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Abstract

This paper deals with gradient methods for minimizing n-dimensional strictly convex
quadratic functions. Two new adaptive stepsize selection rules are presented and some
key properties are proved. Practical insights on the effectiveness of the proposed tech-
niques are given by a numerical comparison with the Barzilai-Borwein (BB) method, the
cyclic/adaptive BB methods and two recent monotone gradient methods.
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1 Introduction

We consider some recent gradient methods to minimize the quadratic function

min f(x) =
1

2
xT Ax − bT x (1)

where A is a real symmetric positive definite (SPD) n × n matrix and b, x ∈ R
n. Given a

starting point x0 and using the notation gk = g(xk) = ∇f(xk), the gradient methods for (1)
are defined by the iteration

xk+1 = xk − αkgk, k = 0, 1, . . . , (2)

where the stepsize αk > 0 is determined through an appropriate selection rule. Classical
examples of stepsize selections are the line searches used by the Steepest Descent (SD) [4] and
the Minimal Gradient (MG) [11, 19] methods, which minimize f(xk−αgk) and ‖g(xk−αgk)‖,
respectively:

αSD
k = argmin

α∈R

f(xk − αgk) =
gT
k gk

gT
k Agk

,

αMG
k = argmin

α∈R

‖g(xk − αgk)‖ =
gT
k Agk

gT
k A2gk

.
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Many other rules for the stepsize selection have been proposed to accelerate the slow conver-
gence exhibited in most cases by SD and MG (refer to [1] for an explanation of the zigzagging
phenomenon associated to the SD method). The literature shows that very promising perfor-
mance can be obtained by using selection rules derived by the ingenious stepsizes proposed
by Barzilai and Borwein [2]:

αBB1
k =

sT
k−1sk−1

sT
k−1yk−1

=
gT
k−1gk−1

gT
k−1Agk−1

= αSD
k−1 , (3)

αBB2
k =

sT
k−1yk−1

yT
k−1yk−1

=
gT
k−1Agk−1

gT
k−1A

2gk−1
= αMG

k−1 , (4)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Starting from (3) and (4), special stepsize
selections have been developed, that allow the corresponding gradient methods to largely
improve the SD method. In some cases, they can even get competitive with the conjugate
gradient method, which is the method of choice for problem (1). Furthermore, successful
extensions of these BB-like gradient methods to non-quadratic functions [10, 15] and to
constrained optimization problems [3, 7, 8, 9, 17] have been proposed. Hence, the study of
new effective stepsizes becomes an interesting research topic for a wide range of mathematical
programming problems.

Here we discuss some of the most recent stepsize selections. The first class of selection
rules we consider exploits the cyclic use of the same stepsize in some consecutive iterations.
This idea was first proposed in [14] for the so called Gradient Method with Retards (GMR):
given a positive integer m and a set of real numbers qj ≥ 1, j = 1, . . . ,m, define

αGMR
k =

gT
ν(k)A

µ(k)−1gν(k)

gT
ν(k)A

µ(k)gν(k)

, (5)

where
ν(k) ∈

{

k, k − 1, . . . ,max{0, k − m}
}

, µ(k) ∈ {q1, q2, . . . , qm} .

Special implementations of (5) that exploit the cyclic use of the SD step [5, 6, 16] or the BB1
step [5, 10] have been investigated, showing a meaningful convergence acceleration on ill-
conditioned problems. These cyclic methods are further improved by introducing an adaptive
choice of the cycle length m (also known as “memory”), as it is the case for the Adaptive
Cyclic Barzilai-Borwein (ACBB) method [10]:

{

(αk = αBB1
k , j = 1) if k = 1 or j = 10 or βk ≥ 0.95 ,

(αk = αk−1, j = j + 1) otherwise,

where

βk =
gT
k Agk

‖gk‖‖Agk‖
=

√

αMG
k

αSD
k

= cos(gk, Agk) .

Another effective strategy included in some recent techniques consists in alternating dif-
ferent stepsize rules: in this case too, an adaptively controlled switching criterion improves
the convergence performances. Promising approaches based on the rules alternation are the
Adaptive Barzilai-Borwein (ABB) method [19], whose stepsize selection is

{

αk = αBB2
k if αBB2

k /αBB1
k < τ ,

αk = αBB1
k otherwise,

(6)
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(note that αBB2
k /αBB1

k = cos2(gk−1, Agk−1)), and the Adaptive Steepest Descent (ASD)
method [19], which updates the stepsize according to

{

αk = αMG
k if αMG

k /αSD
k > τ ,

αk = αSD
k − 0.5αMG

k otherwise,
(7)

where τ is a prefixed threshold. Numerical experiments suggest to set τ ∈ [0.1, 0.2] in the
ABB method and τ slightly larger than 0.5 in the ASD method. Throughout this paper we
let τ = 0.15 and τ = 0.55, respectively. The computational study reported in [19] shows
that ABB and ASD methods generally outperform BB1 method (we recall that ASD is a
monotone scheme) and also that they behave similarly, even if the ABB scheme seems to be
preferable on ill-conditioned problems and when high accuracy is required.

Finally, competitive results with respect to the BB1 method are also obtained with stepsize
selections derived by a new rule proposed by Yuan [18]:

αY
k =

2
√

(1/αSD
k−1 − 1/αSD

k )2 + 4‖gk‖2/‖sk−1‖2 + (1/αSD
k−1 + 1/αSD

k )
. (8)

The derivation of this stepsize is based on an analysis of (1) in the two-dimensional case:
here, if a Yuan’s step is taken after exactly one SD step, then only one more SD step is
needed to get to the minimizer. In [12], a variant of (8) has been suggested:

αYV
k =

2
√

(1/αSD
k−1 − 1/αSD

k )2 + 4‖gk‖2/(αSD
k−1‖gk−1‖)2 + (1/αSD

k−1 + 1/αSD
k )

,

which coincides with (8) if xk is obtained by taking an SD step. Starting from the new
formula, Dai and Yuan [12] suggested a gradient method whose stepsize is given by

αDY
k =

{

αSD
k if mod (k, 4) < 2 ,

αYV
k otherwise.

The numerical experiments in [12] show that this last monotone method performs better than
BB1 on problem (1): thus, it is interesting to evaluate its behaviour together with the above
BB1 improvements.

From a theoretical point of view, convergence results may be given for the considered
gradient methods. For instance, since the BB1, ACBB and ABB methods belong to the
GMR class, their R-linear convergence can be obtained by proceeding as in [5]; for the ASD
method, the Q-linear convergence of {xk} is established in [19] and, in a very similar way,
the same result may be derived for the DY method. However, these results don’t explain the
great improvement of BB1 over SD and the further improvements of the most recent gradient
methods.

In this work, to better understand the behaviour of the considered methods, we focus
on the stepsizes sequences they generate. The analysis of these sequences emphasizes key
differences in the stepsize distributions and it leads us to introduce two improved selection
rules.

The paper is organized as follows. In Section 2 we consider the behaviour of BB1, ACBB,
ABB, ASD and DY schemes on a small test problem, to illustrate and discuss the different
stepsize distributions. In Section 3 we propose two new stepsize selections and we prove some
useful properties to explain their behaviour. Numerical evidence of the improvements due to
the new selection rules are given in Section 4 on medium-to-large test problems. Finally, in
Section 5 we discuss some conclusions and future developments.
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2 Comparing recent gradient methods

To analyse the convergence of any gradient method for a quadratic function, we can assume
without loss of generality that A is diagonal with distinct eigenvalues [13]:

A = diag(λ1, λ2, . . . , λn), 0 < λ1 < λ2 < . . . < λn . (9)

It follows from (2) and the definition of gk that

g
(i)
k+1 = (1 − αkλi)g

(i)
k , i = 1, 2, . . . , n. (10)

Thus, we can also assume that g
(i)
1 6= 0 for all i = 1, 2, . . . , n, since if there is a component

of the gradient such that g
(i)
1 = 0, then g

(i)
k = 0 for all k, hence this component could be

disregarded.
To investigate the differences between the gradient methods described in the previous

section, we have to inspect the stepsize distributions. To this end, let’s consider a simple test
problem obtained by modifying the one given in [12]:

A = diag(λ1, λ2, . . . , λ10) (11)

where
λi = 111i − 110, i = 1, . . . , 10. (12)

We test BB1, ACBB, ABB, ASD and DY on this problem by setting the starting point x0

such that g
(i)
0 =

√
1 + i, the stopping condition as ‖gk‖ ≤ 10−8 and α0 = αSD

0 when a starting
stepsize is needed1.

The results are summarized in Tables 1 and 2, where the data in the last two columns
will be discussed later. In the second row of Table 1 we put the number of iterations required
by each algorithm. Then, for each method, we classify the sequence

{

αk

}

in 10 subsets
depending on which eigenvalue α−1

k is nearest to.
Furthermore, we focus our attention on the role of the longest steps (that is to say

αk ≥ 2
λ1+λ2

) and we study the effect they have on each component of the gradient. Table 2

reports for each method the numbers log10 |ρ(i)| at the end of the run, where

ρ(i) = (1 − αj1λi)(1 − αj2λi) . . . (1 − αjh
λi), i = 1, 2, . . . , 10, h ≤ k

and j1, j2, . . . , jh are those indices such that αjℓ
≥ 2

λ1+λ2
, ℓ = 1, . . . , h. The value |ρ(i)|, which

is clearly independent on the order of the indices jℓ, quantifies how the i-th component of
the gradient is reduced or amplified due to the h longest stepsizes.

We may observe that the stepsizes larger than 2
λ1+λ2

are fewer in ACBB and ABB than
in the other methods; nevertheless, they induce a larger reduction of the first gradient com-
ponent. Moreover, these improvements are obtained with a less remarkable increase in the
other components with respect to BB1, ASD and DY. This suggests that ACBB and ABB
distribute the longest stepsizes near to λ−1

1 in a more fruitful way than the other schemes.
Since this behaviour can be observed in many other test problems where ACBB and ABB
outperform BB1, ASD and DY, it is worthwhile to investigate if more efficient schemes could
be derived by improving the ability to approximate λ−1

1 . Roughly speaking, we are looking
for stepsize rules that exploit the benefit arising from a fast reduction of the first gradient
component. It is well known (see for example the discussion in [13]) that in BB-like stepsize
selections, after a meaningful reduction of the first gradient components (that is after the
largest stepsizes), an iteration occurs where gk−1 is likely to be dominated by large compo-
nents: then a small αk will be generated, which in turn will force both a large decrease in
the large gradient components and a remarkable reduction of the objective function.
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BB1 ACBB ABB ASD DY ABBmin1 ABBmin2

iterations 363 108 132 360 199 61 44
2

λ1+λ2
≤ αk 54 10 16 46 29 3 2

2
λ2+λ3

≤ αk < 2
λ1+λ2

43 8 11 39 22 7 4
2

λ3+λ4
≤ αk < 2

λ2+λ3
33 11 19 45 16 6 6

2
λ4+λ5

≤ αk < 2
λ3+λ4

24 13 10 26 14 5 3
2

λ5+λ6
≤ αk < 2

λ4+λ5
25 4 8 26 16 4 4

2
λ6+λ7

≤ αk < 2
λ5+λ6

25 5 6 23 13 2 2
2

λ7+λ8
≤ αk < 2

λ6+λ7
28 11 12 29 18 4 5

2
λ8+λ9

≤ αk < 2
λ7+λ8

33 9 16 25 19 11 3
2

λ9+λ10
≤ αk < 2

λ8+λ9
39 24 11 54 25 2 8

αk < 2
λ9+λ10

59 13 23 47 27 17 7

Table 1: Total number of iterations and stepsize distribution with respect to the eigenvalues.

BB1 ACBB ABB ASD DY ABBmin1 ABBmin2

h = 54 h = 10 h = 16 h = 46 h = 29 h = 3 h = 2

log10 |ρ(1)| −8.2 −10.9 −10.5 −7.7 −8.0 −11.0 −8.6

log10 |ρ(2)| 53.5 15.5 16.1 52.2 24.6 6.1 4.1

log10 |ρ(3)| 71.8 18.6 21.7 67.6 35.1 7.0 4.7

log10 |ρ(4)| 81.9 20.4 24.8 76.2 40.7 7.6 5.0

log10 |ρ(5)| 89.0 21.7 26.9 82.2 44.6 7.9 5.3

log10 |ρ(6)| 94.4 22.7 28.5 86.8 47.5 8.2 5.5

log10 |ρ(7)| 98.8 23.5 29.8 90.5 49.9 8.5 5.6

log10 |ρ(8)| 102.5 24.1 30.9 93.6 51.9 8.7 5.8

log10 |ρ(9)| 105.6 24.7 31.9 96.3 53.6 8.8 5.9

log10 |ρ(10)| 108.5 25.2 32.7 98.7 55.1 9.0 6.0

Table 2: Effects of the longest steps on the components of the gradient.

The importance of reducing |g(1)
k | may be easily illustrated also on the test problem (11)–

(12): we solve this problem by the BB1 method with the starting point and the stopping rule
previously described, but with two different values for α0, that are

α0 = αSD
0 or α0 = (λ1 + 10−9)−1.

The values of f(xk) obtained in these two experiments are plotted in Figure 1. For α0 =
(λ1 + 10−9)−1 we have from (10)

|g(1)
1 | ≈ 10−9|g(1)

0 | (13)

so the first component of the gradient becomes negligible until all the other components will
be significantly reduced. In this phase, in a sense the problem turns into a simpler one and a
more effective behaviour of the method may be expected. In fact, after an increasing function
value in the first iteration, a very fast convergence is observed (the method requires only 45
iterations) and no other stepsizes near λ−1

1 are selected. In the next section, we will introduce

1All the experiments presented in the paper are performed with Matlab 6.0 on a 2.0GHz AMD Sempron
3000+ with 512MB of RAM.

5



0 50 100 150 200 250 300 350 400
10

−20

10
−15

10
−10

10
−5

10
0

10
5

k (iterations)

f(
x k)

BB1 with α
0
=α

0
SD

BB1 with α
0
=(λ

1
+10−9)−1

Figure 1: Behaviour of the BB1 method started with different initial stepsizes.

two stepsize selections that are appropriately designed to better capture the inverse of the
smallest eigenvalues than the above rules.

3 Derivation of the new methods

The recent literature shows that ACBB and ABB can be considered very effective approaches
that often outperform other BB-like gradient methods. In our experience the two schemes
behave rather similarly, but in general ABB performs better when large and ill-conditioned
quadratic problems are faced. Thus, we develop new stepsize selections starting from the ABB
rule. Following the considerations in the previous section, we look for ABB-like algorithms
able to exploit BB1 steps close to λ−1

1 . We point this goal by forcing stepsizes that reduce the

components |g(i)
k | for large i, in such a way that a following BB1 step will likely depend on a

gradient dominated by small components. Our first implementation of this idea, denoted by
ABBmin1, consists in substituting the BB2 step in (6) with the following shorter step:







αk = min
{

αBB2
j | j = max{1, k − m}, . . . , k

}

if αBB2
k /αBB1

k < τ ,

αk = αBB1
k otherwise.

(14)

This method can be regarded as a particular member of the GMR class, so it is R-linearly
convergent [5]. Furthermore, it could allow the same step to be reused in some consecutive
iterations, as it is in the ACBB method.
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To state our second variant of the ABB scheme we consider gk+1 = gk+1(αk), so that
αSD

k+1 is a function of αk as well. We then introduce the stepsize

αnew
k = argmax

αk∈R

(αSD
k+1) (15)

and discuss its main properties. The following result is necessary.

Lemma 1. Let A be a SPD matrix and let gk 6= 0 be such that cos2(gk, Agk) < 1. Let

cj = gT
k Ajgk > 0 j = 0, 1, 2, 3, (16)

and

R = c1c3 − c2
2 , S = c0c3 − c1c2 , T = c0c2 − c2

1 . (17)

Then

R,S, T > 0 , (18)

S = (c0R + c2T )/c1 , (19)

c2S = c1R + c3T , (20)

S2 − 4RT > 0 .

Proof. By the definition (16) and by applying the Cauchy-Schwartz inequality to c1 =
gT
k (Agk) it follows that c0/c1 > c1/c2, hence T > 0. Now, observe that cj = yT A(j−1)y,

j = 1, 2, 3, where y = A1/2gk: then c1/c2 > c2/c3 follows in the same way, so R > 0. By
using these inequalities in sequence, we also have S = c0c3 − c1c2 > 0, which complete (18).
Then (19) and (20) easily follows by substitution. Finally,

S2 − 4RT =
c2
0R

2 + c2
2T

2 + 2RTc0c2 − 4RTc2
1

c2
1

=
c2
0R

2 + c2
2T

2 + 2RT (T − c2
1)

c2
1

>
c2
0R

2 + c2
2T

2 + 2RT (T − c0c2)

c2
1

=
(c0R − c2T )2 + 2RT 2

c2
1

> 0 .

We may now give the explicit form of αnew
k . We consider

αSD
k+1 = F (αk) =

gT
k+1gk+1

gT
k+1Agk+1

=
gT
k (I − αkA)(I − αkA)gk

gT
k (I − αkA)A(I − αkA)gk

=
gT
k gk − 2αkg

T
k Agk + α2

kg
T
k A2gk

gT
k Agk − 2αkg

T
k A2gk + α2

kg
T
k A3gk

=
c0 − 2αkc1 + α2

kc2

c1 − 2αkc2 + α2
kc3

and look at F ′(αk). It is easy to see that the roots of F ′(αk) = 0 must satisfy

(c1 − 2αkc2 + α2
kc3)(−c1 + αkc2) − (c0 − 2αkc1 + α2

kc2)(−c2 + αkc3) = 0 , (21)
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that is
Rα2

k − Sαk + T = 0 ,

where R,S and T are defined in (17). From R > 0 and S2 − 4RT > 0 we have

αnew
k = αk,1 =

S −
√

S2 − 4RT

2R
(22)

and

αk,2 = argmin
αk∈R

(

αSD
k+1

)

=
S +

√
S2 − 4RT

2R
.

We report in the following theorem some interesting properties of αnew
k .

Theorem 1. Let A be a SPD matrix and let gk 6= 0 be such that cos2(gk, Agk) < 1. The

stepsize αnew

k satisfies the following properties:

αnew
k = min

αk∈R

F (αk) = F (αk,2) , (23)

1

λn
≤ αnew

k ≤ 1

λ2
, (24)

if n = 2 then αnew

k =
1

λ2
, (25)

αnew

k <
c2

c3
< αMG

k . (26)

Proof. From (21) we can write F (αk,2) as follows:

F (αk,2) =
c0 − 2αk,2c1 + α2

k,2c2

c1 − 2αk,2c2 + α2
k,2c3

=
c2αk,2 − c1

c3αk,2 − c2
.

By observing that αnew
k αk,2 = T/R, we obtain

F (αk,2) = αnew
k

c2αk,2 − c1

c3αk,2α
new
k − c2αnew

k

= αnew
k

c2αk,2 − c1

c3
T
R − c2αnew

k

.

To prove (23), we show that

c2αk,2 − c1 = c3
T

R
− c2α

new
k .

In fact, by substituting αnew
k and αk,2 and by using (20) we have

c2αk,2 − c1 = c2
S +

√
S2 − 4RT

2R
− c1

=
c2S + c2

√
S2 − 4RT − 2Rc1

2R

=
c3T − c1R + c2

√
S2 − 4RT

2R

and

c3
T

R
− c2α

new
k = c3

T

R
− c2

S −
√

S2 − 4RT

2R

=
2c3T − c2S + c2

√
S2 − 4RT

2R

=
c3T − c1R + c2

√
S2 − 4RT

2R
.
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The left inequality in (24) follows from the Rayleigh’s quotient property

αnew
k = F (αk,2) ≥

1

λn
.

The right part in (24) follows from

αnew
k = min

αk∈R

F (αk) ≤ F

(

1

λ1

)

=
gT
k (I − λ−1

1 A)(I − λ−1
1 A)gk

gT
k (I − λ−1

1 A)A(I − λ−1
1 A)gk

≤ 1

λ2
,

where the last inequality holds true because the vector (I − λ−1
1 A)gk is orthogonal to the

eigenvector corresponding to λ1. When n = 2 the last result obviously yields (25).
Now, to show (26) we observe that

c2

c3
− αnew

k =
c2

c3
− S −

√
S2 − 4RT

2R
=

2Rc2 − Sc3 + c3

√
S2 − 4RT

2c3R
.

If (2Rc2 − Sc3) ≥ 0, then (c2/c3 − αnew
k ) > 0; otherwise, we have

c3

√

S2 − 4RT − (2Rc2 − Sc3) > 0

and

c2

c3
− αnew

k =

(

2Rc2 − Sc3 + c3

√
S2 − 4RT

2c3R

)(

c3

√
S2 − 4RT − (2Rc2 − Sc3)

c3

√
S2 − 4RT − (2Rc2 − Sc3)

)

=
c2
3(S

2 − 4RT ) − (4R2c2
2 + S2c2

3 − 4RSc2c3)

2c3R
(

c3

√
S2 − 4RT − (2Rc2 − Sc3)

)

=
−4c2

3RT − 4R2c2
2 + 4RSc2c3

2c3R
(

c3

√
S2 − 4RT − (2Rc2 − Sc3)

) .

It follows from (18) and (20) that

−4c2
3RT − 4R2c2

2 + 4RSc2c3 = −4c2
3RT − 4R2c2

2 + 4R(c1R + c3T )c3

= −4R2c2
2 + 4R2c1c3

= 4R2(c1c3 − c2
2) = 4R3 > 0 ,

hence (c2/c3 −αnew
k ) > 0 holds true, which gives the first part of (26). Finally, the right part

of (26) follows from αMG
k = c1/c2 and the positivity of R.

Remark 1. The properties (23) and (26) well emphasize the ability of the new selection rule
to produce short stepsizes, so that it should be useful within adaptive alternation schemes
similar to (14). The inequalities (24) explain why a sequence of stepsizes computed by (22)

can allow meaningful reductions of the components g
(i)
k with i = 2, . . . , n, without forcing a

too much remarkable reduction in g
(1)
k ; thus, after this sequence of stepsizes, we most likely

end up with a gradient vector where the first component dominates. Finally, in the special
case n = 2, from (25) we have that the gradient method where α0 = αnew

0 and α1 = αSD
1 will

find the solution after two iterations.

The stepsize (22) considered with one iteration of retard satisfies

αnew
k−1 < αMG

k−1 = αBB2
k
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and then it allows a shorter step than BB2. Thus, also αnew
k−1 can be exploited within an

ABB-like scheme to achieve a better reduction of the components |g(i)
k | for large i. The

corresponding selection rule, denoted by ABBmin2, is the following:







αk = αnew
k−1 if αBB2

k /αBB1
k < τ ,

αk = αBB1
k otherwise.

(27)

The computational cost per iteration is essentially the same as the other methods, because
no additional matrix-vector multiplications are needed. In fact, if we keep into memory
w = Agk−1 and compute, at each iteration, the vector z = Agk, then αnew

k−1 can be obtained
by

c0 = gT
k−1gk−1 , c1 = gT

k−1w , c2 = wT w , c3 =
gT
k z − c1 + 2αk−1c2

α2
k−1

,

via (17) and (22). Of course, different ways to obtain c3 without additional matrix-vector
products are also available.

Concerning the convergence properties of ABBmin2, taking into account that we have
αk ≤ αBB1

k for all k, the R-linear convergence can be proved by proceeding as in [5].
The behaviour of ABBmin1 and ABBmin2 on the test problem (11)–(12) is described in

Tables 1 and 2. The starting point and α0 are the same as in the other methods. The
parameters setting is the following: m = 9 and τ = 0.8 in ABBmin1, τ = 0.9 in ABBmin2. In
our experience this setting gives satisfactory results in many situations and it will be exploited
also in the numerical experiments of the next section. From Table 1 we observe that both the
new methods generate much less stepsizes larger than 2

λ1+λ2
. These few stepsizes seem able

to reduce the first gradient component to such an extent, that the other methods can only get
to after many large stepsizes (see Table 2). The effect of this behaviour on the convergence
rate can be observed by looking at the iteration counts reported in Table 1.

The next section gives more insights into the effectiveness of the new methods, by showing
an additional numerical experience.

4 Numerical experiments

In this section we present the results of a numerical investigation on different kinds of test
problems. A group of randomly generated test problems is analyzed first, then another group
of tests is considered, which comes from a PDE-like prototype problem.

Table 3 reports the results on the test problem (9) with four different Euclidean condition
numbers κ2 = κ2(A), ranging from 102 to 105, and with the three different sizes n = 102,
103, 104. We let λ1 = 1 and λn = κ2. Two subsets of experiments are carried out, depending
on the spectral distribution:

S1) λi, i = 2, . . . , n − 1, is randomly sampled from the uniform probability distribution in
(1, κ2);

S2) λi = 10pi , i = 2, . . . , n− 1, where pi is randomly sampled from the uniform probability
distribution in (0, log10(κ2)).

The entries of the starting points x0 are randomly sampled in the interval (−5, 5), the
stopping condition is ‖gk‖ ≤ 10−8 and, for all the methods, the parameter setting is as
described in the previous sections. For a given value of n and κ2, 10 problems are randomly
generated and the number of iterations averaged over the 10 runs of each algorithm is listed
in Table 3 (these numbers are meaningful, given the similar computational cost per iteration
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n κ2 BB1 ACBB ABB ASD DY ABBmin1 ABBmin2

Spectral distribution S1

102

102 142.4 135.4 123.0 152.3 133.5 118.9 112.2

103 530.8 379.4 288.0 451.5 376.3 247.4 215.3

104 1518.3 873.4 481.7 1197.0 1151.5 397.7 303.3

105 5182.6 1860.3 1087.9 3765.8 4379.6 525.9 342.6

103

102 147.7 149.1 138.0 162.5 147.6 141.9 133.6

103 514.1 444.4 422.1 475.3 442.7 403.8 390.2

104 1583.3 1293.4 955.5 1476.2 1422.1 818.3 721.2

105 5179.7 3391.7 1467.0 4765.0 5094.7 1215.7 956.0

104

102 154.9 154.9 144.5 166.1 149.9 147.1 140.9

103 529.1 476.4 451.6 490.3 464.8 441.0 440.9

104 1918.6 1567.2 1212.0 1600.3 1484.2 1216.1 1154.3

105 6142.3 4897.4 2532.9 4681.3 5866.1 2358.8 2050.9

Spectral distribution S2

102

102 146.7 149.8 136.1 158.1 135.3 137.5 129.5

103 508.1 470.0 441.2 484.5 453.8 423.9 417.7

104 1735.3 1520.8 1389.7 1545.9 1493.6 1350.4 1376.5
105 5734.1 5274.3 4458.0 5514.2 5816.6 4175.3 4402.7

103

102 156.1 152.6 147.8 173.3 152.0 145.1 139.6

103 538.9 504.1 462.5 517.0 503.9 453.6 448.3

104 1862.8 1752.6 1528.6 1797.5 1630.9 1467.6 1454.7

105 7400.7 5349.4 4903.3 5834.4 6182.8 4596.9 4882.8

104

102 162.7 162.8 152.5 172.0 151.9 152.7 146.4

103 545.8 541.6 475.5 535.7 505.6 476.8 462.7

104 2004.0 1775.9 1568.8 1971.7 1763.5 1500.3 1514.3
105 7577.0 5892.4 5056.2 5645.4 6726.6 4784.8 4980.0

Table 3: Iteration counts of randomly generated test problems.

of the considered methods). For each value of κ2, the winner method is marked in bold:
the new methods win in all cases. In particular, if the eigenvalues are uniformly distributed
(distribution S1) the algorithm ABBmin2 is clearly the better choice and can greatly improve
the efficiency of the ABB method (BB1, ACBB, ASD and DY seem less effective than ABB).
For instance, in the case n = 102 and κ2 = 105 the new scheme requires on average 342.6
iterations only, that is less than one third of the averaged ABB iterations. In most of the
other cases ABBmin1 is the second choice.

Looking at the second test subset, a different pattern appears: the new methods still
outperform the others, but the iteration counts are less dissimilar. Furthermore, the ABBmin1

method is the winner scheme for large condition numbers. A possible explanation is that the
eigenvalue density near λ1 reduces the benefits of our strategy.

In the second group of experiments we evaluate the algorithms in solving a large scale
real problem proposed in [13, problem Laplace1 (L1)]: it requires the solution of an elliptic
system of linear equations, arising from a 3D Laplacian on the unitary cube, discretized
using a standard 7-point finite difference stencil. Here N interior nodes are taken in each
coordinate direction, so that the problem has n = N3 variables. The solution is a Gaussian
function centered at the point (α, β, γ)T multiplied by a quadratics, which vanishes on the
boundary. A parameter σ controls the decay rate of the Gaussian. We refer the reader to
[13] for additional details on this problem. In our experiments we set the parameters in two
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n θ BB1 ACBB ABB ASD DY ABBmin1 ABBmin2

Problem L1(a)

10−3 137 123 100 134 96 118 95

603 10−6 374 334 282 238 299 229 191

10−9 526 478 408 431 421 357 347

10−3 161 173 171 170 125 167 172
803 10−6 471 328 384 322 323 248 271

10−9 610 681 557 558 560 425 346

10−3 325 260 223 147 163 208 226
1003 10−6 610 414 476 416 389 358 338

10−9 886 579 582 690 675 495 423

Problem L1(b)

10−3 50 49 51 62 44 62 53
603 10−6 337 257 262 264 235 227 205

10−9 649 394 370 452 419 370 361

10−3 65 78 58 67 63 87 82
803 10−6 274 371 342 325 306 303 309

10−9 527 673 482 553 568 490 444

10−3 101 122 82 75 77 86 85
1003 10−6 499 381 393 402 375 384 380

10−9 875 789 567 764 790 631 591

Table 4: Iteration counts for the 3D Laplacian problem.

θ BB1 ACBB ABB ASD DY ABBmin1 ABBmin2

10−3 839 805 685 655 568 728 713
10−6 2565 2085 2139 1967 1927 1749 1694

10−9 4073 3594 2966 3448 3433 2768 2512

Table 5: Total number of iterations.

different ways:

(a) σ = 20, α = β = γ = 0.5 ;

(b) σ = 50, α = 0.4, β = 0.7, γ = 0.5 .

The null vector is the starting point and we stop the iterations when ‖gk‖ ≤ θ‖g0‖, with
different values of θ. Table 4 reports the iteration counts.

We summarize the algorithms performances in Table 5, where, for each accuracy level,
the total number of iterations accumulated by each method in all problems is reported.

The numbers show clearly that the new stepsize selections are preferable when high ac-
curacy is required.

From both the groups of test problems one can observe how the proposed stepsize se-
lections make the new methods perform often better than other recent successful gradient
schemes. Furthermore, even if the ABBmin2 method seems preferable, the performances of
the ABBmin1 method are very similar, but the latter uses a simpler adaptive selection involv-
ing BB1 and BB2 stepsizes only. This means the new ABBmin1 method is well suited to be
extended to general nonlinear optimization problems, as it is the standard ABB method.
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5 Conclusions and developments

In this work we analyzed convergence properties of recent classes of gradient methods that
have shown to be effective in minimizing strictly convex quadratic functions. To better
understand the improvements exhibited by the adaptive-stepsize gradient methods over the
standard Barzilai-Borwein approaches, the sequences of stepsizes generated by these schemes
are studied with respect to the Hessian’s eigenvalues. Based on this analysis, new adaptive
stepsize selection rules are proposed, which are appropriately designed to better capture the
inverse of the minimum eigenvalue. For one of the new stepsizes some theoretical properties
and meaningful bounds are proved. Numerical results carried out on randomly generated test
problems as well as on a classical large-scale problem show that the schemes based on the new
proposals often outperform other modern gradient methods. Future works will concern with
the possible application of the new rules to non-quadratic optimization and to constrained
optimization. In particular, one of the proposed selection rule seems promising also for these
settings, given that it simply exploits the two Barzilai-Borwein stepsizes, that are successfully
used in many gradient methods for general optimization problems.
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[4] A. Cauchy, Méthode générale pour la résolution des systèmes d’equations simultanées,
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