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A FIRST-ORDER FRAMEWORK FOR
INVERSE IMAGING PROBLEMS

CHRISTOPHER KUMAR ANAND

ABSTRACT. We argue that some inverse problems arising in imaging can be
efficiently treated using only single-precision (or other reduced-precision) arith-
metic, using a combination of old ideas (first-order methods, polynomial pre-
conditioners), and new ones (bilateral filtering, total variation). Using single
precision, and having structures which parallelize in the ways needed to take
advantage of low-cost/high-performance multi-core/SIMD architectures, this
framework is especially suited to embedded image reconstruction applications
like medical imaging. We show with a simulated magnetic resonance imaging
problem that this method can be numerically effective. Since the conver-
gence/error analysis is particularly simple for pure quadratic objectives, this
approach can also be used in embedded environments with fixed computation
budgets, or certification requirements. Simple analysis for the quadratic case
also serves as a basis for the analysis of nonlinear problems solved via a se-
quence of quadratic approximations. We include one example of a nonlinear,
nonquadratic penalty function.

1. INTRODUCTION

In this paper, we propose a method of solving inverse problems in imaging which
are characterized by two challenges: large optimization problems and tight budgets
(for cost, power consumption, and solution time). Significant recent progress in
mathematical methods such as Total Variation regularization [ROF92] and aniso-
tropic diffusion of image processing demonstrates that image quality can be sig-
nificantly improved by incorporating novel regularization and iterative strategies
into the inverse problem models, but at considerable computational cost. Bilateral
filtering [TM98], on the other hand, provides a remarkable level of noise reduction
in a single step and offers efficient computation. Our method arose in answer to
the question: Can the efficiency of bilateral filtering be brought to inverse imaging
problems?

These algorithm developments coincide with a period of rapid change in hardware
architecture. For example, the recently-released first-generation Cell BE delivers
25GFlops (double precision) or 200GFlops (single precision) on a single chip. Un-
fortunately, to reach higher levels of performance, the model of computation has
changed in ways which constrain the types of operations that can be performed ef-
ficiently: multiple cores, loss of uniform memory access from different cores, single-
instruction multiple-data (SIMD), reduction in precision (from double to single on
the Cell or lower on graphics processors), and constrained program and working
data sizes. Our method was developed to fit into this framework and take advantage
of peak performance on these processors.

Date: January 25, 2007.
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In this work, we explain that for a large class of inverse problems, including
most problems referred to as image estimation or image reconstruction, first-order
methods based on Neumann series and inspired by Bilateral Filtering can

(1) stably produce good results for linear and nonlinear models, entirely using
single (or lower) precision;

(2) take full advantage of newer hardware (effectively using SIMD and small
working-memory footprints);

(3) provide residual error estimates for any finite number of iterations.

As with any first-order method, we do not obtain superlinear convergence, but we do
observe good initial convergence and, provided that sufficient model information is
available, can guarantee stability for the method, i.e. we would never see divergence
as is possible with the conjugate gradient method. This is a good tradeoff in
cases with high levels of measurement noise, absolute computation time limits, and
completely unsupervised computation.

Recently, Dongarra et al. [KDO06] have shown that on architectures with slower
double-precision performance, basic linear algebra can be significantly accelerated
by using iterative refinement and mixed single/double precision. Our approach is
potentially more general in that it uses only single precision, but more restricted
in depending on the specific structure of inverse imaging problems. It would be
interesting to compare the present approach with one based on iterative refinement
in the future.

This framework applies to any linear inverse problem

(1) in which the model variables are regular samplings of a vector-space-valued
function (e.g., a multi-spectral image), and

(2) for which there is an efficiently-computable (but not necessarily sparse)
forward problem.

It applies to some nonlinear problems, and we demonstrate the use of a nonlinear
penalty, but provide no proofs of convergence in the general nonlinear case. We
use a specific numerical test problem from Magnetic Resonance Imaging (MRI),
SENSitivity Encoding (SENSE), in a variant which does admit a direct inversion,
so that we have a baseline for comparison. Similarly, we will focus our discussion
on efficient implementation for the Cell processor in particular, since it is the target
of on-going implementation work, and represents a direction we expect processor
design to follow.

Any medical imaging problem (imaging using x- and gamma-rays, ultrasound),
volumetric radar and sonar, seismic imaging, and remote sensing can be adapted
to this framework. We expect the resulting algorithms to be competitive in cases
involving large data/model sizes with significant measurement noise.

2. PREVIOUS WORK

Inverse problems are being solved in many fields of application, sometimes with-
out being labeled as inverse problems. Without developing a survey of the related
literature, we will try to put our method into context, making it clear that several
other approaches to these problems exist.

In this section, we sketch the most important alternate methods, and the meth-
ods most related to this work. We have tried to choose references which are either
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closely related to the inverse problems which motivate us, or which synthesize two
or more of the related fields.

2.1. Optimization with and without derivatives. All methods can be classi-
fied by their use of model derivatives (no use, uses gradients, uses Hessians).

No derivatives. Methods not using gradients include filtering methods applied
to images or other data with positional metadata (i.e. meshes), and simple itera-
tive methods including Projection onto Convex Sets (POCS). These methods are
generally more stable, but with the worst asymptotic convergence (when they are
used iteratively and do converge). Filtering is very often applied once, which makes
it a fast method. Bilateral Filtering, which we will discuss further below is very
effective in many domains. POCS can be very effective when the geometry and
computational complexity of large systems of linear constraints (which may come
from linearizing nonlinear constraints) is well understood. It is an everyday tool
(see [MSP86]) and a source of innovation in our MRI test problem (see [SKPJ04]),
and an actively-applied method in other areas (for example [AMO06]). It is most
successful when the linear constraints correspond to enforced sparsity of represen-
tation in different bases, typically corresponding to time and frequency domains.
The penalty functions we introduce based on a simplex of possible pixel values is
related to these methods.

First derivatives. Steepest descent iteratively uses the negative gradient as a
search direction for a one-dimensional search. This method is as stable as the
gradient (usually very stable), but has poor theoretical and measured complexity on
large, interesting problems. One important class of first-derivative methods is based
on diffusion equations with spatially-varying (anisotropic) coefficients, proposed by
[PM90]. Although such methods may use higher derivatives in constructing the
DE, the steps are gradient steps. The only method of improving such methods is
to improve the search direction. Our most important penalty function is optimized
to produce good search directions.

Second derivatives. Methods which use second derivatives fall into several sub-
categories, including Newton’s method, Neumann series, and Krylov subspace meth-
ods (which includes the Conjugate Gradient (CG) method [HS52] also applied pre-
viously to our MRI test problem [PWBBO01]). Imaging problems are, in general and
in the particular cases of interest, too large for the application of Newton’s method.
For large problems with well-behaved spectra, CG offers rapid convergence (both
theoretical and observed) with very low computational complexity. Unfortunately,
the calculation of residuals in CG introduces numerical instability which is difficult
to predict and is significantly amplified by doing computations at single precision
and/or processing data with significant noise components. Another approach to
solving large linear systems with fast matrix-vector multiplication, but no fast in-
version is to use a (truncated) series,

(1) (I+E)‘1:I—E+%E2—---,
or another polynomial approximation to the inverse. This approach is used in
conjunction with other methods, notably as a method of preconditioning CG to
improve convergence (see [JMP83]). We are proposing to use this approach by
itself, not as a method of preconditioning another method.

This is not a comprehensive list of relevant optimization methods. We have also

not considered constrained optimization, sophisticated uses of function spaces (e.g.
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basis pursuit in redundant wavelet bases, or spline bases [LP06]), filter search and
L-curve analysis.

2.2. Total Variation. Total variation as a regularizer for inverse problems (image
recovery) was introduced in [ROF92]. The basic idea is to use

2) / IVl

the L! norm of the gradient of the model function, as a regularizer. Using the L!
norm is motivated both by heuristics (penalizing oscillations versus steep slopes)
and robust statistics, see [Hub81], which seek to reduce the large effect outliers
can have on estimates based on limited samples (image pixels always have limited
numbers of neighbors). Total Variation was quickly shown to produce visually
and numerically superior results to standard problems in image processing, see
[Cha04], and image reconstruction, see [CCT04], including constrained optimization
[BCRS03].

The main difficulty with TV was the lack of smoothness in the penalty function,
which can be dealt with in various ways, notably by introducing an auxiliary opti-
mization problem and using a custom primal-dual [CGM99] or second-order cone
[GYO05] approach. These latter approaches share the robustness and efficiency of
interior point methods. Unfortunately, they involve solving linear systems which
become ill-conditioned as the method converges, even in double precision.

The connection with robust statistics has played a more direct role in the devel-
opment of at least one algorithm, see [HHK'03].

2.3. Markov Processes. Another way of obtaining the similar models is to ex-
plicitly model the pixel values as random fields, using Markov processes to capture
the dependence of pixels on their neighbors. See [NMDI94], [ZBS01] for examples
close to our problem domain. In this context, it is natural to introduce distributions
from Robust statistics.

2.4. Bilateral Filtering. Although anisotropic diffusion (AD) was quite success-
ful, it is inherently expensive (depending as it does on gradient descent). Bilateral
filtering is a one-step noise-reduction method which achieves similar results. For an
introduction which makes explicit the connection with AD, see [Bar02]. The idea
is to combine spatial convolution filtering, with range filtering.

Let © ¢ Z"V be a multi-dimensional lattice of points, V a real vector space and
f:9Q— >V a (noisy) image. Convolution with a kernel ¢ : Z¥ — > R,

(3) flay=" > cly—2)f),
yER\{z}
is the simplest method of filtering noise. It works when the noise and true image
have different spectra (usually the noise is white, with uniform high- and low-
frequency components, but the image has very small high-frequency components).
Bilateral filtering introduces a range kernel function s : V. — V|

(4) fl@y= > cy—o)s(fly) - f(@)),
yER\{=z}
which modulates the weighting of neighboring pixel values. In the original and later

application papers, this is seen to reduce edge blurring in images with sharp edges,
because it reduces the influence of neighboring pixels with very different values on
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each other. Both ¢ and s are usually taken to be Gaussian kernels, with the ¢ being
truncated at some finite width to reduce computation, and s chosen to match the
expected noise statistics in f.

Although Bilateral Filtering works well as a single-step filtering method, the
concept can be used in an iterative derivative-free method, for example in AD
[Bar05]. The cycle of relationships is closed in the analysis, [BSMH97], of the link
between robust statistics and AD.

2.5. Exploiting Commodity /Lower-Precision Hardware in Scientific Com-
putation. In another direction, the community of researchers exploring the limits
of computation possible on graphics processors has made significant progress in
translating scientific algorithms to the limited precision and restricted computa-
tional model of current graphics processors. This work offers an alternative to our
proposed method and significant progress has been made, including recent work
implementing interior point linear programming using OpenGL [JO06]. For algo-
rithms which do not perform well in single precision, it is possible to use single-
precision calculations and iterative refinement to produce higher-precision results,
as was done for very high-precision linear algebra in [GZ03] and for accelerating
Cell computations in [KDO06].

Note: For numerical analysts who may not be familiar with the level and kind
of parallelism available in current commodity architectures, we examine the case
of the first-generation Cell [KDH05]. This processor contains 8 general-purpose
processor cores (Synergistic Processor Units, SPUs), each capable of dispatching
a single SIMD floating-point operation per cycle. Each SIMD operation operates
on 128 bit operands, which can be operated on as a short vector of four single-
precision floating-point numbers. Although it is possible to reorder the constituents
of operands and synthesize conditional execution, peak floating-point performance
is only available when the four floating-point elements in each operand are operated
on in the same manner. For example, adding two vectors can easily be arranged
to function this way, while Cholesky decomposition of a single tridiagonal block
will operate at near one quarter the peak rate. This can be remedied if four blocks
of the same size are processed in parallel, with the data stored in memory in an
interleaved fashion. Again, using the Cholesky decomposition example, data de-
pendencies between instructions mean that four decompositions executed in parallel
will suffer from pipeline stalls equal to the six cycles of latency of a floating-point
operation. To achieve peak performance, 6 x 4 decompositions must be executed
in parallel, using software-pipelined loops. To use all eight SPUs, we need 8 x 6
decompositions to execute in parallel. Since the SPUs can only efficiently address
256MB of local storage, some method of buffering data in and out of the local stor-
age is required. Double buffering entire blocks is the simplest scheme, requiring an
additional factor of two. In total, 384 decompositions must be in-flight in parallel
to achieve peak performance. The exact amount of parallelism required to achieve
peak performance depends on both the high-level and low-level data dependencies.
For example, dense Cholesky decompositions can be parallelized internally, using
SIMD features at near peak performance, and long vectors may be broken into
blocks and pipelined at the high level. But hundred-way parallelism will still be
required for a single Cell, and thousand-way for a small cluster.
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FIGURE 1. Real (left) and imaginary (right) parts of the ideal den-
sity. The same vertical and gray scales are used in all comparable
plots.

2.6. Novelty. Our contribution to the solution of inverse imaging problems con-
sists of

e the decomposition of the Hessian into block diagonal and other blocks for
use in Neumann series or polynomial approximations,

e penalty functions designed to mimic bilateral filters,

e the optimization of spatial kernels to produce desired gradient directions
from penalty functions.

Although we could not find the repeated application of Neumann series, single
applications have been used in other ways in image reconstruction problems, see
[WNCO01], and repetition of such application was probably considered previously.

3. EXAMPLE PROBLEM

We will use a computationally simple inverse problem for the purposes of expo-
sition and numerical evaluation: MR SENSE (Sensitivity Encoding) with regular
two times undersampling of signals in the frequency domain. In this problem, we
want to determine a complex tissue density function

(5) p:Q—C

from measurements

(6) s f2, 3 fha 2 /2 — C,

in which we take Q = {0,1,...,255} x {0,1,...,255} and Q/2 = {0,1,...,127} x
{0,1,...,255}. The real and imaginary parts of our numerical test object p are

given in Fig. 1. The measurements are modeled by
(7) tmiij = SmyiiPi,j + Smii+128,50ij + €msing
where the €,,,; ; are identically normally distributed, zero mean, independent mea-
surement errors. Physically, the measurements are reconstructed MR images which
are undersampled in one direction so that the reconstructed images alias, with the
top/bottom of the image also appearing in the middle. MR measurements are
collected using antennae which modulate the tissue density by their spatial sensi-
tivity, Sy, : Q@ — C. SENSE works well when the antennae are designed to produce
linearly-independent sensitivities.

This is a particular example of SENSE, in which a regular undersampling pattern
in frequency space produces (after reordering) a block diagonal forward problem
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FIGURE 2. Solution of the direct problem. The fixed gray and
vertical scale reduces the visibility of the noise.

with 4 x 8 (real) dense blocks. We take advantage of this structure to solve the
inverse problem directly as a baseline solution, see Fig. 2

The usual measure for noise in MRI (Signal to Noise Ratio, SNR) is calculated
as the ratio of the largest expected pixel value to the standard deviation of the
measured error. In our case, the true image has pixel values 1, 7 or 0, so the SNR
is the inverse of the standard deviation of the error, which we have chosen to be 2,
when measured over the pixels with true value of 1, giving an SNR of 1/2. (More
noise than signal.)

The conditioning of the forward problem depends on the sensitivities, and is
referred to as the G-factor in the MR literature. For typical medical imaging, all
of the antennae are constrained to lie outside the patient, and the sensitivities will
all be weak and flat in the middle of the patient. These pixels will be associated
with the blocks with the highest condition numbers.

This example problem is apt because (i) in many imaging problems, increased
signal quality comes with increased collection time (and cost); imaging is never
fast enough, so producing images from noisier data is welcome; and (ii) irregular
sampling patterns (which arise naturally in many efficient imaging situations, e.g.
[PWBBO01, ACKO06]) lead to problems with no direct inverses.

Using a regularly-sampled representative for this class of problem simplifies the
exposition of the problem and implementation of the algorithm. It also makes avail-
able a direct solution (without regularization) to illustrate the relative magnitude
of the signal and noise, which would be harder to gauge in the general case.

4. ALGORITHM

The principle is to formulate one or a series of objective functions ¢;, including
a fit-to-data term and a penalty term(s), and to apply a polynomial approximation
to a Newton step, solving

(8) (H(¢i) + al) Azipy = =V ¢y,

where al is a positive multiple of the identity. The polynomial is an approximation
of 1/(1+ ) on an interval containing the spectrum of BA~!, where

9) H(ps) +al = A+ B,

is a decomposition into A, block diagonal with banded blocks, and B general. The
decomposition is chosen to minimize the spectral radius of B, e.g. by making B
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zero on the nonzero bands of A. The blocks correspond to rows or columns in the
image, depending on the ordering (row- or column-major order). We will assume
row-major organization, unless another organization is specifically mentioned. We
make A block diagonal with banded blocks because in the Hessian, this corresponds
to objective/penalty functions which depend on the relationships between close
neighbors in the row direction. An objective which depends on close neighbors in
all directions will have a block banded Hessian with banded blocks, in which most
blocks are zero and nonzero blocks are only nonzero on their central sub/super
diagonals.

We choose this sparse structure for A because each of the blocks (which cor-
respond to rows) can be factored in parallel. The Hessian, and hence B, may be
dense, as long as matrix-vector-products can be efficiently computed. All of the
Hessians for penalty functions introduced in this paper can be effectively paral-
lelized. The problem of fast computation of the fit-to-data term (gradient and
Hessian) is not unique to this method, and for most important inverse problems
fast implementations already exist.

In an N? image, if A has m < N nonzero bands, the Cholesky decomposition
can be done in parallel for each image row/A block in O(mN ® N) operations using
O(mN) working space, to form

(10) A=LLT,

where we use the notation O(z ® y) to mean O(x) operations per parallel compu-
tation, with i such computations for the whole image. In the case of an N2 image,
O(mN ® N?) operations would be required.

The same block diagonal structure applies to L. Formally,

(A+B)"'=LLT +B)!
:LTfl(]I + L*lBLTfl)flLfl

(replace with Taylor series)

:(LTflLfl) o (LTflLleLTflLfl)
+ (L L BT LT BT L) —

A truncated Taylor series provides a fast method of finding approximate solutions

to (A + B)"}(Az) = —V¢;, using the following steps:
(1) calculate L=1(—V;) by back-solving in O(nN) operations

(2) calculate LT_lLfl(—ngi) by back-solving in O(nN) more operations
(3) save result
(4) calculate BLTflL_l(—qui) using the fast computation for B
(5) caleulate L-'BLT ' L~1(—V¢;) by back-solving in O(nN') more operations
(6) caleulate LT 'L=1BLT 'L=1(~V4;) by back-solving in O(nN') more op-
erations
(7) subtract from result

. continue to the order of truncation.

This process converges if the spectrum of L-'BLT ™" is in an interval [—b,0]
with b < 1. If a bounding interval [—b, b'] is known, then for any order, we can find
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a minimax polynomial p(x) such that

(1) max [1/(1+2) - p(a)

| =

is small. It follows that a linear combination,
(12) LT ' p(L ' BLT LY (- V)

using the coefficients of p, of the terms calculated in the procedure above, provides a
better approximation of Az than the truncated Taylor series of the same order. (See
[JMP83] for an explanation and application to preconditioned conjugate gradient.)

Using the minimax polynomial requires little extra machine computation, es-
pecially on machines with fused multiply-add instructions. Note that even if the
Taylor series diverges, we can still find a minimax polynomial as long as the spec-
trum is bounded, although we wouldn’t expect a good rate of convergence to result.

The optimization algorithm contains the above procedure as an inner iteration.
The full procedure is

(1) compute gradient at current iterate (z;);

(2) compute Hessian and LT L (if the objective is convex quadratic);

(3) solve for the approximate Newton step using the procedure above;

(4) repeat until the step size or decrease in objective value fail to cross a thresh-
old.

We allow for non-stationary objective functions to accommodate non-convex objec-
tive functions which need to be solved in stages to prevent convergence to undesir-
able minima.

To ensure stability of the factorization step or to improve convergence, it may be
necessary to add a multiple of the identity to the Hessian. Let « be this multiple
and let H be the Hessian. The quadratic approximation to the objective can be
written

(13) (bapprox = %(Z‘ - x0>TH(-’If - xo) + ¢o,

for some constant ¢o. The gradient is H(z — x¢). The difference between the next
iterate and the minimum point is

|z + Az — x| = ||x er(A*lB)A*l(fH(x —x)) — x0||
< Hp(A_lB)A_l(—H(a? —20)) — (H+al) " (—H(z — mo))H
+ ||(H+ o)~ (=H(z = z0)) — (z — zo) |
< (el H[|+ [|[(H+aD)7 | a) [lz — zol|-

(14)

So if the spectrum of the Hessian is bounded away from zero, we can find a poly-
nomial approximation of sufficient degree to make e small enough to ensure that
approximate Newton step is a contraction mapping, and the iteration converges.
The rate of convergence depends on the conditioning of the Hessian and the order
of the polynomial approximation.

We have shown that this framework converges in infinite precsion. It works even
with low-precision arithmetic well past a level of convergence meaningful in imaging
problems because errors do not accumulate from outer iteration to outer iteration,
and errors in the inner iteration amount to tens of ulps which is below the error of
the approximation.
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For a polynomial p(z) =3, p;xt, rounding errors during the inner iteration will
be on the order of m ulps plus >, [pi|/Pmin ulps multiplied errors in multiplication
by B, where pyi, is the minimum magnitude coefficient of the polynomial. In
reasonable situations this result in a ratio under two, and in our test-case we have
always been able to keep it under one. We use the fact, see [GVLI6], that Cholesky
decomposition of the diagonally-dominated blocks of A introduces at most a few
ulps of error.

The dense operators B occurring in these types of problems (i.e. Fourier and
Radon transforms) are stable in practice. Conventional image reconstructions
would not work if this were not the case.

Note: In many embedded and large-data-throughput applications, numerical
convergence criteria are not used, because the computation budget is fixed. In these
cases, asymptotic convergence is not important in itself, but the implied numerical
stability is important, since many such computations run unsupervised.

5. PENALTIES

Convergence of our method depends on the structure of the objective function.
Because inverse problems come with a variety of structures, we would like to be
able to ensure rapid convergence with the penalty terms. Two properties can ensure
this: dominance of the block diagonal component of the Hessian and a good gradient
direction.

5.1. Bilateral Regularization. Modeling our first family of penalty functions on
bilateral filtering, we replace (4) with a penalty

(15) oui(f) =D cly —2)s(f(y) — f(x)),

y#£T
where ¢ and s can be any kernel functions, including ones used in bilateral filtering.
The choice of ¢ and s is guided by

(1) previous use in statistics or filtering,
(2) descent direction, — Vy;,
(3) sparsity and conditioning of the Hessian.

We want the negative gradient to point in the direction of a more likely image
than the current estimate. For problems where pixel values represent component
properties, e.g. water content or radio opacity, images are expected to be piecewise
constant to a first approximation, with most of the signal in the low-frequency
components, while the noise is distributed evenly across frequencies. This leads to
the design goal

—Vébi( fnigh) = — figh, while

_V¢bi(fzero) =0.

For one of the penalties will define, we can formulate this design problem using
constrained linear optimization involving the coefficients of ¢. The optimization
model is a multi-dimensional analogue of FIR filter design. Since the penalties
form a family, it makes sense to use such an optimal ¢ for the whole family.

For general c and s, the gradient and Hessian are

(16) 0 = Y 2U@ S

C(.’IJ - :l/)7
Ohle) " i 9@
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FiGure 3. Optimal v/18 spatial kernel and its transfer function,
with contours at .05 intervals from — 1.05 to — .05, with a double
contour at — 1.

and

9%s(f(x) — f(y))c .
{y%;«:&x} of;(y) 0fi(x) (. —y).

The sparsity of the Hessian depends on the support of ¢ and the derivatives of s.
The derivatives of s are important when f is vector-valued. If s depends func-
tionally on || f]| alone, then its Hessian is a multiple of the identity, and the full
Hessian decomposes into identical, block banded with banded block blocks. In our
implementation, we use this fact to reduce storage for the Hessian and the number
of Cholesky decompositions.

Consider s(t) = ||¢]|* (L% norm). To simplify the analysis, we assume > yzocly) =
1, and ¢(y) > 0. In this case we define

(18) iz = Y cly —2) | f(y) - f(2)]”,

y#x

(17) Hyi(a). 15 (y)Poi =

and compute

(19) %M 23 (fi@) - e —y) =2 [ filw) = 3 fil@)e(@) | .
¢ Y#x T#yY
and
Hi (@), 15 () Priz = 0, V(i #jor x #y)
(20) Hto) () Poiz = 2 ) e(y) = 2,
y#0

H g fiy) iz = —2¢(a = y)-
We observe that Vpia(f) is the convolution of f with the kernel formed by 1 at
zero and — c(z) for other values of x. This is why the design can be formulated
as linear programming. In Fig. 3 we show the optimal two-dimensional discrete
function ¢ with support in a disc of radius /18 which we use in the numerical
examples in this paper.
Other functions s to consider are motivated by use in statistics and filtering:

(21) drirv = Y c(y — ) | f(y) — f@)|l,

yF#T
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2l e(2)
1 0.04071725
2 0.03499660
4 0.02368359
5 0.02522255
8 0.02024067

9  0.01407202
10 0.01345276
13 0.00850939
16 0.00812839
17 0.00491274
18 0.00396661

TABLE 1. Optimized definition of ¢ used in numerical examples.

is equal to the Total Variation, when ¢(z —y) is zero except for immediate neighbors,
and hence has all the problems associated with the discontinuity at the origin and
zero Hessian;

(22) (bbiHuber = Z C(y - x)SHuber(f(y) - f(.’IJ)),
y#

in which Seryber is the Huber function used in robust statistics. It is the C' function
which equals the absolute value outside a neighborhood of zero and a parabola
inside. This penalty has a continuous gradient but discontinuous Hessian.

(23) ¢biNormal = - Z C(y - x)er(y)—f(l)Hz
y#T

corresponds to the original kernel used in bilateral filtering, but reduces sparsity
and conditioning in the Hessian (since it may be nonconvex); while

W= ) - @)

(24) R Y —
o JHﬂy)—ﬂmHﬁe

(25)

which is a pixel-scaled version of ¢p,;2 in which the scaling depends on the previous
estimate (f), and hence has the same sparsity (and symmetry among components).
It improves conditioning differently as a function of the current estimate, which may
improve actual convergence, while weakening bounds on worst-case convergence.
We designed this to be a better-behaved and easier-to-implement version of Total
Variation. Fig. 4 shows how the one approximates the other. For real-valued
images, we could reformulate this penalty using linearly-constrained optimization,
but this is out of the scope of this paper.

In the numerical results section, we report on the behaviour of ¢ and ¢y,
leaving the other kernels for a future work.

Every nonzero value of ¢ corresponds to nonzero (sub/super)diagonals in Hepio.
In most applications, this means that the memory requirements associated with the
approximate Newton step will be O(|c| x (image size)), where |c| is the size of the
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s(f(x) = f(y))
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FIGURE 4. Two examples of the biTv kernel approximating the
absolute value. The approximation depends on the current value
of the difference, as shown on the left. On the right we see that
the difference with the absolute value is quite large when the going
from a small difference to a large one. This has the effect of limiting
step length for steps which would increase differences.

support of ¢. Functions ¢ with support in a disk (ball for higher dimensions), give
the best trade-off in terms of memory/performance. The function in Fig. 3 shows
a degree of rotational symmetry, and its transfer function (its Fourier transform)
shows that pure spatial frequencies with periods smaller than six pixels, which
represent 91 percent of all non-aliasing frequencies, would be reduced in magnitude
by 95 percent by a gradient step (if the penalty were the entire objective function).
Choice of the support for ¢ and the frequencies to try to eliminate warrant further
investigation, and in a future paper we will give the details of the optimization
problem, profile a range of choices, and do the same for the spatial kernel of the
original bilateral filter.

Note that the penalty ¢y; is a bound on the difference between a pixel and the
weighted average of its neighbors:

(26) doely—2)If) = f@))* = ||f@) = ely—2)f ),

y# y#z

but that the inequality is strict generically. The latter would result in roughly twice
the number of nonzeros in the Hessian, reducing computational efficiency.

5.2. Masking. In slice/volume reconstuctions, the imaged object is often sur-
rounded by air, which in a perfect reconstruction appears as pure noise, but in im-
perfect reconstructions may contain incorrectly-attributed signal. If the object/air
interface can be determined from the device design, or from a low-quality recon-
struction, a penalty

(27) Smask = > If @)
{z |z is air}

can be used to push the pixel values to zero (or whatever the appropriate signal
for the surrounding air or other substance is). The contribution to the gradient
is negative the image value, and the Hessian is diagonal, constant two outside the
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FIGURE 5. Surface rendering of the two-dimensional version of
@simplex Showing contours at 0,.2,.4,.6,.8.

object and zero inside. If set measurement is uncertain, the penalty can weight the
contributions from different pixels according to the certainty of not being inside the
object, or we could simply consider questionable pixels to be part of the object.
In limited experience, this works better than constraining those pixels to be zero
and then eliminating those variables from the problem. Perhaps this is true in high-
noise regimes where assigning external noise pixels to internal pixels can actually
make noise problems worse. It is certainly easier to implement boundary conditions
and do parallelization when the number of pixels in the object remains constant.

5.3. Partial Volume. In problems where the pixel values are modeled as linear
combinations of the signals corresponding to different object components (e.g. mus-
cle, fat, ete. for medical imaging, or forest, field, concrete, etc. for remote sensing),
the reconstructed vector pixel values should form a simplex (if the pure signals are
linearly-independent and the reconstructed values are expressed in a basis formed
by extension) or another convex polytope.

In either case, we can add penalty functions to penalize pixels outside the poly-
tope.

We see two ways of implementing such penalties: simplex basin and edge attrac-
tor. Let

(28) (t) = {tQ t<0

0 otherwise.
Define
(29) Dsimplex(f) = D_ V(i) + (1= 3 fi).

For two-vectors, the corresponding basin of convergence is visualized in Fig. 5. This
penalty is convex and easy to compute. Its Hessian is discontinuous, however, but
this could be fixed by switching to the fourth power for the penalty components. If
the measurements can be converted to the natural basis of the simplex (extended in
the case of more measurements than components), the Hessian is diagonal. Unlike
the Hessians of other penalty functions, however, it is not constant on the diagonal
elements corresponding to one pixel. In fact, it could be one on any subset of the
diagonal and zero on the rest corresponding to components. (It is always one on
the remaining directions).
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An alternative is
(30)
(bmagnet(f) = {

(f — fo)> f in the exterior and projects to fo on the boundary,
0 f in the interior.

This penalty has discontinuous Hessian, but the Hessian is diagonal in any basis
for the pixel values, because it is either two or zero on all diagonal elements corre-
sponding to one pixel. If all other penalties have this property, then storage for A,
B, and L can be reduced, along with the number of Cholesky decompositions. This
comes at the expense of penalizing movement along the boundary of the simplex
for pixels outside the simplex.

An alternative to both methods would be to use barriers. Since they are unde-
fined outside the simplex, this would require additional computation to ensure that
we never leave the simplex.

5.4. Segmentation. In many applications, images are used to make quantitative
determinations of component areas/volumes. For example, grey and white matter
volume is important in tracking development in children and degenerative diseases
in the elderly. Segmentation into components is also required before surface ren-
dering.

In such cases, where images are reconstructed from source data, the most likely
segmentations can be determined by incorporating a probability distribution on
pixel values into the reconstruction via a penalty function:

(31) Dues(f) = > e el

{g | mean values of components}

This function is not convex for small values of o, so we have to consider multiple
local minima. When it is convex, however, its unique minimum is in the interior
of the simplex and not assignable to any component. A reasonable way of getting
to a better local minimum is to increase the weighting of this penalty and decrease
the size of o as a function of iteration count. As the weighting of this penalty
function gets higher and o gets smaller, pixels will be forced to move to one of the
component means. If the weighting is too high initially, however, some pixels will
be trapped in the wrong basin of convergence.

Another consequence of the nonconvexity is that the Hessian may have negative
values on the diagonal. This happens for pixel values far away from the simplex,
or when o is small enough for pixels in the interior of the simplex. This will
reduce the diagonal of A and even without making A singular and the Cholesky
decomposition ill-defined, it tends to increase the eigenvalues of L' BLT~! which
reduces the rate of convergence of the Neumann series and increases the error in the
polynomial approximation of (4 + B)~!. We can compensate by adding a multiple
of the identity to the combined Hessian, which means taking a smaller step which is
more gradient step and less Newton step, both of which slow convergence. Because
of these factors, it is best use this penalty after other penalties have stopped rapidly
converging, and only use it in combination with convex penalties.

5.5. Fit to Data. The preceding penalties are some of the penalties which encode
a priori information about the expected solution, which may be modified and in-
troduced at different iterations to improve convergence. Every problem must also
contain a fit-to-data term which is dictated by the problem.
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Our assumption is that the problem has a readily computable forward problem:
a way of going from model to expected data. If the forward problem is linear
T : P — M, where D is the vector space of pixel data and M is the vector space
of measurement data, and the measurements are contaminated by white noise, the
fit-to-data term is

(32) Pata(f) = [[T'f — Tn”2 )
where m are the measurements. The gradient is given by
(33) Vdata = 2T m,

and the Hessian by
(34) Hdata = 217 T.

Where the adjoint 77 can always be computed by similar fast methods. The most
common case is when T is a close relative to the Radon transform or nonuniform
Fourier transform, in which case the adjoint can be accelerated using the same
methods.

Modifications for unequal or correlated noise are straightforward. Modifications
for nonlinear forward problems require another level of analysis. If the nonlinear
problem is convex, and the difference between the nonlinear model and its lin-
earization can be bounded in a trust region, then our framework provides the tools
required to solve the nonlinear problem. Simply substitute the linearization of the
forward problem at each iteration, and add a multiple of the identity to the overall
Hessian to ensure the next step stays within the region on which the linearization
is a good approximation. As the solution approaches a minimum for the general
nonlinear problem, the step size will reduce in size and converge linearly to the
local optimum. We will explore this issue in detail for specific nonlinear forward
problems in a future paper.

Unlike the previous penalties, Hdgata Will in general be dense, and the exact
values of a split Agata + Bdata = HPdata Which matches the sparsity pattern for A
may be too expensive to determine exactly. In this case, the requirement on the
split is for A to have the same sparsity pattern as the diagonal blocks of the other
Hessian components, and B to come with the smallest possible spectral radius.

For example, sparsely sampled radial sampling in MRI and sparse spiral sam-
plings in transmission tomography (including CT), result in 77T being approxi-
mately shift-invariant, given as convolution with a point spread function (psf). The
psf approximates a delta function at the origin, and for different sparse samplings
above includes low-intensity star patterns centred at the origin. The first term,
Agata is formed by taking the 2m + 1 adjacent pixels centred at the origin in the
row direction. Fig. 6 shows an actual psf (see [ACKO06]), with a yellow outline to
show the pixels which contribute to Agata.

In many cases, other information can be used to improve the estimate for Aqata,
by understanding the underlying physical model. For example, in SENSE imaging,
the columns of Agata, taken from the psf can be modulated by the sum of the
squared magnitudes of the coil sensitivities (S, ;)-

Even in cases where complete information about 7" may be unavailable, it may
be possible to find a good choice for Agats. For example, if T' corresponds to partial
data loss for samples of the Fourier transform of the image, then the eigenvalues are
all one or zero (with eigenvalues coming from the Fourier basis), and Agata = 1/2
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FIGURE 6. Point spread function for MRI sparse sampling tra-
jectory, showing the pixels which correspond to the values of Aqata.

may be the best estimate available (which limits the absolute value of eigenvalues
of Byata = TTT — Agata to £1/2.).

For the specific problem we are using for benchmarking, the images are complex.
The psf is real, of the form dg ¢ + 09,128 (for 256 x 256 images), which captures the
sparsity pattern of the full Hessian. The diagonal of the Hessian is

(35) (ASENSE2) (i.5), (1) = Z [Smsi il

by which we mean the diagonal elements of the Hessian corresponding to pixel
(i,7). The value is the same for the real and imaginary parts of the image, and
the off-diagonal part of the Hessian corresponding to mixed real/imaginary and
imaginary /real parts of a single pixel are zero. This allows us to reduce the storage
of A and the number of Cholesky decompositions by 1/2.

On the other hand, the contribution to the off-diagonal blocks is not real, so
there are twice as many nonzero elements (not counting symmetry in the Hessian):

(36) (BSENSE2)(5,0),(1,5+128) = ) St iSmsi j 4128

m

by which we mean that the four nonzero elements corresponding to the interaction
of pixels (4, 7) and (4, j+128) correspond to multiplication by this complex number.
Since these values are applied directly in the form of a matrix-vector product, and
not involved in a Cholesky decomposition, there is no effect on space.

Since the energy of Hoqata is divided equally between the diagonal and off-
diagonal blocks, this problem can be expected to be more difficult to invert by
this method than typical target applications, for which the psf is not sparse, but
is concentrated at the origin. Further investigation is required to see how this fact
balances out the fact that we don’t have a fast exact decomposition into block
diagonal and off-diagonal parts.

The total memory footprint of this algorithm depends strongly on the fast algo-
rithm used to calculate T and T, but the additional footprint for the regularization
will be (|supp(c)|/2 + width(c)) x (image size). For most target problems, the com-
putational cost associated with ¢ will be small relative to the fit-to-data term, so
the space requirements are what needs to be traded-off with the improvement per
iteration.
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6. NUMERICAL RESULTS

Numerically, we verify linear convergence, with all computations done in single
precision. (All variables were declared to be single precision, and we verified that
single-precision instructions were used in some of the assembly code.) We verify
convergence with a variety of different penalty functions and in two regimes: a
small number of iterations, to simulate real-time imaging, and a larger number
to ensure convergence past visibly-detectable differences. For the simulated real-
time situations, we chose 15 iterations, because we wanted to add some additional
penalties and they worked best after the initial 10 iterations, but we wanted to keep
the number of iterations down. For 15 iterations, we compare the optimized kernel
¢ with the simplest possible kernel, the so-called five-point stencil with obviously
unacceptable results for the smaller kernel. We also compare the penalties ¢pio and
dpiTy for visual differences in edge sharpness.

The implementation is in ANSI C, with minimal space-optimizations, taking
advantage of the banded structure to allow large problems to execute in RAM. No
optimization was done for speed, but even at 100 iterations, the processing speed
is comparable the time gnuplot required to plot the results.

6.1. Convergence. We deliberately chose to test in a high-noise regime, so we
expected many iterations to be necessary. In Fig. 7, we see that the linear conver-
gence continues to the 100th iteration, both with the ¢n;2 and ¢pi7y penalties, plus
additional penalties after 10 iterations. For the first 10 iterations, see Fig. 8, we
used equal weighting for the penalty and fit-to-data term,

(37) min )\Qﬁdata + /\b12¢b12 + /\biTv¢biTv + Amask¢mask + /\magnetﬁﬁmagnet + /\segﬁéseg

A =1 = A2 and use a very small regularizer a = .0125. In both cases, we perform
a simple mask calculation at this point (shrinking a circle until the average pixel
value outside the circle makes a sharp increase). We then add the mask penalty
Amask = 1 for the remaining even iterations and the magnet penalty Amagnet = 1 for
iterations 40...59. At iteration 20 we introduced ¢s,. We decreased the standard
deviation of the normal distribution according to o = .4 4+ .03/(1+iteration — 20),
with the aim of introducing a convex penalty and gradually switching to a more
non-convex penalty. (To be safe, we increased « to ensure that the Hessian stays
sufficiently positive definite.) After iterations 50 and 70 we decrease the weighting of
the fit-to-data term, to .1 and .07 respectively, increase the weight of segmentation
to 1.1 and 1.35, and increase the regularizer o to 1.5 and 3.

For comparison, see Fig. 9, we made the same choices with ¢p;o replaced by ¢piry
after iteration 10, and €, which controls the maximum thinness of the parabola
approximating the absolute value to .06 and then .03 after iteration 75. The con-
vergence plot shows good behavior with all combinations of penalties. Further
emphasizing the penalties at iteration 75 makes little difference over the change
at iteration 50. This is consistent with expectations based on L-curves for other
inverse problems, but does not verify such behaviour in this case.

If you look carefully at Fig. 9, you can see enhancement of some edges using
PbiTy VErsus ¢pi2, but not enough to recommend one over the other.

Of course, we are very interested in embedded real-time applications. In these
cases, we cannot wait for convergence, we must do the best we can in a given time
budget. To test the algorithm in this case, we repeat the same initial iterations,
but follow them with iterations with more aggressive parameters including ¢seg
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FiGURE 7. Convergence using by stages the simplest to the most
complex penalty terms. Normalized to make the error in the direct
inverse 1. On the top we plot the total L? error (versus the true
image). On the bottom we plot the difference between the error
of the current iterate and the error in the limit, to show that the
linear convergence continues up to the 100th iteration.
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FI1GURE 9. After a total 100 iterations, introducing more penalty
terms as iteration count increases, comparing ¢nia (top) and @ity
(bottom,).

from iterations 11 instead of from iteration 20 in the other case. As the graph
shows, being more aggressive does produce faster convergence, and looking at the
resulting images, Fig. 10, shows the images to be faithful representations of the
test object. For comparison, to show the value of optimizing ¢ to produce gradient
directions which reduce high-frequency components, we did the same experiment
with a four-point kernel ¢ (.25 weighting to all of the differences between horizontal
and vertical neighbors). As the images in the bottom of the figure show, we do not
get a faithful representation of the test object with this kernel. This demonstrates
both the superior performance of the optimized ¢, and the danger in introducing
non-convex penalties too early and dropping into the “wrong” basin of convergence.
In the embedded case, the convergence properties of the inverse problem may be
fixed at design time (when the data collection hardware and parameters are set).
So, although the data depends on individual experiments, the penalty weights and
parameters can be optimized in advance using expensive methods, i.e. pattern
search or more sophisticated methods.
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FIGURE 10. Fast 15 iterations, using width /18 stencil (top), and
4-point (width one) stencil (bottom).

7. FUTURE WORK

Implementation work is underway to show that we can achieve peak performance
on the target architecture (Cell). Operating system support for this platform is still
not mature, so there are challenging technical issues to overcome.

We are working on a technical report with a full set of optimized kernel functions
¢, similar kernels for bilateral filtering, and an analysis of their performance relative.

We have shown our method is robust with respect to input noise and round-
ing errors associated with single precision, and that performance is good for a test
problem. It would be interesting to test it on standard imaging problems, e.g. de-
blurring and inpainting. In the standard problems, propagating information across
the image requires many iterations, or the solving of large linear systems. This
is motivation for recent work on domain decomposition and multi-grid methods,
see [GY05], [CCO6]. Our method provides another potential solution to the signal
propagation problem, at the expense of some extra data shuffling. At each itera-
tion, we are making an approximate Newton step. We can bound the error in the
approximation in the L? norm, but in imaging problems, such measures can be mis-
leading. In our case, the Newton step is anisotropic, in the sense that for a problem
symmetric with respect to column translation, the Cholesky decomposition and
back substitution are exact for the regularized problem. Signals propagate along
the entire row in each step. Problems symmetric in the row direction, however, do
not behave in the same way, since signals cannot propagate farther than the width
of ¢ multiplied by the order of the polynomial approximation. So our approach
could be described as domain decomposition into rows. But at the expense of a
transpose, we can alternate rows and columns (or as many dimensions as exist for
a particular problem), without incurring any additional penalty.

L-curves methods should be applied to the larger parameter selection problem
introduced here. Can the work on L-curves help with the related problem of steering



22 CHRISTOPHER KUMAR ANAND

nonlinear optimization problems? The segmentation penalty is a simple nonlinear
term, but of definite value to the many applications which ultimately require seg-
mented volumes and not images. In the four-point kernel example, we have seen
what looks like convergence to unacceptable local minima. In this case, we could
ensure convergence to a good optimum by using ¢ with the optimized kernel
¢, and using sufficiently many initial iterations (based on a numerical termination
criteria), but it would be nice to be able to know the earliest point at which it is
safe to use the nonlinear penalty, since it significantly improves convergence.

Given our multiple penalties, we could apply a filter algorithm.

A problem which is not evident from the numerical tests, perhaps because of
the effectiveness of ¢seq, is that all of the penalty terms lead to biased estimation
problems, in which we expect the estimates to lie inside the simplex/polytope, even
if all the true values are on the boundary. Can the estimates be made unbiased in a
natural way? Is there a link to path-following methods in constrained optimization?

Although we conceived of this work as an alternative to Krylov space methods,
everything we have done to accelerate the Newton steps could be applied either
to precondition conjugate gradient iteration or to modify the objective of the CG
iteration.

8. CONCLUSION

We have presented a first-order framework for solving linear and nonlinear in-
verse problems whose model variables are arranged in grids, i.e. images, discrete
volumes, etc.This method is robust in the face of both reduced-precision compu-
tation and high levels of measurement error. We have introduced a number of
penalty functions, some of which we have tested numerically. Contrary to our own
expectations, the simplest bilateral penalty to implement, ¢z, performs as well as
the more complicated ¢y penalty.

This method is, by design, well-suited to all the types of parallelism we need to
exploit to benefit from current commodity architectures. The simple nature of its
error analysis recommends it to environments where algorithms need to be certified
at design time, and provides a method for analyzing nonlinear problems.
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