Separation of convex polyhedral sets with uncertain data
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Abstract
This paper is a contribution to the interval analysis ancaesility of
convex sets. Separation is a familiar principle and is afiged not only
in optimization theory, but in many economic applicatiossaell. In
real problems input data are usually not known exactly. Feipurpose
of this paper we assume that data can independently varyem giter-
vals. We study two cases when convex polyhedral sets areildeddy
a system of linear inequalities or by the list of its verticesr each case
we propose a way how to check whether given convex polyhadtal
are separable for some or for all realizations of the infedata. Some
of the proposed problems can be checked efficiently, whideatthers
are NP-hard.
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1 Introduction

In this paper we study separability of two convex polyheded A € R™*", C € R**" b e R™,d € R'):

M; ={xeR"| Ax < b}, (1)
My ={xeR"|Cx<d}. ()

There are various kinds of separability of convex sets (8f). [We introduce so called weak and strong
separation. Strong separation is dealt with in Section 2laisckind is especially convenient in order to utilize
Theorem 2 and Theorem 3. Weak separation is dealt with ind®e8t

Definition 1. SetsX,Y C R" are calledweakly separabléf there exists a hyperplarR = {x € R" |

rIx = s} such thatX C R- = {x e R" | rTx < s},andY C R+ = {x € R* | rTx > s} hold. Such
a hyperplaneR is calledthe separating hyperplangf the setsX, Y. SetsX,Y C R" are calledstrongly
separablef they are weakly separable adidn X = dimY = n.

Let us remind the familiar separation theorem (see e.g.]]3, 7

Theorem 1. Convex setsX, Y C R" are strongly separable if and only iéfim X = dimY = n, and
intX NintY = 0.

Let us introduce some notation. SymHoWwill denote a vector all coordinates of which are equal to,one
diag(v) is a diagonal matrix with elements, . . ., v,. Given a matrixM, the expressiond1; ., M. ; denote
thei-th row and thej-th column of the matriXM, respectively. For vectors, b the inequalitiesa < b or
a < b are understood componentwise. For anyXeiet us denote byx, int X, dim X, andconv X the
closure, the interior, the dimension, and the convex hul¥pfespectively. A sign of a real numbere R is
defined as followssgn(r) = 0if r =0, sgn(r) = 1if »r > 0 andsgn(r) = —1if » < 0. A sign of a vector is
understood componentwise.

Let us introduce the convex polytope
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With the help of the se©* we can describe all separating hyperplaned.¢f, M, from (1), (2). The
following Theorem 2 and Theorem 3 were proved in [5, 6].

Theorem 2. Suppose thatim M, = dim Ms = n, int MiNint My = 0. Let(u,v,v41) € Q*, uTA # 07,
andn € (0, v;41) is arbitrary. Then

R ={x e R" |ul(Ax - b) =7} (4)

represents a separating hyperplane of the convex polyhsetaM, M. Conversely, any separating hyper-
planeR of My, M, can be expressed in the form @ for a certain(u, v,v;41) € 9%, uTA # 0T, and

ne <07Ul+1)'
Theorem 3. Letdim M; = dim My = n. Then the convex sefsl;, M- are strongly separable if and only

if Q* # 0.

1.1 Some results from interval analysis

Coefficients and right-hand sides of systems of linear éiipgbnd inequalities are rarely known exactly. In
interval analysis we suppose that these values vary indigpely in some real intervals. Let us introduce some
notation. Interval matrix is defined 84! = {M € R™*" | M < M < M}. Next introduce

1 — 1
M* = 2.(M+ M), M2 = 5 (M- M).
Then we can write
M’ = (M, M) = (M° — M*, M* + M*?).

From the point of view of interval analysis there are two flmfges how to deal with the problem of finding
a solution of interval linear system of equalities and iredifies. The system of interval linear inequalities

M'x < m' (5)

is strongly solvableif every systeniMx < m is solvable for alM € M, m € m!. Vectorx® is astrong
solution if Mx° < m holds for allM € M/, m € m!. The interval systent5) is weakly solvablgif
Mx! < m holds for certain vectox! andM € M, m € m! (such a vectox! is calleda weak solutioh
Similarly, we can define strong and weak solvability for attypes of linear interval systems.

Theorem 4. An interval systerM’x = m’, x > 0 is weakly solvable if and only if the system
Mx <m, Mx >m, x >0 (6)

is solvable. Moreover, a vectaris a weak solution of the systevi’x = m’, x > 0 if and only if it satisfies

(6).
Proof. See [2, Theorem 2.13]. O
Theorem 5. An interval systerM’x = m!, x > 0 is strongly solvable if and only the system
(M — diag(z)M?)x = m® + diag(z)m®, x>0

is solvable for eack € {£1}™.
Proof. See [2, Theorem 2.17]. O
Theorem 6. An interval systerM!x < m! is weakly solvable if and only if the system

(M° — M*diag(z))x < m 7

is solvable for some € {+1}"™. Moreover, a vectox is a weak solution of the systévi/x < m! if and only
if it satisfies(7).



Proof. See [2, Theorem 2.20]. O
Corollary 1. Aninterval systeM’x < 0, x # 0 is weakly solvable if and only if the system

(M€ — M?diag(z))x <0, x # 0
is solvable for some € {£1}".

Theorem 7. An interval systertM’x < m! is strongly solvable if and only if the system
Mxl - sz S m, Xl;XZ Z 0 (8)

is solvable. Moreover, ik!, x? is a solution of(8), then the vectox! — x? is a strong solution of the given
interval system.

Proof. See [2, Theorem 1.25]. O

2 Separation of interval convex polyhedral sets

In this section we deal with the strong separability of twonex polyhedral setdA1;, M, the input data of
which can vary in given real intervals. Let us consider twaifees of convex polyhedral sets

Mi={xeR" | Alx <b'}, (9)
M ={xeR"|Clx <d}, (10)

whereAl = {A e R™*" |A<A<A}LCI={CeR*"™|CL<C<C}Lbl={beR" |b<b<
b},d! ={d e R | d <d < d}. MatricesA, A € R™*", C,C € R'*™ and vectorb,b € R™,d,d € I
are fixed.

Let us assume that no matrix € A’ contains a zero row and assume thah M; = n holds for all
M; € Ml (i.e, the interval systemd!x < b! is strongly solvable). Let us make analogical assumptions
aboutM!.

The former assumption can be verified easily, the latterrapion can be verified in the following way.
The dimension ofM; is equal ton for all M; € M! if and only if the interval systenA’x < bf — ¢ is
strongly solvable for any sufficiently small > 0. According to Theorem 7 this happens if and only if the
system

Ax! —Ax’<b-¢, x',x2 >0,

or, equivalently, the system
Ax!' —Ax®> <b,x1,x>>0 (12)

is solvable. Moreover, if vectots', %2 solve(11), thenx! — %2 € int M, holds for allM; € M.

We are interested in two cases. We will study whether the @opolyhedral setd 11, M- are strongly
separable either for some, or for all realizationg € M{, My € M1,
2.1 Separability for some realization

The first case can be checked efficiently. According to ThaoBe there exist two convex polyhedral sets
M; € MI, My € ME which are strongly separable if and only if the interval eyst

(ADHT (CcHT o u 0
)
17 17 0 Vi1 1

is weakly solvable. From Theorem 4 we have that intervalesygi2) is weakly solvable if and only if the

system
AT CcT o u 0 AT T o u u
bl a4 1 v | <ol <% & 1 v |, v ]>o0
e D)0 w3 (G)(3)

is solvable.



2.2 Separability for all realizations

The problem to verify whether all convex polyhedral séts € M{, My € M! are strongly separable is
equivalent (see Theorem 3) to the problem to verify whethtrval systen(12) is strongly solvable. The-
orem 5 enables us to check strong solvability of the intesyatem(12) with an exponential complexity.
Polynomial algorithm is not likely to exist; we will show thihis problem is NP-hard.

Interval systen{12) is strongly solvable if and only if the interval system

(ADT (cHT o\ ( Y 0
v = ’ (U,V,’U 1) 20 (13)
((bI)T (dI)T 1) e (0) +1) =

is strongly solvable. It follows from Theorem 8 that cheakthe strong solvability of the interval systgiiB)
is an NP-hard problem.

Lemma 1. LetM € Q**™ be a honnegative positive definite matrix. Checking theakility of the system
Mx| <1, 17|x| > 1 (14)
is an NP-hard problem.

Proof. It is a modification of the proof of Theorem 2.3 from [2] whehe tNP-hardness of testing the solvabiliy
of a systemiMx| < 1, 17|x| > 1 was proved. O

Theorem 8. LetN’ ¢ R**2”, Checking strong solvability of an interval system
N'x=0,x20 (15)
is NP-hard problem.

Proof. According to Lemma 1 we know that checking solvability of gystem(14) is NP-hard. Thus it is
sufficient to prove that the systefi4) has a solution if and only if an interval system

M — 117 MT + 117)x' + (-MT - 117, -MT +117)x* =0, (x',x*) 2 0
is not strongly solvable, or equivalently an interval syste

MT — 117 MT + 117)x! + (—MT — 117, —MT + 117)x? = 0,

16
17x* +11%* =1, (x',x*) >0 (16)

is not strongly solvable (it is a special kind of the intersydtem(15)). The systen{16) is not strongly solvable
if and only if there existy € {+1}" such that a system

MT —y1T)x! + (-MT —y17)x? = 0,
17x' +17x% =1, x',%x*) >0

is not solvable (see [2, Theorem 2.17]). From the familiaskkia Theorem it is sufficient and necessary that
there exists a vectde, ') € R**! satisfying the system

M -1y"z +12' >0,
(-M —1yH)z+12' >0,
2 <0,
equivalently
M —-1yHz > 0,
(-M -1y7H)z > 0,



or
Mz| < —1y”z. 17

We claim that(17) has a solution if and only if the systefi4) has a solution. Ik € R" solves(14), then it
satisfiesMx| < 117 x| and vectorz = x, y = —sgn(x) forms a solution of17). Conversely, if a certain
z € R” ay € {£1}" satisfieg17), then

Mz| < | —1yTz| < 117z,

M <1,

o
17|z|
and a solution of14) is a vectorx = ﬁ wheres > 0 is sufficiently small. O

Another possibility how to verify whether each coupl¢, € M{, M, € M} is strongly separable is to
use the following sufficient condition. Each two convex gadral sets\l; € MI, M, € ML are strongly
separable, if convex hulleonv <UM1€M{M1), conv (UMQEMéMQ) are strongly separable. Moreover,

any separating hyperplane of these convex hulls is a sépggtperplane of convex polyhedral sgt;, M-
forall My € MI, My € ML, It follows from Theorem 6 that a vectar € R” solves a systemAx < b for
certainA € Af, b € b’ if and only if the vectorx solves

(A — A% diag(z))x < b
for somez € {£1}". Hence

U M = U {x € R" | (A® — A%diag(z))x < b}
MieM! ze{£1}"

and the problem is reduced to the problem of computing theecohull of a finite (but exponential) number of
convex polyhedral sets (for explicit description of thewexhull of two convex polyhedral sets see [5]).
Note that the reverse implication generally does not hodd,it can occur that all convex polyhedral sets

My € M, My € M} strongly separable and convex huttswv (UMleM{Ml), conv (UMzeMéMg)
need not be strongly separable. The reason is thatisgts y: M1, U xq,eaqz M2 are not convex in general.

3 Convex polytopes

In this section we suppose that convex polytopes (boundedesqolyhedral setsp;, M, are described by
the lists of their vertices as follows

M has verticesay,...,a,, € R*, m > 1, (18)
M has vertices;,...,c; € R, [ > 1. (19)

Let A € R™*™ be a matrix, for whichA; . = aT,i € {1,...,m} holds (i.e. the rows of matriA correspond
to vectorsa]) and by analogy le€ € R'*™ be a matrix for whictC;,. = c]T,j € {1,...,1}. We will also use
the more transparent notatiddt; = M;(A), My = M2(C).

For this situation it is convenient to study weak separgbfDefinition 1) of convex polytopedA1;, Ma,
since nonemptiness @#11, M is guaranteed (in comparison with to full dimension).

Checking the existence of separating hyperplane of conebgtqpesM;, M, in space®R? andR® can
be done in expected tim@(v/m + 1), which is optimal (see [1]). But for the sake of this papersitniore
convenient to use the standard linear programming probtemvex polytopes\;, M, are weakly separable
if and only if a convex polyhedral set

D={(r,5) e K™ | (_é ‘}) (S) <0, 1 #0} (20)

is nonempty (Whereas' x = s represents a separating hyperplane).

Let two interval matricesA’, C! be given. Like in Section 2 two natural questions arise: Avavex
polytopesM; (A), M, (C) weakly separable for some realizatidne A?, C € C!? Are M;(A), M5(C)
weakly separable for all realizatio®s € A, C € CI?



3.1 Separability for some realizations

Theorem 9. Given an interval matri®M’ ¢ R™*" . Checking weak solvability of an interval system
Mix<0,x#0 (21)

is an NP-hard problem.

Proof. We proceed analogically as in [2, Theorem 2.21]. A veatag R” is a weak solution of the interval
system(21) if and only if it is a solution of a system

M°x < M2 x|, x # 0. (22)

It is sufficient to prove that checking solvability ¢22) is NP-hard. We known (see [2, Theorem 2.3]) that
checking solvability of system

INx| <1, 1< 17| (23)
is NP-hard. We claim that systef®3) is solvable if and only if the system
INz| <12, 2’ <17z, (2,2') # 0 (24)

is solvable. Whex solves(23), then(z, z') = (x, 1) solves(24). Conversely, lefz, z') be a solution 0f24).
If 2" # 0, thenz’ > 0 and a vectox = % solves systen(23). If z' = 0, then systen{23) is satisfied for a
vectorx = —#—. System(24) can be equivalently rewritten as

17[z["

Nz -1 <0, =Nz —12' <0, 2' < 17|z, (z,2) #0.

N -1 0 0
M=|-N -1, M*=(0 0
0" 1 170

we reduce solvability of24) to solvability of (22). Hence checking weak solvability of the interval system
(21) is NP-hard. O

By choosing

Remark 1. Unlike to other types of interval systems, the weak sol¥ghilf interval system(21) in case that
m < n can be checked in constant time, since the system

Mx<0,x#0 (25)

is solvable for allM € M. The set of solutions of the systeMx + 12’ = 0 forms a vector space the
dimension of which is greater or equal to one. Hence therst®a vector(x, z') # (0,0) satisfying this
system. Ifz’ = 0, thenx solves(25). If z' # 0, then systen(25) has a solutior; .

The convex polytopest; (A), M, (C) are weakly separable for soee A’, C € C! if and only if the

interval system
AT 1 r
(Lo 1) (5) sorro (26)

is weakly solvable. But according to Theorem 9 this is an MRdtproblem, since interval systedi’x < 0,
x # 0 is weakly solvable if and only if the following system is wéakolvable

M -1 <
o -1 (,)50,x¢0.
o7 1)\

This is a special kind of interval systef®6). For checking (with an exponential complexity) weak solligh
of (26) we can use Corollary 1.



3.2 Separability for all realizations

The convex polytopes1; (A), M»(C) are weakly separable for al € A’ andC € C' if and only if the
interval systen(26) is strongly solvable. If the interval systef®6) has a strong solutiofr, s), then simply
(26) is strongly solvable and we have for the hyperpl@e {x € R” | rTx = s}

Mi(A)CR- ={xeR" |tTx<s} VAe€Al

Ms(C) CRT ={xeR" |rTx >s} VCeC.
The reverse implication holds only under some additionsiiagptions — see Theorem 10.
Assertion 1. The setUp a1 M1 (A) is convex.

Proof. Let Al, A% € Al andx! € M;(A!),x? € M;(A?). Denote bya} and bya?,i = 1,...,m, vertices
of M;(A') and M, (A?), respectively. Then vectoss, x* can be expressed as convex combinations

m m

1 _ 1.1 2 _ 2,2

x —E o;a;, X = E o a;j
i=1 i=1

for certainal,a? > 0, Y7", a} = Y%, o = 1. An arbitrary convex combination of*, x? in the form
x¢ = c'x! + ?x2 (wherec!,c? > 0, ¢! +¢? = 1) is equal to

x°=c"Y ajal +c Y afaj =) (doj + %)) | s 5=a + T 5 al -
— — ca; +cta; ca; +cfa;
1= =

i=1
Denote - 5 s
al = cai cio a2
YT oclal + 22t claf +cal !
(a vectora§ is a convex combination of; anda?). Define a matrixA¢ as followsA$. = (a§)”. Then
A°€ AIS m 1.1 22_1m12m2_1h c_\N\"m .11 2.,2\,C
€ A'.Since) ", (cla;+ciaj) =c' Y0 ap+c )" af =1, thevectox® = ) .7 (c'aj +c?af)as
is a convex combination of vectoa§. Thusx® € M; (A°). O

Theorem 10. Letdim M (A) = dim M»(C) = nforall A € AT, C € CI. Then the interval syste(26)
has a strong solution if and only {£6) is strongly solvable.

Proof. If (26) has a strong solution, then the interval syst@®) is simply strongly solvable. The second
implication we prove by contradiction. Suppose tf8) has not any strong solution, it means that the in-
tersectionfUa a1 M1(A)) N (Ucecr Ma(C)) is of full dimension. Hence there is a vector belonging to
the interior of(Ua c a1 M1 (A)) N (Ucec: M2(C)). This vectorx! belongs taM, (A1) for certainA € AX.
From assumptions of the theorem we have thtt(A') N (Ucec: M2(C)) is of full dimension. By analogy
there isC € C' such thatnt M;(A') Nint M2(C') # 0. Therefore (for choicé!, C') the interval system
(26) is not strongly solvable. O

The existence of a strong solution of the interval syst@) can be checked by two ways. First, we can
computeJscar M1 (A), Ucecr M2(C) and check weak separability of these convex polytopes. fremby
al,i€{1,...,m}, j € J(|J| =2), vertices ofA] . we have

U M;i(A) = conv U U {al}

AcA! ie{l,...,m} jeJ

We reduced computing the union of infinitely many convex pahgs to computing the convex hull of finitely
many points (concretely:2™). By analogy we can computégccr M2 (C).

The second way is the following one. Interval systéti) has a strong solution if and only if there is
y € {£1}" such that the interval system

Al 1 0
—c 1| (Y)<| o (27)
S
yI' 0 -1



has a strong solution. Interval systéaT) has a strong solution (see Theorem 7) if and only if the system

A -1 L A -1\ 0
_g 1 <81> - _C 1 <S2) S 0 ’ (r17815r2732) Z 0
yI' 0 yI' 0 -1

or, equivalently the system

A 1) (7 A -1\ (r? 0
<_C 1) (81> - (_6 1) (SQ) S (0) , yT(rl —1'2) < 0’ (rl,sl,r2,52) Z 0

is solvable for somg € {£1}"™. On the whole we obtain that there exists a strong solutiantefval system
(26) if and only if the system

1
A -A -1 rz 0 1.2 1.2
(—Q e 1) (2) S(O)’ r#r°, r,r’>0 (28)

is solvable. Moreover, ifr!,r?, s) solves(28), then vector(r! — r?, s) is the required strong solution of the
interval system$27) and(26).
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