Then
(6.7) is solved to obtain Lagrange multiplier µ∗ and the corresponding threshold value
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Table 6.2
Least one-norm residual solutions of the infeasible Netlib LPs.

LP c
T
x
∗

c
T
x
∗
δ ‖x∗‖1 ‖x∗

δ‖1 ‖x∗‖0 ‖x∗
δ‖0 δ̄

lpi-bgdbg1 3.6e+02 3.6e+02 1.6e+04 ց 1.3e+04 518 ց 437 3.3e−03
lpi-bgetam 5.4e+01 5.4e+01 6.0e+03 ց 5.3e+03 633 ց 441 3.4e−04
lpi-bgprtr 1.9e+01 1.9e+01 4.7e+03 ց 3.0e+03 25 ց 20 3.7e−01
lpi-box1 1.0e+00 1.0e+00 5.2e+02 ց 2.6e+02 261 → 261 9.9e−01
lpi-ceria3d 2.5e−01 2.5e−01 8.8e+02 → 8.8e+02 1780 ց 1767 6.7e−04
lpi-chemcom 9.8e+03 9.8e+03 1.5e+05 ց 3.8e+04 711 ց 591 3.1e−01
lpi-cplex1 3.2e+06 3.2e+06 2.4e+09 ց 1.5e+09 3811 ց 3489 1.0e−02
lpi-ex72a 1.0e+00 1.0e+00 4.8e+02 ց 3.0e+02 215 → 215 1.6e−01
lpi-ex73a 1.0e+00 1.0e+00 4.6e+02 ց 3.0e+02 211 → 211 1.6e−01
lpi-forest6 8.0e+02 8.0e+02 4.0e+05 → 4.0e+05 54 → 54 1.2e−03
lpi-galenet 2.8e+01 2.8e+01 1.0e+02 ց 9.2e+01 10 ր 11 6.3e−01
lpi-gosh 4.0e−02 4.0e−02 1.5e+04 ց 7.1e+03 9580 ց 1075 3.9e−05
lpi-greenbea 5.2e+02 5.2e+02 1.4e+06 ց 5.6e+05 3658 ց 1609 1.1e−04
lpi-itest2 4.5e+00 4.5e+00 2.3e+01 → 2.3e+01 7 → 7 6.5e−01
lpi-itest6 2.0e+05 2.0e+05 4.8e+05 ց 4.6e+05 12 ր 14 4.8e−01
lpi-mondou2 1.7e+04 1.7e+04 3.2e+06 ց 2.7e+06 297 ց 244 9.5e−02
lpi-pang 2.4e−01 2.4e−01 1.4e+06 ց 8.2e+04 536 ց 336 1.4e−06
lpi-pilot4i 3.3e+01 3.3e+01 6.9e+05 ց 5.1e+04 773 ց 627 3.6e−06
lpi-reactor 2.0e+00 2.0e+00 1.5e+06 ց 1.1e+06 569 ց 357 4.1e−05
lpi-woodinfe 1.5e+01 1.5e+01 3.6e+03 ց 2.0e+03 60 ր 87 5.0e−01

δ̄ := 1/µ∗. Finally, we solve (6.6) with δ = δ̄/2 to obtain x∗
δ . All three problems—(P),

(6.6), and (6.7)—are solved using the Matlab toolbox SeDuMi (version 1.05) [43],
which is a C implementation of a log-barrier primal-dual interior-point algorithm for
solving SDP/SOCP. The test instances are drawn from the DIMACS Implementation
Challenge library [37], a collection of nontrivial medium-to-large SDP/SOCP arising
from applications. We omit those instances for which either (P) is infeasible (e.g.,
filtinf1) or if one of (P), (6.6), (6.7) cannot be solved because of insufficient memory
(e.g., torusg3-8). All runs were performed on a PowerPC G5 with 2GB of memory
running Matlab 7.3b.

Table 6.3 summarizes the results. For most of the instances, SeDuMi finds only
an inaccurate solution (info.numerr=1) for at least one of (P), (6.6), (6.7). For most
instances, however, SeDuMi also finds a value of µ∗ that seems reasonable. In some
instances (nb_L2_bessel, nql30, nql80, qssp30, qssp60, qssp180, sch_100_100_scal,
sch_200_100_scal, truss8), the computed multiplier µ∗ is quite large relative to the
solution accuracy, and yet cTx∗

δ matches cTx∗ in the first three significant digits; this
suggests that the regularization is effectively exact. For nb_L2, sch_100_50_scal, and
sch_100_100_orig, the discrepancies between cTx∗

δ and cTx∗ may be attributed to a
SeDuMi numerical failure or primal infeasibility in solving either (P) or (6.7) (thus
yielding inaccurate µ∗), or (6.6). For hinf12, SeDuMi solved all three problems accu-
rately, and µ∗ looks reasonable, whereas for hinf13, SeDuMi solved all three problems
inaccurately, but µ∗ still looks reasonable. Yet cTx∗

δ is lower than cTx∗ in both in-
stances. We do not yet have an explanation for this.

The regularized solution x∗
δ has a one-norm lower than or equal to that of the

unregularized solution x∗ in all instances except hinf12, where ‖x∗
δ‖1 is 1% higher

(this small difference does not appear in Table 6.3). Solution sparsity is measured by
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Table 6.3
Least one-norm solutions of the feasible DIMACS SDP/SOCPs. Three different types

of SeDuMi failures are reported: anumerical error; bprimal infeasibility detected in solving
(6.7); cnumerical error in solving (6.7). The “schedule” instances have been abbreviated from
sched 100 50 orig to sch 100 50 o, etc.

SDP/SOCP c
T
x
∗

c
T
x
∗
δ ‖x∗‖1 ‖x∗

δ‖1 ‖x∗‖0 ‖x∗
δ‖0 δ̄

nb -5.07e−02 -5.07e−02 2.2e+0 ց 2.1e+0 142 ց 139 7.6e−3
nb L1 -1.30e+01 -1.30e+01 3.1e+3 → 3.1e+3 2407 ց 1613 1.2e−5
nb L2 -1.63e+00 -1.63e+00 3.1e+1 → 3.1e+1 847 → 847 2.1e−5
nb L2 bessel -1.03e−01 -1.03e−01 1.0e+1 ց 9.7e+0 131 ր 133 2.7e−6
copo14 -3.11e−12 -2.13e−10 4.6e+0 ց 2.0e+0 2128 ց 224 4.7e−1
copo23 -8.38e−12 -3.73e−09 6.6e+0 ց 2.0e+0 9430 ց 575 4.7e−1
filter48 socp 1.42e+00 1.42e+00 7.6e+2 → 7.6e+2 3284 ց 3282 1.1e−6
minphase 5.98e+00 5.98e+00 1.6e+1 → 1.6e+1 2304 → 2304 5.8e−2
hinf12 -3.68e−02 -7.11e−02 1.0e+0 → 1.0e+0 138 ր 194 5.1e+0
hinf13 -4.53e+01 -4.51e+01 2.8e+4 ց 2.1e+4 322 ց 318 2.8e−4
nql30 -9.46e−01 -9.46e−01 5.8e+3 ց 2.8e+3 6301 → 6301 1.0e−7
nql60 -9.35e−01 -9.35e−01 2.3e+4 ց 1.1e+4 25201 → 25201 1.4e−6
nql180 -9.28e−01 -9.28e−01 2.1e+5 ց 1.0e+5 226776 ց 226767 6.3e−8
nql30old -9.46e−01 -9.46e−01 5.5e+3 ց 1.0e+3 7502 ց 6244 3.2e−5
nql60old -9.35e−01 -9.35e−01 2.2e+4 ց 4.0e+3 29515 ց 23854 2.0e−5
nql180old a-9.31e−01 a-9.29e−01 1.9e+5 ց 6.8e+4 227097 ց 211744 1.4e−8
qssp30 -6.50e+00 -6.50e+00 4.5e+3 → 4.5e+3 7383 → 7383 4.1e−7
qssp60 -6.56e+00 -6.56e+00 1.8e+4 → 1.8e+4 29163 → 29163 1.2e−6
qssp180 -6.64e+00 -6.64e+00 1.6e+5 → 1.6e+5 260283 → 260283 c3.8e−7
sch 50 50 o 2.67e+04 2.67e+04 5.6e+4 → 5.6e+4 1990 ր 2697 8.7e−3
sch 50 50 s 7.85e+00 7.85e+00 1.1e+2 → 1.1e+2 497 ր 600 1.1e−5
sch 100 50 o 1.82e+05 1.82e+05 4.9e+5 → 4.9e+5 3131 ց 3040 2.4e−4

sch 100 50 s 6.72e+01 b8.69e+01 6.0e+4 ց 1.3e+4 5827 ր 7338 6.1e−3
sch 100 100 o 7.17e+05 a3.95e+02 1.8e+6 ց 8.4e+2 12726 ր 18240 1.3e−0
sch 100 100 s 2.73e+01 2.73e+01 1.6e+5 → 1.6e+5 17574 ց 16488 1.8e−8
sch 200 100 o 1.41e+05 1.41e+05 4.4e+5 → 4.4e+5 24895 ց 16561 4.3e−4
sch 200 100 s 5.18e+01 5.18e+01 7.8e+4 → 7.8e+4 37271 ց 37186 4.0e−8
truss5 1.33e+02 1.33e+02 2.1e+3 ց 1.5e+3 3301 → 3301 1.6e−5
truss8 1.33e+02 1.33e+02 7.9e+3 ց 5.2e+3 11914 ց 11911 1.7e−7

the zero-norm defined in (6.4), where ǫ is based on the relative optimality gap

ǫ =
cTx∗

δ − bTy∗
δ

1 + ‖b‖‖y∗
δ‖ + ‖c‖‖x∗

δ‖

of the computed solution of (6.6). For 52% of the instances, the regularized solution
is sparser than the unregularized solution. For 28% of the instances, the solutions
have the same sparsity. For the remaining six instances, the regularized solution is
actually less sparse, even though its one-norm is lower (nb_L2_bessel, sch_100_50_s,
sch_100_100_o) or the same (hinf12, sch_50_50_o, sch_50_50_s). SeDuMi implements
an interior-point algorithm, so it is likely to find the analytic center of the solution
set of (P).

The selection problem (6.7) is generally much harder to solve than (P) or (6.6).
For example, on nb_L2_bessel, SeDuMi took 18, 99, and 16 iterations to solve (P),
(6.7), and (6.6), respectively, and on truss8 SeDuMi took, respectively, 24, 117, and
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35 iterations. This seems to indicate that regularization is more efficient than solving
the selection problem as a method for finding sparse solutions.

7. Discussion. We see from the numerical results in §6 that regularization can
provide an effective way of selecting a solution with desirable properties, such as
sparsity. However, finding the threshold value δ̄ for exact regularization entails first
solving (P) to obtain p∗, and then solving (Pφ) to obtain µ∗ and setting δ̄ = 1/µ∗;
see Corollary 2.2. Can we find a δ < δ̄ from (P) without also solving (Pφ)?

Consider the case of a CP, in which f and C have the form (1.1). Suppose that a
value of δ < δ̄ has been guessed (with δ̄ unknown), and a solution x∗ of the regularized
problem (Pδ) is obtained. By Corollary 2.2, x∗ is also a solution of (Pφ). Suppose
also that there exist Lagrange multipliers y∗ ∈ R

m and z∗ ∈ K∗ for (P), where K∗ is
the dual cone of K given by

K∗ := {y ∈ R
n | yTx ≥ 0 for all x ∈ K}.

Then (y∗, z∗) satisfy, among other conditions,

ATy∗ + z∗ = c and bTy∗ = p∗.

Suppose, furthermore, that there exist Lagrange multipliers y∗
φ ∈ R

m, z∗φ ∈ K∗, and

µ∗ ≥ 0 for (Pφ) that satisfy, among other conditions,

0 ∈ ∂φ(x∗) − (ATy∗
φ + z∗φ − µ∗c).

Then, analogous to the proof of Theorem 2.1, we can construct Lagrange multipliers
for (Pδ) as follows:

Case 1: µ∗
φ = 0. The Lagrange multipliers for (Pδ) are given by

y∗
δ := y∗ + δy∗

φ and z∗δ := z∗ + δz∗φ.

Case 2: µ∗
φ > 0. The Lagrange multipliers for (Pδ) are given by

y∗
δ := (1 − λ)y∗ +

λ

µ∗
φ

y∗
φ and z∗δ := (1 − λ)z∗ +

λ

µ∗
φ

z∗φ,

for any λ ∈ [0, 1]. The Lagrange multipliers (y∗
δ , z∗δ ) obtained for the regularized

problem are therefore necessarily perturbed. Therefore, it is not possible to test the
computed triple (x∗, y∗

δ , z∗δ ) against the optimality conditions for the original CP in
order to verify that x∗ is indeed an exact solution.

In practice, if it were prohibitively expensive to solve (P) and (Pφ), we might
adopt an approach suggested by Lucidi [27] and Mangasarian [33] for Tikhonov regu-
larization. They suggest solving the regularized problem successively with decreasing
values δ1 > δ2 > · · · . If successive regularized solutions do not change, then it is
likely that a correct regularization parameter has been obtained. We note that in
many instances, the threshold values δ̄ shown in Tables 6.1 and 6.2 are comfortably
large, and a value such as δ = 10−4 would cover 85% of the these cases.

Acknowledgments. Sincere thanks to Dimitri Bertsekas for suggesting Lemma
4.1(a) and bringing to our attention the paper [4]. We also thank Kevin Leyton-
Brown for generously giving us access to his CPLEX installation for the numerical
experiments presented in §6.
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Fig. 8.1. (a) The feasible set C. (b) The solution set S and Sk.

8. Appendix. In this appendix, we give an example of f and C that satisfy the
assumptions of Theorem 5.2 and for which weak sharp minimum fails to hold and yet
exact regularization holds for φ(x) = ‖x − x̂‖2

2 and any x̂ ∈ ℜn.

Consider the example

n = 3, f(x) = x3, and C = [0, 1]3 ∩
(
∩∞

k=2C
k
)
,

where Ck = {x ∈ R
3 | x1 − (k − 1)x2 − k2x3 ≤ 1/k}. Each Ck is a half-space in R

3,
so C is a closed convex set. Moreover, C is bounded and nonempty (since 0 ∈ C); see
Figure 8.1(a). Clearly

p∗ = 0 and S = {x ∈ C | x3 = 0}. (8.1)

First, we show that weak sharp minimum fails to hold, i.e., there does not exist
τ > 0 such that (5.1) holds with γ = 1. Let Hk be the hyperplane forming the
boundary set of Ck, i.e., Hk = {x ∈ R

3 | x1 − (k − 1)x2 − k2x3 = 1/k}. Let xk be the
intersection point of Hk, Hk+1 and the x1x3-plane. Direct calculation yields

xk
1 =

1 − (1 + 1/k)−3

k(1 − (1 + 1/k)−2)
, xk

2 = 0, xk
3 =

xk
1 − 1/k

k2
, (8.2)

for k = 2, 3, . . . . Since C ⊂ Ck, we have from (8.1) that S ⊂ Sk, where we let
Sk = {x ∈ Ck | x3 = 0}; see Figure 8.1(b). Thus

dist(xk,S) ≥ dist(xk,Sk) ≥ dist((xk
1 , 0, 0),Sk). (8.3)

Since limα→1
1−α3

1−α2 = 3
2 , (8.2) implies that kxk

1 → 3/2, i.e., xk
1 = 1.5/k + o(1/k). The

point in Sk nearest to (xk
1 , 0, 0) lies on the line through (1/k, 0, 0) and (1, 1/k, 0) (with

slope 1/(k − 1) in the x1x2-plane), from which it follows that dist((xk
1 , 0, 0),Sk) =

0.5/k2+o(1/k2). Since xk
3 = 1.5/k3+o(1/k3) by (8.2), this together with (8.3) implies

xk
3

dist(xk,Sk)
≤

xk
3

dist((xk
1 , 0, 0),Sk)

= O(1/k) → 0.
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Moreover, for any ℓ ∈ {2, 3, . . . }, we have from (8.2) and letting α = ℓ/k that

xk
1 − (ℓ − 1)xk

2 − ℓ2xk
3 −

1

ℓ
=

(
1 − α2

)
xk

1 −
1

ℓ

(
1 − α3

)

= (1 − α)

(
(1 + α)xk

1 −
1

ℓ

(
1 + α + α2

))

=
(1 − α)

k

(
(1 + α)

1 − (1 + 1/k)−3

1 − (1 + 1/k)−2
−

1

α

(
1 + α + α2

))

=
(1 − α)

k
(1 + α)

(
(1 + 1/k)−2

1 + (1 + 1/k)−1
−

1

α(1 + α)

)

=
(1 − α2)

k

(
k2

(2k + 1)(k + 1)
−

k2

ℓ(k + ℓ)

)

=
(1 − α2)

k

(2k + ℓ + 1)(ℓ − k − 1)

(2k + 1)(k + 1)ℓ(k + ℓ)
,

where the second equality uses 1−α2 = (1−α)(1 + α), 1−α3 = (1−α)(1 + α + α2);
the fourth equality uses the same identities but with (1 + 1/k)−1 in place of α. By
considering the two cases ℓ ≤ k and ℓ ≥ k + 1, it is readily seen that the above
right-hand side is non-positive. This in turn shows that xk ∈ Cℓ for ℓ = 2, 3, . . . , and
hence xk ∈ C.

Second, fix any x̂ ∈ R
3 and let φ(x) = ‖x − x̂‖2

2. Let x∗ = arg minx∈S φ(x) and
fδ(x) = f(x) + δφ(x). Suppose x∗ 6= 0. Then C is polyhedral in a neighborhood N of
x∗. Since xδ = arg minx∈C fδ(x) converges to x∗ as δ → 0, we have that xδ ∈ C ∩ N
for all δ > 0 below some positive threshold, in which case exact regularization holds
(see Corollary 2.3). Suppose x∗ = 0. Then

x̂ = −∇φ(x∗) ∈ NS(x∗) = (−∞, 0]2 × R,

where the second equality follows from [0,∞)2 × {0} being the tangent cone of S at
0. Thus x̂2 ≤ 0, x̂3 ≤ 0 and we see from

∇fδ(x
∗) = (0, 0, 1)T − δx̂

that ∇fδ(x
∗) ≥ 0 for all δ ∈ [0, δ̄], where δ̄ = ∞ if x̂3 ≤ 0 and δ̄ = 1/x̂3 if x̂3 > 0.

Because C ⊂ [0,∞)3 this implies that, for δ ∈ [0, δ̄],

∇fδ(x
∗)T(x − x∗) = ∇fδ(x

∗)Tx ≥ 0 for all x ∈ C.

Because x∗ ∈ C and fδ is strictly convex for δ ∈ (0, δ̄], this implies that x∗ =
arg minx∈C fδ(x) for all δ ∈ (0, δ̄]. Hence exact regularization holds.

REFERENCES

[1] A. Altman and J. Gondzio, Regularized symmetric indefinite systems in interior point meth-
ods for linear and quadratic optimization, Optim. Methods Softw., 11 (1999), pp. 275–302.

[2] F. R. Bach, R. Thibaux, and M. I. Jordan, Computing regularization paths for learning
multiple kernels, in Advances in Neural Information Processing Systems (NIPS) 17, L. Saul,
Y. Weiss, and L. Bottou, eds., Morgan Kaufmann, San Mateo, CA, 2005.

[3] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algo-
rithms, and Engineering Applications, vol. 2 of MPS/SIAM Series on Optimization, Society
of Industrial and Applied Mathematics, Philadelphia, 2001.



24 MICHAEL P. FRIEDLANDER AND PAUL TSENG

[4] D. P. Bertsekas, Necessary and sufficient conditions for a penalty method to be exact, Math.
Program., 9 (1975), pp. 87–99.

[5] , Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New
York, 1982.

[6] , A note on error bounds for convex and nonconvex programs, Comput. Optim. Appl.,
12 (1999), pp. 41–51.
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