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Abstract
This paper is a contribution to the interval analysis and separability of
convex sets. Separation is a familiar principle and is oftenused not only
in optimization theory, but in many economic applications as well. In
real problems input data are usually not known exactly. For the purpose
of this paper we assume that data can independently vary in given inter-
vals. We study two cases when convex polyhedral sets are described by
a system of linear inequalities or by the list of its vertices. For each case
we propose a way how to check whether given convex polyhedralsets
are separable for some or for all realizations of the interval data. Some
of the proposed problems can be checked efficiently, while the others
are NP-hard.
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1 Introduction

In this paper we study separability of two convex polyhedralsets (
� � �� ��

, � � �� ��
, � � �� , 	 � �� ):
 � � � � �� � �� � � �� (1)
 � � � � �� � �� � 	�� (2)

There are various kinds of separability of convex sets (cf. [8]). We introduce so called weak and strong
separation. Strong separation is dealt with in Section 2 andthis kind is especially convenient in order to utilize
Theorem 2 and Theorem 3. Weak separation is dealt with in Section 3.

Definition 1. Sets� � � � ��
are calledweakly separableif there exists a hyperplane� � � � �� ��� � � �� such that� � � � � � � �� � �� � � ��, and� � �� � � � �� � �� �  �� hold. Such

a hyperplane� is calledthe separating hyperplaneof the sets� � � . Sets� � � � ��
are calledstrongly

separableif they are weakly separable and!"# � � !"# � � $.

Let us remind the familiar separation theorem (see e.g. [3, 7]):

Theorem 1. Convex sets� � � � ��
are strongly separable if and only if!"# � � !"# � � $ , and"$% � & "$% � � '.

Let us introduce some notation. Symbol( will denote a vector all coordinates of which are equal to one,!")* +, - is a diagonal matrix with elements. � � � � � � .� . Given a matrix/ , the expressions/ 012, / 213 denote
the "-th row and the4 -th column of the matrix/ , respectively. For vectors5 � � the inequalities5 � � or5 6 � are understood componentwise. For any set7 let us denote by7 , "$% 7 , !"# 7 , and89$. 7 the
closure, the interior, the dimension, and the convex hull of7 , respectively. A sign of a real number: � � is
defined as follows:�*$ +: - � ; if : � ;, �*$ +: - � < if : = ; and�*$ +: - � >< if : 6 ;. A sign of a vector is
understood componentwise.

Let us introduce the convex polytope?@ � A+B � , � .�� � - � ����� � � CDEF GF HIF JF KLF LF MNO P QRSTU VW � PHMKW � +B � , � .�� � -  X Y� (3)



With the help of the set
?@

we can describe all separating hyperplanes of

 � � 
 �

from +<-, +�-. The
following Theorem 2 and Theorem 3 were proved in [5, 6].

Theorem 2. Suppose that!"# 
 � � !"# 
 � � $ � "$% 
 �&"$% 
 � � '. Let +B � , � .�� � - � ?@ � B� � �� X� ,
and� � �; � .�� � � is arbitrary. Then� � � � �� � B� +�� > �- � � � (4)

represents a separating hyperplane of the convex polyhedral sets

 � � 
 �

. Conversely, any separating hyper-
plane� of


 � � 
 �
can be expressed in the form of+� - for a certain +B � , � .�� � - � ?@ � B� � �� X� , and

� � �; � .�� � �.
Theorem 3. Let !"# 
 � � !"# 
 � � $. Then the convex sets


 �
,

 �

are strongly separable if and only
if
?@ �� ' �

1.1 Some results from interval analysis

Coefficients and right-hand sides of systems of linear equalities and inequalities are rarely known exactly. In
interval analysis we suppose that these values vary independently in some real intervals. Let us introduce some
notation. Interval matrix is defined as/ � � / � �� �� � / � / � / �. Next introduce/ � � <

� �+/ � / -� / 	 � <
� �+/ > / -�

Then we can write / � � �/ �/ � � �/ � > / 	 �/ � � / 	 � �
From the point of view of interval analysis there are two possibilities how to deal with the problem of finding
a solution of interval linear system of equalities and inequalities. The system of interval linear inequalities/ � � � 
� (5)

is strongly solvable, if every system/� � 

is solvable for all/ � / � , 
 � 
� . Vector

� �
is astrong

solution, if /� � � 

holds for all/ � / � , 
 � 
� . The interval system+�- is weakly solvable, if/�� � 


holds for certain vector
� �

and/ � / � , 
 � 
� (such a vector
� �

is calleda weak solution).
Similarly, we can define strong and weak solvability for other types of linear interval systems.

Theorem 4. An interval system/ � � � 
� � �  X
is weakly solvable if and only if the system/� � 
 � /�  
 � �  X

(6)

is solvable. Moreover, a vector
�

is a weak solution of the system/ �� � 
� � �  X
if and only if it satisfies+ -.

Proof. See [2, Theorem 2.13].

Theorem 5. An interval system/ � � � 
� , �  X
is strongly solvable if and only the system+/ � > !")* +�-/ 	 -� � 
 � � !")* +� -
	 � �  X

is solvable for each� � � <�� .

Proof. See [2, Theorem 2.17].

Theorem 6. An interval system/ � � � 
� is weakly solvable if and only if the system+/ � > / 	 !")* +� --� � 

(7)

is solvable for some� � � <��. Moreover, a vector
�

is a weak solution of the system/ � � � 
� if and only
if it satisfies+�-.



Proof. See [2, Theorem 2.20].

Corollary 1. An interval system/ �� � X � � �� X
is weakly solvable if and only if the system+/ � > / 	 !")* +�--� � X � � �� X

is solvable for some� � � <�� .
Theorem 7. An interval system/ �� � 
� is strongly solvable if and only if the system/�� > /�� � 
 � � � � � �  X

(8)

is solvable. Moreover, if
� � � �� is a solution of+� -, then the vector

� � > �� is a strong solution of the given
interval system.

Proof. See [2, Theorem 1.25].

2 Separation of interval convex polyhedral sets

In this section we deal with the strong separability of two convex polyhedral sets

 �

,

 �

the input data of
which can vary in given real intervals. Let us consider two families of convex polyhedral sets
 �� � � � �� � � � � � � � � � (9)
 �� � � � �� � � �� � 	 � �� (10)

where
� � � � � �� �� � � � � � � �, � � � � � ���� � � � � � ��, � � � � � �� � � � � �� �, 	 � � 	 � �� � 	 � 	 � 	�. Matrices

� �� � �� ��
, � � � � �� ��

and vectors� � � � ��
, 	 � 	 � ��

are fixed.
Let us assume that no matrix

� � � � contains a zero row and assume that!"# 
 � � $ holds for all
 � � 
 �� (i.e., the interval system
� �� 6 � � is strongly solvable). Let us make analogical assumptions

about

 �� .

The former assumption can be verified easily, the latter assumption can be verified in the following way.
The dimension of


 �
is equal to$ for all


 � � 
 �� if and only if the interval system
� �� � � � > � is

strongly solvable for any sufficiently small� = X
. According to Theorem 7 this happens if and only if the

system ��� > ��� � � > � � � � � � �  X �
or, equivalently, the system ��� > ��� 6 � � � � � ��  X

(11)

is solvable. Moreover, if vectors�
� �

, �
��

solve +<<-, then�
� � > �

�� � "$% 
 �
holds for all


 � � 
 ��.
We are interested in two cases. We will study whether the convex polyhedral sets


 �
,

 �

are strongly
separable either for some, or for all realizations


 � � 
 ��, 
 � � 
 �� .
2.1 Separability for some realization

The first case can be checked efficiently. According to Theorem 3, there exist two convex polyhedral sets
 � � 
 ��, 
 � � 
 �� which are strongly separable if and only if the interval systemCD+� � -� +� � -� X+� � -� +	 � -� <(� (� ;NO CD B,.�� �NO � CDX;<NO � +B � , � .�� � -  X � (12)

is weakly solvable. From Theorem 4 we have that interval system +<�- is weakly solvable if and only if the
system CD�� �� X�� 	� <(� (� ;NO CD B,.�� �NO � CDX;<NO � C�D�� �� X�� 	� <(� (� ;N�O CD B,.�� �NO � CD B,.�� �NO  X
is solvable.



2.2 Separability for all realizations

The problem to verify whether all convex polyhedral sets

 � � 
 ��, 
 � � 
 �� are strongly separable is

equivalent (see Theorem 3) to the problem to verify whether interval system+<�- is strongly solvable. The-
orem 5 enables us to check strong solvability of the intervalsystem+<�- with an exponential complexity.
Polynomial algorithm is not likely to exist; we will show that this problem is NP-hard.

Interval system+<�- is strongly solvable if and only if the interval system�+� � -� +� � -� X+� � -� +	 � -� <� CD B,.�� �NO � �X;� � +B � , � .�� � - � X
(13)

is strongly solvable. It follows from Theorem 8 that checking the strong solvability of the interval system+<� -
is an NP-hard problem.

Lemma 1. Let/ � � � ��
be a nonnegative positive definite matrix. Checking the solvability of the system�/ � � � (� (� �� � = < (14)

is an NP-hard problem.

Proof. It is a modification of the proof of Theorem 2.3 from [2] where the NP-hardness of testing the solvabiliy
of a system

�/ � � � (� (� �� �  < was proved.

Theorem 8. Let� � � �� ���
. Checking strong solvability of an interval system

� � � � X � � � X
(15)

is NP-hard problem.

Proof. According to Lemma 1 we know that checking solvability of thesystem+<� - is NP-hard. Thus it is
sufficient to prove that the system+<� - has a solution if and only if an interval system

�/� > ((� �/ � � ((� �� � � �>/ � > ((� � >/ � � ((� ��� � X � +� � � � � - � X
is not strongly solvable, or equivalently an interval system

�/� > ((� �/ � � ((� �� � � �>/ � > ((� � >/ � � ((� ��� � X �(� � � � (� �� � <� +� � � � � -  X (16)

is not strongly solvable (it is a special kind of the intervalsystem+<�-). The system+< - is not strongly solvable
if and only if there exists� � � <�� such that a system+/ � > � (� -� � � +>/ � > � (� -�� � X �(� � � � (� �� � <� +� � � � � -  X
is not solvable (see [2, Theorem 2.17]). From the familiar Farkas Theorem it is sufficient and necessary that
there exists a vector+� � � � - � ���� satisfying the system+/ > (� � -� � (� �  X �+>/ > (� � -� � (� �  X �� � 6 ; �
equivalently +/ > (� � -� = X �+>/ > (� � -� = X �



or �/ � � 6 >(� � � � (17)

We claim that+<�- has a solution if and only if the system+<� - has a solution. If
� � ��

solves+<� -, then it
satisfies

�/ � � 6 ((� �� � and vectors� � �
, � � >�*$ +� - forms a solution of+<�-. Conversely, if a certain

� � �� a� � � <�� satisfies+<�-, then�/ � � 6 � > (� � � � � ((� �� ��
i.e. �/ �(� �� � � 6 (�
and a solution of+<� - is a vector

� � ��� �� ��� , where� = ; is sufficiently small.

Another possibility how to verify whether each couple

 � � 
 ��, 
 � � 
 �� is strongly separable is to

use the following sufficient condition. Each two convex polyhedral sets

 � � 
 ��, 
 � � 
 �� are strongly

separable, if convex hulls89$. ��� 	
� �	
 ��
, 89$. ���  
� �
 ��

are strongly separable. Moreover,

any separating hyperplane of these convex hulls is a separating hyperplane of convex polyhedral sets

 � � 
 �

for all

 � � 
 ��, 
 � � 
 �� . It follows from Theorem 6 that a vector

� � ��
solves a system

�� � � for
certain

� � � � , � � � � if and only if the vector
�

solves+� � > �	 !")* +� --� � �
for some� � � <��. Hence�� 	
� �	
 � � �

�
�� ��� �� � �� � +� � > �	 !")* +� --� � � �
and the problem is reduced to the problem of computing the convex hull of a finite (but exponential) number of
convex polyhedral sets (for explicit description of the convex hull of two convex polyhedral sets see [5]).

Note that the reverse implication generally does not hold, i.e. it can occur that all convex polyhedral sets
 � � 
 ��, 
 � � 
 �� strongly separable and convex hulls89$. ��� 	
� �	
 ��
, 89$. ���  
� �
 ��

need not be strongly separable. The reason is that sets
�� 	
� �	
 �

,
��  
� �
 �

are not convex in general.

3 Convex polytopes

In this section we suppose that convex polytopes (bounded convex polyhedral sets)

 �

,

 �

are described by
the lists of their vertices as follows
 �

has vertices5� � � � � � 5� � �� � #  <� (18)
 �
has vertices� � � � � � � � � � �� � �  <� (19)

Let
� � �� ��

be a matrix, for which
�012 � 5�0 , " � <� � � � � # � holds (i.e. the rows of matrix

�
correspond

to vectors5�0 ) and by analogy let� � ����
be a matrix for which�3 12 � ��3 , 4 � <� � � � � ��. We will also use

the more transparent notation

 � � 
 � +� -, 
 � � 
 � +�-.

For this situation it is convenient to study weak separability (Definition 1) of convex polytopes

 �

,

 �

,
since nonemptiness of


 �
,

 �

is guaranteed (in comparison with to full dimension).
Checking the existence of separating hyperplane of convex polytopes


 �
,

 �

in spaces
��

and
� �

can
be done in expected time� +�# � �-, which is optimal (see [1]). But for the sake of this paper it is more
convenient to use the standard linear programming problem:convex polytopes


 �
,

 �

are weakly separable
if and only if a convex polyhedral set

� � �+� � �- � ���� � � � >(>� (� ���� � X � � �� X � (20)

is nonempty (whereas�� � � � represents a separating hyperplane).
Let two interval matrices

� � , � � be given. Like in Section 2 two natural questions arise: Are convex
polytopes


 � +� -, 
 � +�- weakly separable for some realization
� � � � , � � � �? Are


 � +� -, 
 � +�-
weakly separable for all realizations

� � � � , � � � �?



3.1 Separability for some realizations

Theorem 9. Given an interval matrix/ � � �� ��
. Checking weak solvability of an interval system/ �� � X � � �� X

(21)

is an NP-hard problem.

Proof. We proceed analogically as in [2, Theorem 2.21]. A vector
� � ��

is a weak solution of the interval
system+�<- if and only if it is a solution of a system/ �� � / 	 �� �� � �� X � (22)

It is sufficient to prove that checking solvability of+��- is NP-hard. We known (see [2, Theorem 2.3]) that
checking solvability of system ��� � � (� < � (� �� � (23)

is NP-hard. We claim that system+��- is solvable if and only if the system�� � � � (� � � � � � (� �� �� +� � � �- �� X
(24)

is solvable. When
�

solves+�� -, then+� � � � - � +� � <- solves+�� -. Conversely, let+� � � �- be a solution of+�� -.
If � � �� ;, then� � = ; and a vector

� � �� � solves system+�� -. If � � � ;, then system+��- is satisfied for a
vector

� � ��� �� �. System+�� - can be equivalently rewritten as

� � > (� � � X � >� � > (� � � X � � � � (� �� �� +� � � � - �� X �
By choosing

/ � � CD � >(>� >(X� <NO � / 	 � CD X XX X(� ;NO
we reduce solvability of+�� - to solvability of +��-. Hence checking weak solvability of the interval system+� <- is NP-hard.

Remark 1. Unlike to other types of interval systems, the weak solvability of interval system+�<- in case that# � $ can be checked in constant time, since the system/� � X � � �� X
(25)

is solvable for all/ � / � . The set of solutions of the system/� � (� � � X
forms a vector space the

dimension of which is greater or equal to one. Hence there exists a vector+� � � � - �� +X � ;- satisfying this
system. If� � � ;, then

�
solves+��-. If � � �� ;, then system+��- has a solution

�

�� .

The convex polytopes

 � +� -, 
 � +�- are weakly separable for some

� � � � , � � � � if and only if the
interval system � � � >(>� � (� ���� � X � � �� X

(26)

is weakly solvable. But according to Theorem 9 this is an NP-hard problem, since interval system/ � � � X
,� �� X

is weakly solvable if and only if the following system is weakly solvableCD/ � >(X� ><X� <NO ��
� �� � X � � �� X �

This is a special kind of interval system+�-. For checking (with an exponential complexity) weak solvability
of +�- we can use Corollary 1.



3.2 Separability for all realizations

The convex polytopes

 � +� -, 
 � +�- are weakly separable for all

� � � � and� � � � if and only if the
interval system+�- is strongly solvable. If the interval system+�- has a strong solution+� � �-, then simply+�- is strongly solvable and we have for the hyperplane� � � � �� � �� � � ��
 � +� - � � � � � � �� � �� � � �� �� � � � �
 � +� - � �� � � � �� � �� �  �� �� � � � �
The reverse implication holds only under some additional assumptions – see Theorem 10.

Assertion 1. The set
�� 
� �
 � +� - is convex.

Proof. Let
� � � � � � � � and

� � � 
 � +� �-, �� � 
 � +� � -. Denote by5�0 and by5�0 , " � <� � � � � # � vertices
of

 � +� �- and


 � +� � -, respectively. Then vectors
� � � �� can be expressed as convex combinations� � � ��0� � � �0 5 �0 � � � � ��0� � � �0 5�0

for certain�
�0 � � �0  ;, ��0� � � �0 � ��0� � � �0 � <. An arbitrary convex combination of

� � � �� in the form� � � 8�� � � 8��� (where8� � 8�  ; � 8� � 8� � <) is equal to� � � 8� ��0� � � �0 5 �0 � 8� ��0� � � �0 5�0 � ��0� � +8�� �0 � 8�� �0 - � 8�� �08�� �0 � 8�� �0 5 �0 � 8�� �08�� �0 � 8�� �0 5�0 � �
Denote 5 �0 � 8�� �08 �� �0 � 8�� �0 5 �0 � 8�� �08 �� �0 � 8�� �0 5�0
(a vector5 �0 is a convex combination of5 �0 and 5�0 ). Define a matrix

� � as follows
� �0 12 � +5 �0 -� . Then� � � � � . Since��0� � +8�� �0 � 8�� �0 - � 8� ��0� � � �0 � 8� ��0� � � �0 � <, the vector

� � � ��0� � +8�� �0 � 8�� �0 -5 �0
is a convex combination of vectors5 �0 . Thus

� � � 
 � +� � -.
Theorem 10. Let !"# 
 � +� - � !"# 
 � +�- � $ for all

� � � � , � � � � . Then the interval system+�-
has a strong solution if and only if+� - is strongly solvable.

Proof. If +�- has a strong solution, then the interval system+�- is simply strongly solvable. The second
implication we prove by contradiction. Suppose that+�- has not any strong solution, it means that the in-
tersection+�� 
� �
 � +� -- & +�� 
� �
 � +�-- is of full dimension. Hence there is a vector

� �
belonging to

the interior of+�� 
� �
 �+� -- & +�� 
� �
 � +�--. This vector
� �

belongs to

 � +� �- for certain

� � � � .
From assumptions of the theorem we have that


 � +� �- & +��
� �
 � +�-- is of full dimension. By analogy
there is� � � � such that"$% 
 � +� �- & "$% 
 � +� �- �� '. Therefore (for choice

� � � � �) the interval system+�- is not strongly solvable.

The existence of a strong solution of the interval system+�- can be checked by two ways. First, we can
compute

�� 
� �
 � +� -, ��
� �
 � +�- and check weak separability of these convex polytopes. Denoting by530 , " � <� � � � � # �� 4 � �
(
�� � � ��), vertices of

� �0 12 we have

�
� 
� � 
 �+� - � 89$. CD �0
�� 1���1� � �3 
	 530 �NO �

We reduced computing the union of infinitely many convex polytopes to computing the convex hull of finitely
many points (concretely# ��). By analogy we can compute

�� 
� �
 � +�-.
The second way is the following one. Interval system+�- has a strong solution if and only if there is� � � <�� such that the interval systemCD � � >(>� � (� � ;NO ���� � CD XX><NO (27)



has a strong solution. Interval system+��- has a strong solution (see Theorem 7) if and only if the systemCD � >(>� (� � ;NO �� ���� > CD � >(>� (� � ;NO ������ � CD XX><NO � +�� � �� � �� � �� -  X
or, equivalently the system� � >(>� (� �� ���� > � � >(>� (� ������ � �XX� � � � +� � > �� - 6 ; � +� � � �� � �� � �� -  X
is solvable for some� � � <��. On the whole we obtain that there exists a strong solution ofinterval system+�- if and only if the system� � >� >(>� � (� CD����� NO � �XX� � � � �� �� � �� � ��  X

(28)

is solvable. Moreover, if+� � � �� � �- solves+��-, then vector+� � > �� � �- is the required strong solution of the
interval systems+��- and +�-.
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References

[1] Chazelle, B., Liu, D., Magen, A. (2003):Sublinear geometric algorithms, STOC ’03, 531–540, AMC,
San Diego.

[2] Fiedler M., Nedoma J., Ramik J., Rohn J., Zimmermann K. (2006): Linear optimization problems with
inexact data, Springer, New York.
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