
Approximation algorithms for metric tree cover

and generalized tour and tree covers

Viet Hung Nguyen

LIP6 - Université Pierre et Marie Curie - Paris 6

4 place Jussieu, 75252 Paris Cedex, France

Abstract

Given a weighted undirected graph G = (V, E), a tree (respectively tour) cover
of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk)
and covers every other edge in the graph. The tree (resp. tour) cover problem
is of finding a minimum weight tree (resp. tour) cover of G. Arkin, Halldórsson
and Hassin [1] give approximation algorithms with factors respectively 3.5 and 5.5.
Later Könemann, Konjevod, Parekh, and Sinha [6] study the linear programming
relaxations and improve both factors to 3.

We describe in the first part of the paper a 2-approximation algorithm for the
metric case of tree cover.

In the second part, we will consider a generalized version of tree (resp. tour)
covers problem which is to find a minimum tree (resp. tours) which covers a subset
D ⊆ E of G. We show that the algorithms of Könemann et al. can be adapted for
the generalized tree and tours covers problem with the same factors.

Introduction

Let G = (V,E) be an undirected graph with a (nonnegative) cost function
c : E ⇒ Q+ defined on the edges and let D ⊆ E be an edge subset. A tree (
resp. tour) covers D is a subgraph T = (U, F) such that

(1) for every e ∈ D, F contains an edge f adjacent to e, i.e. F ∩ N(e) 6= ∅
where N(e) is the set of the edges adjacent to e.

(2) T is a tree (resp. closed walk).

The generalized tree (resp. tour) cover problem consists in finding a tree (resp.
tour) cover of minimum total weight :

min
∑

e∈F

ce,

Preprint submitted to Elsevier Science January 17 2006

over subgraphs T = (U, F) which form a tree (resp. tour) cover of D in G.
When D = E, these problems are simply called tree and tour cover problems
and were introduced by Arkin, Haldórsson and Hassin [1]. In this case, the two
problems are shown in [1] to be NP -hard. The tree cover problem even hard
when all edge weights are equal, since it is asking for a minimum connected
vertex cover (see [3], page 190). The tour cover problem can be reduced to the
Traveling Salesman Problem by creating in the instance of the TSP an edge
between each node and a new adding artificial node of degree 1. The motivation
for the study of these problems comes from the close relation of these problems
to vertex cover, watchman route and traveling purchaser problems. Arkin et
al. provide fast combinatorial algorithms for the weighted version of these
problems achieving approximation factors 5.5 and 3.5 respectively for tour
and tree covers. Later Könemann, Konjevod, Parekh, and Sinha [6] improved
the approximation factors by considering integer formulations and it’s linear
relaxation. They obtain a 3-approximation algorithm for both tree and tour
covers. Note that in the case of tour cover, the tour is not constrained to be a
simple cycle, thus we can replace every edge uv in a tour by the shortest path
between u and v if this later is not uv to obtain another tour with smaller
cost. Therefore one can assume without loss of generality that the edge costs
satisfy triangle inequality. But for tree cover, we can not replace an edge of a
tree by the shortest path between it’s endnodes to obtain another tree. Thus
in general one can not assume that the edge costs satisfy triangle inequality.
Therefore one can hope to obtain a better approximation factor for metric tree
cover problem. In fact, in Section 1, we describe a 2-approximation algorithm
for this case.
Now let us consider the case when D ⊂ E. In this case, the two problems
remain NP -hard. They can be reduced respectively to the Steiner tree and
the TSP problems by the same way as for the case when D = E, i.e. by adding
an edge between each node and an artificial node of degree 1 and by setting D
as the set consisting of the new edges. As Arkin et al. have remarked in their
paper, their algorithms don’t work when D ⊂ E. Indeed, these algorithms find
a collection of subtours that covers the edges of G in the case of tour cover
and a forest cover in the case of tree cover and then connecting them by a
Traveling salesman tour or a Steiner tree. But this Traveling salesman tour and
this Steiner tree are in general not an approximation of respectively generalized
tour and tree cover since the subgraphs induced by subtours and forest may
not contain any edge belonging to D. They describe however a modification
of their algorithm which works only for the unweighted generalized tree cover
problem which achieves a factor 2.46. In their paper, Könemann et al. do not
discuss the generalized problems. In Section 2, we show that the algorithms
given by Könemann et al. do not work for the generalized tree and tour covers
problems and give an adaptation of their algorithms which gives the same
factor 3 for both generalized problems.
Let us introduce the notation that will be used in the paper. Let G = (V,E)
be a graph with vertex set V and edge set E. If x ∈ R|E| is a vector indexed

2

by the edge set E and F ⊆ E is a subset of edges, we use x(F) to denote the
sum of values of x on the edges in the set F , x(F) =

∑

e∈F xe. Similarly, for a
vector y ∈ R|V | indexed by the vertices of a graph G = (V,E) and S ⊆ V is a
subset of vertices, y(S) denotes the sum of values of y on the vertices in the
set S. For a subset of vertices S ⊆ V , we write δG(S) for the set of edges in the
graph G with exactly one endnode inside S et E(S) for the set of edges with
both endnodes inside S. If G is directed let δ+(G) (resp. δ−(G)) be the the
set of edges having only the tail (resp. head) in S. For two subset U,W ⊂ V
such that U ∩W = ∅, let (U : W) be the set of the edges having one endnode
in U and the other in W . If G is directed, let (U : W) (resp. (W : U)) be the
set of the edges having the tail (resp. head) in U and the head (resp. tail) in
W .
When we work on more than one graph, we precise the graph in the index of
the notation, e.g. δG(S) will denote δ(S) in the graph G.

1 Tree cover with metric costs

In this section, we consider the tree cover problem when the costs cij satisfy
the triangular inequality. That is

cij ≤ cik + ckj for all edge triplets ij, ik and kj in E.

We use an integer formulation similar to the one described in [6]. First, we

transform the original graph G into a directed graph ~G = (V, ~E) by replacing
every undirected edge uv by a pair of directed edges (u, v), (v, u) each having
the same weight as the original undirected edge. The formulation is as follows
: for a fixed root r, define F to be the set of all subsets S of V \ {r} such that

S induces at least one edge of
−→
E ,

F = {S ⊆ V \ {r} |
−→
E (S) 6= ∅}.

Let C be the edge set of a tree cover of G containing r and
−→
C be the corre-

sponding branching with the root r. Now for every S ∈ F ,
−→
C must contain

at least one edge entering S. Hence we have the following IP formulation.

min
∑

e∈
−→
E

cexe

∑

e∈δ−(S)

xe ≥ 1 for all S ∈ F

x ∈ {0, 1}
−→
|E|.

A trivial case for which this formulation has no contraint is when G is a star
but in this case the optimal solution is trivially the central node with cost 0.

3

Replacing the integrality constraints by

x ≥ 0,

we obtain the linear programming relaxation. We use the TrC(
−→
G) to denote

the convex hull of all vectors x satisfying the constraints above (with integral-
ity constraints is replaced by x ≥ 0).

1.1 r-arborescence polyhedron

Let us consider
−→
G = (V,

−→
E), an r-arborescence of

−→
G is a spanning tree (when

−→
G is viewed as an undirected graph) directed away from r. It is well-known
that when the costs are non-negative, the minimum cost r-arborescence can
be found by solving the following linear program:

min
∑

e∈
−→
E

cexe

∑

e∈δ−(S)

xe ≥ 1 for all S ⊂ V \ {r} (1)

x ≥ 0

Let us call RA(G) the polyhedron defined by (1) and the non-negativity con-
straint. Polynomial time algorithms that solve the minimum cost r-arborescence
problem was given in [5], [2].

1.2 Algorithm

We are now ready to state our algorithm for metric tree cover.

(1) For every vertex r ∈ V , let x∗
r be the vector minimizing cx over TrC(

−→
G)

with the root r.
(2) Let U ← {v ∈ V |x∗

r(δ
−({v})) ≥ 1

2
} ∪ {r}.

(3) Let GU be the subgraph of G induced by U with the same cost ce for each
edge e in GU . Find the minimum cost r-arborescence of GU and call this Tr.
(4) Pick the cheapest such Tr.
Note that the linear program in step (1) can be solved in polynomial time by
using the epplipsoid method with a min-cut computation as separation oracle.
The algorithm intially yeilds a branching in the bidirected graph. We map this
in the obvious way to a set of edges in the original undirected graph.
The algorithm outputs a tree which spans U . We can see that U is vertex
cover of G, because for any edge e = uv ∈ E, x∗

r({u, v}) ≥ 1, at least u or v
should belong to U . Therefore, the algorithm outputs a tree cover of G.

4

1.3 Performance guarantee

Theorem 1 Let x∗
r be the vector minimizing cx over TrC(

−→
G) and U = {v ∈

V |x∗
r(δ

−({v})) ≥ 1
2
}. Then

min{cy|y ∈ RA(GU)} ≤ 2 ∗ cx∗ = 2 ∗min{cx|x ∈ TrC(G)}

Proof: Let W = V \ U , note that W is a independent set in G. We build a

vector z∗ ∈ R
−→
E from x∗ as follows:

(1) z∗e ← x∗
e for all e ∈

−→
E .

(2) While there exists w ∈ W and two distinct vertices u, v ∈ U such that
z∗(u,w) > 0 and z∗(w,v) > 0 then set

z∗(u, v)← z∗(u,v) + min{z∗(u,w), z
∗
(w,v)},

z∗(u,w) ← z∗(u,w) −min{z∗(u,w), z
∗
(w,v)},

z∗(w,v) ← z∗(w,v) −min{z∗(u,w), z
∗
(w,v)}.

Otherwise, STOP.

As c(u,w) + c(w,v) ≥ c(u,v), we have cz∗ ≤ cx∗.
Let y∗ = 2z∗, in order to prove Theorem 1, it is sufficient to show that
y∗ ∈ RA(GU). Assume that it is not true then there exists a set S ⊂ U \ {r}
such that y∗(δ−GU

(S)) < 1 in GU . Let S̄ = U \ S. By the construction of z∗,
there is no vertex w ∈ W such that y∗(S̄ : {w}) > 0 and y∗({w} : S) > 0.
Thus, we can partition W into two subsets ∅ ⊆ W1 ⊆ W and ∅ ⊆ W2 ⊆ W as
follows: For every vertex w ∈W :

• if y∗(S̄ : {w}) = 0 and y∗({w} : S) > 0 then let us put w in W1.
• if y∗(S̄ : {w}) > 0 and y∗({w} : S) = 0 then let us put w in W2.
• if y∗(S̄ : {w}) = 0 and y∗({w} : S) = 0 then let us put w in W2.

We can see that this partition W1,W2 of W satisfies the following

• y∗(S̄ : W1) = 0 and y∗(W2 : S) = 0,
• either W1 = ∅ or y∗(W1 : S) > 0.

Let us consider the case when W1 = ∅, i.e. W2 = W , then as y∗(W2 : S) = 0,
i.e. z∗(W2 : S) = 0, by the construction of z∗, we have

z∗(δ−GU
(S)) = x∗

−→
G

(S̄ : S) + x∗
−→
G

(W : S) = x∗
−→
G

(δ−(S))

As S ⊂ U , x∗
−→
G

(δ−(S)) ≥ 1
2
, thus we derive that y∗(δ−GU

(S)) ≥ 1. Contradiction.

Let us now consider the remaining case when y∗(W1 : S) > 0, we can see that

5

S̄S

W1 W2

U

W

−→
E (S ∪ W1) 6= ∅. Thus x∗

−→
G

(δ−(S ∪ W1)) ≥ 1. But as y∗(S̄ : W1) = 0 and

y∗(W2 : S) = 0 then

z∗(δ−GU
(S)) = x∗

−→
G

(δ−(S ∪W1)) ≥ 1

We derive that y∗(δ−GU
(S)) ≥ 2. Contradiction. 2

Corollary 1 When the costs satisfy triangle inequality, the algorithm in 1.2.
outputs a tree cover of cost no more than 2 time the cost of the minimum tree
cover.

2 Genaralized tour and tree cover problems

We consider firstly the generalized tour cover problem. As we argue in the
introduction section, for the (generalized) tour cover problem, because a tour
is a closed walk which can repeat nodes, one can consider that the cost vector
c satisfies triangle inequality. If the cost vector c does not satisfy triangle
inequality, for each edge e = uv, we can replace ce by the value the shortest
path evaluated with the original cost vector c between u and v in G. Then
the new cost vector satisfies triangle inequality and this does not change the
optimal solutions of the problem.
Let F denote the set of all subsets S of V such that both S and V \ S induce
at least one edge of E,

F = {S ⊆ V |E(S) 6= ∅, E(V \ S) 6= ∅}.

Könemann et al. observe that if U is a set of edges that forms a tour cover
of G, then at least 2 edges of U cross S, for every S ∈ F . This observation
motivates an integer formulation of tour cover. For every edge e ∈ E, let the
integer variable xe indicate the number of copies of e included in the tour
cover. One minimizes the total weight of edges included, under the condition
that every cut in F be crossed at least twice. In order to ensure that the
solution is a tour, each vertex is needed to have even degree; however as in [6]

6

we can drop these constraints and consider the following relaxation.

min
∑

e∈E

cexe

∑

e∈δ(S)

xe ≥ 2 for all S ∈ F (2)

x ∈ {0, 1, 2}|E|.

For the generalized tour cover problem, we can keep the same formulation
applying to the following re-definition of the set F :

F = {S ⊆ V |E(S) ∩D 6= ∅, E(V \ S) ∩D 6= ∅}.

Replacing the integrality constraints by

0 ≤ x ≤ 2,

we obtain the linear programming relaxation. We call ToC(G) the convex hull
of all feasible solutions of this linear relaxation. The separation problem of
the constraints (2) can be solved in polynomial time by computing minimal
capacity cut in G that separates each pair of edges e1, e2 ∈ D. Thus optimizing
a linear function over ToC(G) can be done in polynomial time by the ellipsoid
method.
Let x∗ be the vector minimizing cx over ToC(G). Let us consider the case
when D = E, i.e. the tour cover problem, Könemann et al. solve the linear
programming relaxation and determine from the x∗ a vertex cover U . Their
final solution is a TSP over U . Precisely, U is defined as

U = {v ∈ V |x∗(δ({v})) ≥ 1}.

We can see that for each edge e = uv, at least one of the vertices u and
v belongs to U because (2) is satisfied by x∗. Thus U is a vertex cover, in
addition, U has the cut property which can be stated as follows: if we let
y = 2x∗ then y is feasible for

A = {x ≥ 0 | x(δ(v)) ≥ 0 ∀v ∈ V \ U

x(δ(u)) ≥ 2 ∀u ∈ U

x(δ(S)) ≥ 2 ∀S ⊂ V, S ∩ U 6= ∅, U \ S 6= ∅, ∅ 6= S 6= V

x(δ(S)) ≥ 0 ∀S ⊂ V \ U, S 6= ∅}

.

7

Then Könemann et al. use the parsimonious property in [4] to show that
min{cx|x ∈ A} = min{cx|x ∈ B0} where

B0 = {x ≥ 0 | x(δ(v)) = 0 ∀v ∈ V \ U

x(δ(u)) = 2 ∀u ∈ U

x(δ(S)) ≥ 2 ∀S ⊂ V, S ∩ U 6= ∅, U \ S 6= ∅, ∅ 6= S 6= V

x(δ(S)) ≥ 0 ∀S ⊂ V \ U, S 6= ∅}

Let F be the complete graph over U with the shortest path cost ce on every
edge e. Let

B = {x ≥ 0 | x(δ(v)) = 0 ∀v ∈ V \ U

x(δ(u)) = 2 ∀u ∈ U

x(δ(S)) ≥ 2 ∀S ⊂ U, ∅ 6= S 6= U}

Then B denotes the subtour polytope over F . Könemann et al. prove that
in fact B0 = B. This implies min{cx|x ∈ B} = min{cx|x ∈ A}. Wolsey
[9] and Shmoys and Willamsons [7] have shown that the solution given by
Christophides’s heuristic over the graph F is not worse than 3/2 of the optimal
solution over B. Thus Könemann et al. apply the Christophides’s heuristic on
the graph F to get a solution of the tour cover problem which is not worst
than (3/2)y = (3/2) ∗ 2x∗ = 3x∗. We show in the following remark that in the
case when D ⊂ E, the set U chosen as in the Köneman et al.’s algorithm may
not have the cut property.

Remark 1 For generalized tour cover, the set U do not have neccessarily the
cut property.

Proof: There can be a subset S ⊂ U such that E(S) 6= ∅ and E(S) ∩D = ∅.
As the integer formulation does not impose that x(δ(S)) ≥ 2, one can not
guarantee that x∗(δ(S)) ≥ 2. As in the figure below with U = {1, 2, 3, 4, 5, 6},

U 1

2

3

4

5

6

1

2

1

2

1

2

1

2

: the edges e such that x∗

e
6= 0 (= 1

2
).

: the edges in D.

1

2

1

2

if we take S = {1, 2, 3} ⊂ U then x∗(δ(S)) = 0 < 2. 2

8

In order to obtain a set U which is a vertex cover of D and has the cut
property, we propose in the following a procedure of refinement of the set U :

Procedure 1. Refinement of the set U
Input: G, U and x∗

Output: A new set U .

(1) In the graph G weighted by x∗, finding the minimum capacity cut (resp.
directed cut) that separates any two vertices of U . If the value of the
cut is greater than 1 then STOP. Otherwise let δ(S) be this cut with
S ∩ U 6= ∅ and (V \ S) ∩ U 6= ∅ and go to 2.

(2) Set U ← U \ (S ∩ U) and go to 1.

Corollary 2 The set U resulted from the procedure 1 has the cut property,
i.e. let y = 2x∗, y is feasible for

A = {x ≥ 0 | x(δ(v)) ≥ 0 ∀v ∈ V \ U

x(δ(u)) ≥ 2 ∀u ∈ U

x(δ(S)) ≥ 2 ∀S ⊂ V, S ∩ U 6= ∅, U \ S 6= ∅, ∅ 6= S 6= V

x(δ(S)) ≥ 0 ∀S ⊂ V \ U, S 6= ∅}

Proof: It is straightforward from the construction of U in Procedure 1. 2

Lemma 1 The set U resulted from Procedure 1 is a vertex cover of D.

Proof: Assume that at some iteration, let U ′ = {u′|x∗(δ(u′)) ≥ 1 and u′ /∈ U},
i.e. U ′ contains the vertices excluded from U so far and we find a cut δ(S)
whose capacity is strictly less than 1 such that S∩U 6= ∅ and (V \S)∩U 6= ∅.
If the set U \(S∩U) is not a cover of D, i.e. there exists a vertex t ∈ V \(S∪U)
and a vertex s ∈ S ∩ U such that the edge st ∈ D. There are two possibles
cases:

• t /∈ U ′, i.e. x∗(δ(t)) < 1. As x∗(δ(S)) < 1, we deduce that x∗(δ(S∪{t})) < 2.
But as (S ∪ {t}) ∈ F and x∗ is a solution of (2) then x∗(δ(S ∪ {t})) ≥ 2.
Contradiction.
• t ∈ U ′. Let St ⊆ U ′ be the subset containing t that was excluded from U

in some previous iteration, we have x∗(δ(St)) < 1. As x∗(δ(S)) < 1, we
deduce that x∗(δ(S ∪ St)) < 2. But since (S ∪ St) ∈ F and x∗ is a solution
of ToC(G), we have x∗(δ(S ∪ St)) ≥ 2. Contradiction.

We deduce therefore that U \ (S ∩ U) is a cover of D. 2

9

Theorem 2 The generalized tour cover problem can be approximated by a
factor 3.

Proof: We can directly apply the algorithms of Könemann et al. to the set U
resulted from the Procedure 1. 2

We can apply the same technique for the generalized tree cover problem.
Let x∗

r be the optimal solution obtained by solving the linear relaxation as-
sociated to a specific root node r (see Section 1). Könemann et al. define
U = {v ∈ V |x∗

r(δ({v})) ≥ 1/2}. They show that U is a vertex cover and has
the cut property, i.e. let y = 2x∗

r then y is feasible for

QBST (
−→
G) = {x ∈ Q

−→
E
+ | x(δ+(S)) ≥ 1 for all S ⊂ V \ {r}, S ∩ U 6= ∅},

which defines the linear relaxation for the bidirected Steiner tree problem

on
−→
G with U as the terminal node set. When V \ U is a independent set,

finding the minimum weight bidirected Steiner tree in
−→
G with the terminal set

U is a special case called minimum weight quasi-bipartite bidirected Steiner
tree problem. In this case, Rajagopalan and Varizani [8] have designed an
algorithm giving a Steiner tree whose value is not worse than 3

2
the value of

the optimal solution of the above linear relaxation. Könemann et al. apply the

Rajagopalan-Varizan’s algorithm on
−→
G to obtain a 3-approximation algorithm

for the tree cover problem. Applying this to the generalized tree cover problem,
exactly as in the generalized tour cover, we may obtain a set U for which

y = 2x∗
r does not belong to QBST (

−→
G), i.e. there can exist some subset S such

that S ⊂ V \ {r}, S ∩ U 6= ∅, D ∩ E(S) = ∅ and x∗
r(δ

+(S)) < 1
2
. Applying

the Procedure 1. to
−→
G , U and x∗

r in the similar way (with searching value for
the min-cut is now 1

2
), we can obtain a new set U that always covers D and

has the cut property. The fact that the V \ U now may not be anymore an

independent set is not troublesome. In this case, we define a vector y′ ∈
−→
E as

follows:

y′
e =

0 if e ∈
−→
E (V \ U)

ye otherwise

Since the edge costs are non-negative, we have cy′ ≤ cy. In addition, we can

see that y′ is feasible for QBST (
−→
G 1) where

−→
G 1 is a the subgraph of

−→
G which

contains all nodes in V and all arcs in
−→
E except those in

−→
E (V \ U). Thus

we can consider the minimum weight quasi-bipartite bidirected Steiner tree

problem on
−→
G 1. Solving this problem will give us a tree cover of D on G of

weight at worst 3 times the weight of the optimal tree.

Corollary 3 We can approximate the generalized tree cover with a factor 3.

10

3 Open problems and discussion

It seems hard to find a pure combinatorial approximation algorithm with
constant factor for generalized tour and tree cover. As we argue in the In-
troduction section, the principle of the algorithms of Arkin et al. can not be
applied. Perharps, one should design an algorithm based on a completely new
idea.
It has been remarked in [6] that the dual of the linear relaxation of above inte-
ger formulations fits into combinatorial packing framework that enables us to
avoid ellipsod method and to use fast packing combinatorial algorithm. But
then we have to pay a factor of (1+ ǫ)-factor in the approximation guarantee.

4 Acknowledgement

I would like to thank the anonymous referee for many helpful comments.

References

[1] E. M. Arkin, M. M. Halldórsson, and R. Hassin. Approximating the tree and
tour covers of a graph. Information Processing Letters, 47:275–282, 1993.

[2] J. Edmonds. Optimum branchings. Journal of Research National Bureau of

Standards Section B, 71, 1965.

[3] M. R. Garey and D.S. Johnson. Computer and Intractablity : A Guide to the

theory of the NP-Completeness. Freeman, 1978.

[4] M. X. Goemans and D. J. Bertsimas. Survivable networks, linear programming
relaxations and the parsinomious property. Math. Programming, 60:145–166,
1993.

[5] Y. j. Chu and T. h. Liu. On the shortest arborescence of a directed graph.
Scientia Sinica, 14, 1965.

[6] J. Könemann, G. Konjevod, O. Parekh, and A. Sinha. Improved approximations
for tour and tree covers. Algorithmica, 38(3):441–449, 2003.

[7] D.B. Shmoys and D.P. Williamsons. Analyzing the help-karp tsp bound: a
monotonicity property with application. Information Processing Letters, 35:281–
285, 1990.

[8] V. V. Vazirani and S. Rajagopalan. On the bidirected cut relaxation for metric
bidirected steiner tree problem. In Proceedings of the 10th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 742–751, 1999.

11

[9] L.A. Wolsey. Heuristic analysis, linear programming and branch-and-bound.
Math. Prog. Stud., 13:121–134, 1980.

12

