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Abstract     In order to achieve stable and sustainable systems for recycling post-consumer 
goods, frequently it is necessary to concentrate the flows from many collection points of 
suppliers to meet the volume requirements for the recycler.  The collection network must be 
grown over time to maximize the collection volume while keeping costs as low as possible.  
This paper addresses a complex and interconnected set of decisions that guide the investment 
in recruiting effort.  Posed as a stochastic dynamic programming problem, the recruitment 
model captures the decisions for the processor who is responsible for recruiting material 
sources to the network.  A key feature of the model is the behavior of the collector, whose 
willingness to join the network is modeled as a Markov process.  An exact method and two 
heuristics are developed to solve this problem, then their performance is compared in solving 
practically sized problems. 
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1. Introduction 
The paper addresses on the concentration of post-consumer material flows through the 

interaction between suppliers (agents) and a processor (recruiter).  In forward supply chains, 
one processor negotiates with many suppliers in order to acquire the required resources for 
production to meet the demand.  The processor has the ability to control the amount of 
material from the suppliers. The main uncertainty is usually the demand in the market.  In 
reverse supply chains, the return flows from the consumers are a significant uncertainty.  The 
reverse system consists of the activities such as collection, cleaning, disassembly, testing, and 
sorting, storage, and recovery operations.  This paper focuses on the collection segment 
where the recycling processor attempts to retrieve used materials from various sources under 
uncertainty.   
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In order to build a successful collection network, we consider the problem of recruiting 
suppliers.  In this case “suppliers” are typically local aggregators of material who work with 
consumers or very localized material handlers, such as supermarkets, to produce a regular 
supply of material.  Careful planning of the supply network to support the recycling plant can 
be critical factor in the success or failure of the production operations.  The interaction in the 
recruitment process is between business-to-business (B2B) entities rather than business-to-
customer (B2C).  This makes the process more complicated because both parties have power 
to negotiate. 

In a reverse supply chain, planning the collection network to supply the capital intensive 
processing plant can be a crucial factor in the success or failure of recycling operations.  For 
example, in the past decade, two major carpet recycling companies (Evergreen Nylon 
Recycling and PA2000) suffered major financial problems that led to the closure of the 
recycling plants.  One explanation is the high cost of the supply materials resulting from 
widely dispersed collection points.  Hence, the objective is to provide the collection capacity 
at low enough cost to make it viable.  However, the processor is faced with a significant 
challenge.  Processors are typically not familiar with the waste business; the collection of 
“trash” is not a core competency of their organization, nor do they have existing waste 
hauling contracts that they can exploit to get the material.  Often, they do not have vertical 
integration to the retail sector and hence do not control the point of contact with the 
customers. This leads to the need to recruit a layer of suppliers to the system.  In the case of 
recycled carpet this might be the retailers who sell carpet, as they are the ones to whom used 
carpet may be returned by the installers.  According to the data from Carpet America 
Recovery Effort’s Annual Report in 2004, 4,000 million pounds of used carpet is discarded to 
the landfill in year 2003 while less than 100 million pounds was recycled.  This number is 
growing rapidly as raw material costs rise.  However, the carpet industry has had limited 
success with large scale recycling of nylon carpets despite the financial potential.  Post 
consumer carpet scrap is priced at approximately $0.06 a pound

1
 for truck load quantity 

(40,000 pounds or more) while nylon 6 (after processing nylon-6 scrap) is priced at $1.59
2
 

for truck load quantity.    
One solution to this recruitment problem is to subcontract the responsibility of recruiting 

suppliers to a local regional collector.  The collector is then allocated a budget with which to 
recruit the retailers to the network, which could include financial incentives.  Alternatively, 
the processor may decide to perform the recruitment and collection itself, and the budget 
would most likely reflect the amount of time and personnel resources that are devoted to a 
particular region.   

Recruitment models in the literature focus on employment recruitment, human resource 
management, and physiological models in medical research (Darmon 2003, Treven 2006, 
Hawkins 1992, Georgiou and Tsantas (2002).  Mehlmann (1980) use a recruitment concept 
for a long-term manpower planning problem.  Coughlan and Grayson (1998) examine the 
problem where the individual distributors play two key roles in network marketing 
organizations (e.g. Amway, Mary Kay and NuSkin):  they sell product, and they recruit new 
distributors.  They develop a model of network marketing organization network growth that 
shows how compensation and other network characteristics affect growth and profitability of 
the distributor.  In their context, one distributor recruits others by socially interacting with 
them in one form or another.  They represented this process by adapting a diffusion model 
formulation to the recruitment process (Bass 1969).  This model allows for network growth 
                                                
1

 Canada's Waste Recycling Marketplace (2006) 
2

 IDES The Plastics Web (2006) 
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via both inherent attraction (the innovation effect) and the spread of word-of-mouth (the 
imitation effect).  They introduce a recruitment function which includes innovation and 
imitation terms.  This paper explores the notion of the recruitment of the collectors, instead of 
the distributors.  Furthermore, the recruitment process is represented in a more complex form, 
not just a closed-form function.    

The recruitment model which is posed as a stochastic dynamic programming problem 
has some similarities to the Restless Bandits Problem, first introduced by Whittle (1988).  
The continuous-time version of the problem with a time-average reward criterion was 
developed in a dynamic programming framework.  He then introduced a relaxed version of 
the problem, which can be solved optimally in polynomial time.  More literature review in 
this area is discussed at the end of section 3. 

The paper is organized as follows.  In section 2, we more formally define the problem.  
The modeling of the problem is discussed in section 3.  In section 4, we present three 
methods to solve the problem.  In section 5, we describe the computational experiments that 
illustrate efficiency of our algorithms.  Finally, in section 6, we develop some conclusions 
and ideas for future research. 

 

2. Problem Definition and Modeling 
We refer to the problem of recruiting suppliers in a reverse production system as the 

recruitment problem.  Recruitment is a negotiating process that involves two parties:  
processor and supplier.  We denote a supplier as an agent throughout the paper and a 
processor as a recruiter.  The recruiter cannot retrieve material from the agent unless both 
parties agree to it through the recruitment process.  There are �  agents to consider and each 
agent owns Resource B that the recruiter wishes to collect.  Typically, this is not a very large 
number as there are many retailers but only a fraction has a sufficient volume of business to 
justify recruitment.   

The objective is to recruit the agents to grow the recruitment network by using the 
limited recruiting budget efficiently to maximize the expected collection volume at the end of 
planning horizon.  The recruitment problem is solved periodically over �  periods.  Figure 1 
depicts the growth of recruitment network over time. 

 

 
Figure 1:  Growing Recruitment Network 

 
We assume that there is only one recruiter and it does not compete with other recruiters 

for the resource.  The recruiter is given Resource A, which can be used for the agents’ 

Unrecruited Agent 

Recruiter 

Recruited Agent t = 0 
 

t = 1 
 

t = T-1 
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recruitment process.  This resource typically can be interpreted as money or a discount that 
can be used as an incentive to recruit the agents.  A set of agents has heterogeneity in:  

a) The quantity of Resource B that they generate, 
b) Their geographical location, 
c) Their initial willingness to sell/give the recruiter the resource based on some 

predefined factors, and 
d) Their predisposition towards becoming recruited to the network. 
 
In order to achieve the objective, the recruiter makes a recruitment budget allocation 

decision in each decision period.  This decision affects the decisions of the agents.  It is 
assumed that the willingness state of each agent is updated to the recruiter in every period.  
Also, the total spending budget in all periods must not exceed the total recruiting budget limit 
provided to the recruiter at the beginning of planning period.  At the beginning of the period, 
after an agent receives its allocation of budget (Resource A) from the recruiter, it decides 
whether to give/sell its resource, Resource B, to the recruiter.  Its decision is based on its 
willingness to part with the resource.  In the case where the agent does not contract to provide 
the resource to the recruiter, the agent’s overall willingness state can change by being 
influenced by the incentives it receives from the recruiter.  Figure 2 summarizes how the 
decision of the recruiter is related to the decision of the agents in each period. 

 

 
Figure 2:  Decisions of Recruiter and Agent in One Period 

 
 A key element of our recruitment framework is a model of an agent’s willingness to 

participate.  This model can be as simple as a one-variable function of the given incentive.    
However, it is more likely that agents have a more sophisticated “state” relative to their 
willingness to participate.  A Markov model for the agent, which we call the Agent’s 
Resource Willingness Model (ARW), is developed in order to capture a more sophisticated 
structure of the agent behavior and yet retain reasonable representational and computational 
simplicity. 
Agent’s Resource Willingness Model (ARW) 

The significant components of this model are the willingness state and the transition 
probabilities. We model each agent’s resource willingness as a Markov chain with a 
“recruited” state that is absorbing.  This means that the recruited agent never leaves the 
collection network and the recruiter is not confronted with an agent retention issue.  The 
model also consists of other states that represent a “distance” from recruitment based on the 

Starting Budget 

Agent 1 Agent �  Agent 2 

Recruiter 

Agent 3 

Recruiter’s Decision 

Agent’s Decision 

Agent 1 Agent �  Agent 2 Agent 3 

Join 
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probability of reaching recruitment and connection to other states.  Each agent has its own 
Markov model and it is assumed the recruiter knows the state of the agent in each time 
period.  Consider agent i  in this model. 

 
Willingness State Definition (Agent’s state) 

    { , , , }its R L M H� . 

This describes what state agent i  is in at time period t .  There are four possible states for 
each agent: 

 
1. Recruited (R) - The agent agrees to give the Resource B to the recruiter. 
2. Low (L) - The agent is not recruited by the recruiter.  Also, the agent is in a state 
where it will be very challenging to recruit it. 
3. Medium (M) - The agent is not recruited by the recruiter.  The agent has no bias 
against the recruitment. 
4. High (H) - The agent is not recruited by the recruiter.  Also, the agent is in a state 
that makes recruitment easy. 
 

We assume that when an agent is recruited, it resides in the R willingness state, an 
absorbing state.  The states L, M, and H represent a “distance” from recruitment based on the 
probability of reaching the recruitment state and connection to other states.  In other words, if 
the agent is not recruited, it resides in either the L, M, or H state.  Figure 3 shows a symbolic 
representation of the states and possible transitions.  

 
Figure 3:  Agent’s State Diagram 

 
We denote the amount of Resource B that agent i  can generate between each decision 

epoch (each period) as ig , which is assumed to be a single value, although it would not be 
difficult to generalize it to a random variable.  We also assume that the recruiter can collect 
the full amount of available Resource B from every recruited retailer in each period.  In 
addition, we denote ita  as the amount of budget (Resource A) that agent i  receives from the 
recruiter in period t .  Given the action ita , the agent transits to the next state with following 
transition probabilities. 

 
Transition Probabilities 

The probability of agent i  moving to state , 1i ts �  from state its  by action ita  is denoted by 

, 1( | , )i t it itp s s a�  or 
, 1

( )
it i ts s itPr a

�
.  There are two types of transition probabilities to consider. 

H M L 

R 
Probability =1 
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The probability of recruitment is the probability of moving to state R from the L M, or H 
states ( ( ), ( ), ( )LR it MR it HR itPr a Pr a Pr a ).  The difficulty of recruitment depends on three factors: 
the state of the agent, the budget allocation or action, and the agent’s recruitment budget 
threshold, i� .  The recruitment budget threshold has the same units as the Resource A budget 
allocation.  In general, it represents a minimum value required to recruit the agent.  In the 
case of carpet retailers, there may be some correlation between the size of the retailer and the 
budget threshold required because the incentives offered may directly scale with the amount 
of used carpet available for pick-up.  The threshold may be interpreted as subsidizing the cost 
of the retailer’s disposal fee.  In section 5, when we provide the data for numerical study, we 
assume that if the agent can provide a significant amount of Resource B, it also demands 
large amount of allocation of Resource A from the recruiter.  Thus, the recruitment budget 
threshold depends on the amount of Resource B collection volume available from agent i .  A 
higher ig  implies a higher i� .  This means that it is more expensive to recruit agents who 
have higher Resource B generation rates. 

In order to capture these three factors together, we apply a sigmoid function (Seggern 
1993) to calculate the probability of recruitment.  In addition, we define the recruitment 
willingness factor, s� , based on the state of the agent such that 0H M L� � �� � � .   

The sigmoid function to calculate probability of recruitment of agent i  at time t  is:  

( )

1
( )

1it s it iit
s R it aPr a

e � �� ��
�

. (1)

Using the probability of recruitment function in (1), we can vary the value of the 
recruitment willingness factor so that each state has different recruitment probabilities as 
shown in Figure 4.  We set 2H� � , 1M� � , and 0.5L� � , with i�  =0 for all states. 
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Figure 4:  Recruitment Probability for Different Recruitment Willingness States 

 
The probability of (unrecruited) state transition can be specified according to how 

readily a particular agent is moved among the L, M, and H states if it is not recruited.  The 
probability of state transitions can be set up such that it is easy to move to M and H from L.  
This makes the agent easier to recruit.  On the other hand, the probability of state transition 
can be set up such that it is more difficult to move to M and H from L.  This makes the agent 
more difficult to recruit.  Figure 5 displays the overall transition probabilities of an agent. 

ita  
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Figure 5:  Transition Probabilities for an Agent 

 
Using the Agent’s Resource Willingness (ARW) Model, the decision for one period that 

is shown in Figure 2 can be modified as shown in Figure 6.  The ARW model provides a 
better representation of each agent’s participation status for the recruiter.  

 
 

Figure 6:  Decisions of Recruiter and Agents with the ARW 
 

Given the problem definition and the general framework of the recruitment model, we 
now introduce a stochastic dynamic programming formulation of the recruitment problem for 
the recruiter in the next section.  
 

3. Problem Formulation: Stochastic Dynamic Programming Formulation 
This section develops a stochastic dynamic programming model for the recruitment 

problem that capitalizes on the Markov property in the Agent’s Resource Willingness model.  
The formulation of this model consists of the definition of decision epochs, state space, 
actions, transition probabilities, and rewards.  A solution for this model provides the optimal 
recruiting policy to the regional collector.  In this formulation, we assume that precise 
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information for the parameter values is available.  The number of agents is � , the maximum 
recruiting Resource A budget is maxB  and the total number of planning periods is T .  

The decision epochs and state spaces are defined as follows. 
 

Decision Epochs  

{0,1,..., 1}t T� �  
State Space 

1 2{ , , ,..., , }
m

Start
t t t t tY t w w w B��  for all tY 	� , 

where the willingness state of retailer i  at decision epoch t  is { , , , }itw L M H R	  and the 

starting recruitment budget at the beginning of period t  is represented by Start
tB .   

In this model, we define the action set as follows. 
 

Action Sets 

1 2{ , ,..., }
mlt lt lt ltA a a a�� , 

where the amount of resource A allocated to agent i  from action set index l  at time period t  

is represented by ilta  such that  ilt
i

a
�


�  Start
tB  and 0 Start

ilt ta B
 
  for 1,...,| |tl A� .  At the 

first period, max
0
StartB B� .  The size of the action set depends on �   and Start

tB .  
In this model, we define the state transition rules as follows. 

State Transition Rules 

(a) Initial State 
There is more than one possible initial agent state at 1t �  depending on the initial value 

of itw .  One example initial state is 0 10 20 0 0{0, , ,..., , }
m

StartY w w w B�� �  {0, ,..., ,10}L L
�

���
 where all 

agents begin in the ‘L’ willingness state and the starting recruitment budget is 10 units of 
Resource A. 

(b) State Transition Probabilities 
These probabilities depend on the ARW model for each agent.  We assume that each 

agent’s willingness state changes independently, so the state transition probability is the 
multiplication of the probability of the willingness state transition for each agent given the 
specific Resource A allocation provided by the recruiter. 

If the current state is tY  and action ltA  is taken in period t , the probability transition of 
moving to state 1tY �  or 1( | , )t t t ltP Y Y A�  can be represented in the following form, 

1( | , )t t t ltP Y Y A�  � 1( 1) 2( 1) ( 1) 1( 1, , ,.... , )Start
t t t t tP t w w w B�� � � �� �  

         
1 2 1 2( , , ,.... , ), ( , ,..., )Start
t t t t lt lt ltt w w w B a a a� � ,      

 
1 1( 1) 2 2( 1) ( 1), 1 , 2 ,( ) ( ) ( )

t t t t t tw w lt w w lt w w ltPr a Pr a Pr a
� � �� � �

� � ��� , 

 
, ( 1)

1

( )
it i tw w ilt

i

Pr a
�

�
�

�� ,                                                                          (2)
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where 
1

Start
ilt t

i

a B
�

�


�  and 1
1

Start Start
t t ilt

i

B B a
�

�
�

� �� .  Here, the probability of moving to 

willingness state ( 1)i tw �  is 
( 1), ( )

it i tw w iltPr a
�

 if the previous willingness state is itw  and allocation 

ilta  is taken for agent i .  These probabilities can be calculated from the ARW model 
described in section 2. 
 
Rewards 

In order to compute the rewards, we assume that the willingness state of agent i  at time 
t  has its own value, 

itwV .  Let RV  be the amount of Resource B that an agent can provide to 
the recruiter.  Because the reward should represent the increment in collection volume, the 
values for the non-recruited states LV , MV , and HV  are set to zero.  However, the reward 
should be defined such that there is an incentive to move to a higher willingness state.  
Hence, the value of LV , MV , and HV  are assigned a small value such that L M H RV V V V� � �� .  

For example, LV  = 0.1,  MV  = 0.2, and HV  = 0.3.  Let � 
1, ,t t lt tr Y A Y �  denote the value at time 

t  of the reward received when the state of the system at decision epoch t  is tY , action ltA  is 
taken, and the system occupies state 1tY �  at decision epoch  1t � .  This value represents the 
total increment in the collective value of all of the agents’ state changes.  If the recruiter 
moves many agents to state R , it can obtain a high reward from the cumulative collection 
volume for the recruited agents.  This value can be obtained by: 

� 
1, ,t t lt tr Y A Y �  � 
( 1)
1

i t itw w
i

V V
�

�
�

� �� . (3)

The regional recruiter’s expected reward of state tY  and for action ltA  can be evaluated 
by computing: 

� 
,t t ltr Y A  � 

1

1 1( | , ) , ,
t

t t lt t t lt t
Y

P Y Y A r Y A Y
�

� �
�

� � , 

 
� 
, ( 1) ( 1)

1 11

( )
it i t i t it

t

w w ilt w w
Y ii

Pr a V V
� �

� �

�� ��

� �
� � �� �

� �
� �� . (4)

Given the description of the reward function, the objective function of this model can be 
defined as follows. 

 
Objective Function 

 The objective is to maximize the expected collection volume using the specified 
Resource A budget.  In other words, under a fixed budget, the recruiter wants to move a 
subset of agents to state R over the horizon such that the recruited agents yield the maximum 
expected total Resource B collection volume in the final period.  Since the overall purpose is 
to maximize the total Resource B collection volume at the end of the time horizon and the 
material volume is not a quantity that changes with time, there is no conventional discount 
factor involved.   

Let �  = 0 1 1( , ,..., )Td d d �  represent the policy for every time period.  Hence, � �  = 
* * *
0 1 1( , ,..., )Td d d �  denotes the optimal policy in each time period.  Define the expected total 

reward obtained at decision epoch , 1,..., 1t t T� �  by using policy �  to be ( )t tu Y�  with 
starting state tY  in decision epoch t  as: 
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1

( ) ( , )
t

T

t t Y t t lt
t t

u Y E r Y A� �
�

� � �
��

� �
� � �

�  
� . (5)

Let *( )t tu Y  denote the maximum expected total reward obtained at decision epochs 

, 1,.., 1t t T� �  with starting state tY  in decision epoch t .  Then the optimality equation for the 
recruitment problem is: 

�
1

* * *
1 1 1( ) ( ) max ( , ) ( | , ) ( )

tlt

t t t t t t lt t t t lt t t
YA

u Y u Y r Y A P Y Y A u Y�

�

� � �
�

� �! !
� � �� �

! !�  
� , (6)

1

* *
1 1 1( ) arg max ( , ) ( | , ) ( )

t
lt

t t t lt t t t lt t t
YA

A Y r Y A P Y Y A u Y
�

� � �
�

� �! !
� �� �

! !�  
������

. (7)

 
The optimal action in states Y  at epoch t  is denoted by *( )tA Y .  In other words, the 

maximum expected total reward at period t , *( )t tu Y , is the realization from all possible 
actions of the immediate reward and expected future reward from a particular action.  
Essentially, the objective of the recruitment problem is to find *

0 0( )u Y .   
We have not found a similar formulation in the literature.  The formulation that appears 

closest is the restless bandit problem.  Bertsimas and Nino-Mora (2000) addresses the restless 
bandit problem as follows.  Consider a total of N �  projects, named {1,2,..., }n N N� � �	 � .  
Project n�can be in one of a finite number of states ' '

n ni I	 .  At 0,1,2,...,t �  exactly M N� ��  

projects must be chosen to work on or set active.  If project n� , in state '
ni , is active, an active 

reward '
1

ni
R is received, and its state transition change follows from an active transition 

probability matrix into state '
nj with probability ' '

1

n ni j
P .  On the other hand, if project is not 

worked on, a passive reward '
0

ni
R is earned, and its state transition change follows from an 

passive transition probability matrix into state '
nj with probability ' '

0

n ni j
P .  Rewards are time-

discounted by a specific discount factor.  The problem’s objective is to find a scheduling 
policy that maximizes the total expected discounted reward over an infinite horizon. 

Our recruitment problem formulation is a generalization of the restless bandits to include 
(1) more possible actions for each selected bandit other than just selection or not, and (2) an 
overall budget constraint.  First, the recruitment problem’s number of actions for each agent 
or project can be greater than the two in the restless bandit problem (active and passive).  
Second, the restless bandit problem has one linking constraint which is exactly M projects 
must be worked on, or set active.  In contrast, we cannot fix how many agents are worked on 
in each time period.  Instead, we have the budget linking constraint which limits the action set 
in later periods.  In addition, the restless bandits do not have internal state, whereas our 
"agents" do have internal state (R,L,M,H) which they remember from one period to the next.  
This latter generalization of inter-period coupling is significant because the coupling between 
time periods is therefore not just via the budget constraints but also through the state 
equations. 

Furthermore, our recruitment problem has some similarities to the weakly coupled 
dynamic program (WC-DP) introduced by Adelman and Mersereau (2004).  The problem 
description of WC-DP is as follows.  There are I  subproblems that are each Markov 
decision problems on disjoint state spaces.  Corresponding to subproblem i , define the 
following: 
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- State space iS , assumed finite 

- Control space ( )i iA s , depending on the current state is  and assumed finite for all 

i is S	 . 

- Markov transition probabilities ( | , )i i i ip s s a� for all i ia A	 and ,i i is s S	� .  Here we 
indicate that the current state by is  and the next state in time as is� .  Conditional on 
the local state is  and action ia , transitions are assumed independent of other 
subproblems. 

- Expected reward ( , )i ir s a  accruing in state when control is administered. 
 
The overall WC-DP problem by Adelman and Mersereau (2004) is a collection of 

subproblems of this form solved simultaneously subject to N  linking constraints of the form  

1

( , )
I

i
i i

i

D s a b
�


�  where Nb R	  and :{( , ) : , }i N
i i i i iD s a s S a A R	 	 " . 

The recruitment problem may be reduced into WC-DP. Instead of D(s,a), the recruitment 
problem will have D(a) or only budget or action matters. Also, we will only have one linking 
constraint which is summed over the time horizon as well as the index of the action. Hence, 
b  has only 1 dimension.  This constraint makes the problem more complicated because it 
couples across time as well as across agents.  Adelman and Mersereau (2004) proposed the 
LP-Based relaxation algorithm to solve WC-DP with column generation technique.  Solving 
this problem will be time-consuming if the number of actions is large.  The computational 
example of their paper is performed over derivatives of the restless bandit problem where the 
actions are either passive or active only.  Our problem has a much larger action space. 

Given the stochastic dynamic programming formulation of the recruitment problem, the 
exact method to solve this problem is developed in the next section. 

 

4. Solution Approach 
In this section, three solution approaches are discussed.  They are the Dynamic 

Programming Algorithm, the Q-learning Based Heuristic and the Rolling IP with DP 
Heuristic.  The first approach is an exact method while the other two approaches are heuristic 
methods proposed to solve realistically sized problems. 

 
4.1 Dynamic Programming Algorithm 

In this subsection, an exact algorithm to solve for the optimal policy of the recruitment 
problem is proposed.  The algorithm takes advantage of the optimality equation developed in 
section 3.  Because the stochastic recruitment problem is a finite horizon problem, it can be 
modeled as a stochastic path problem where the number of paths is exponentially large.  In 
addition, the recruitment problem’s reward falls under the total reward problem.  For a finite 
period stochastic path problem with total reward, one could use a value iteration based 
scheme to solve the problem.  Hence, for a small sized problem, backward induction or 
dynamic programming (DP) provides an efficient method to solve the recruitment problem. 

The procedure of the DP algorithm is shown as follows. 
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Backward Induction (DP) Algorithm Procedure 
 
Step 1 Set t T�  and * ( ) ( ) 0T T T Tu Y r Y� �   for all possible states in t . 

Substitute 1t �  for t  and compute *( )t tu Y  for each tY 	�  from 
 

          �
1

* *
1 1 1( ) max ( , ) ( | , ) ( )

tlt

t t t t lt t t t lt t t
YA

u Y r Y A P Y Y A u Y
�

� � �
�

� �! !
� �� �

! !�  
� ,       

� � 
, ( 1) ( 1)

1

*
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( ) max ( )
m

it i t i t it

tlt

t t w w ilt w w
Y iA i

u Y Pr a V V
��

� �

�� ��

� � �!
� � � �� � �

! � ��
� ��  

, ( 1)

1

*
1 1

1

( ) ( )
it i t

t

w w ilt t t
Y i

Pr a u Y
�

�

�

� �
� �

�# $ !
�% &
!' (  

� � . 
(8)                      

Step 2  
 

Set 

 
1

* *
1 1 1( ) arg max ( , ) ( | , ) ( )

t
lt

t t t lt t t t lt t t
YA

A Y r Y A P Y Y A u Y
�

� � �
�

� �! !
� �� �

! !�  
������

. (9)

Step 3 If 0t � , stop. Otherwise return to step 2. 
 
Using theorem 4.5.1 from Puterman (1994), it can be shown that the optimal value for all 

decisions epochs is *( )t tu Y  and corresponding to the optimal action (policy) in all states tY  at 

epoch t  is optimal action *( )tA Y .   
For small sized problems, the DP algorithm readily provides an optimal policy for 

decision making based on the states and the time period.  It enables the recruiter to find which 
agents to recruit and how much of Resource A to allocate to each agent for each period.  
However, this algorithm suffers from “the curse of dimensionality” as described in Bellman 
(1957).  This means that computational efforts grow exponentially with the number of state 
variables or with the problem size. 

For large-scale problems, the DP algorithm is difficult to solve in reasonable time 
because it has to examine every possible action in each state in order to find the optimal 
solution, even though many states would not be reached by the optimal policy.  In the next 
section, we introduce two heuristics as a way to solve the large-scale recruitment problem in 
reasonable time. 

 
4.2 Q-Learning Based Heuristic 

This section develops a heuristic based on the Q-Learning method to obtain a solution 
policy for the recruitment problem.  This heuristic provides an alternative way to solve the 
large-scale recruitment problem within reasonable effort.  Q-learning (Watkins 1989) is an 
extension to traditional dynamic programming or value iteration.  Q-Learning is one of the 
methods of reinforcement learning (RL) or simulation-based optimization concepts.  
According to Kaebling (1996), RL is the problem where a solver must learn how to achieve 
the best action via trial-and-error with interaction in a dynamic environment. 

Since computational effort is a primary concern for solution of the recruitment problem, 
we adapt the Q-Learning approach discussed by Gosavi (2003).  First, we introduce the Q-
value, ( , )Q state action  or ( , )tQ Y a , that corresponds to value of each state-action pair. 
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The step-by-step procedure of the Q-Learning Based Heuristic (QBH) procedure is 
shown as follows. 

 
Q-Learning Based Heuristic (QBH) Procedure 

Step 0 Set the iteration number to 0.  Select a value for )  where 0 1)
 
  and initialize 
the iteration limit. 

Step 1 Initialize time period, t , to 0 and starting state to tY .  This represents the initial 
budget and initial willingness state of each agent. 

Step 2 Generate an action a  using an action selection heuristic, described below. 

Step 3 Simulate action a  to retrieve the next period action, 1tY � .  Let 1( , , )t t tr Y a Y �  be the 
immediate reward earned in the transition to state 1tY �  from state tY  under the 
influence of action a .   
Update ( , )tQ Y a  using the following equation: 
 

1
1 1( )

( , ) (1 ) ( , ) [ ( , , ) max ( , )]
t

t t t t t tb A Y
Q Y a Q Y a r Y a Y Q Y b) )

�
� �

	
* � � � ,  0 1)� 
 ,              (10)

Step 4 

where 1( )tA Y �  represent all possible actions in state 1tY �  and if 1( , )tQ Y b�  has no 
value, set its initial value is set to 0. 

Step 5 If t T� , increase t  by 1 and go to step 2. 
Else, increase the iteration number by 1.   
     If the iteration number exceeds the limit, go to step 6. 
     Else, increase t  by 1 and go to step 2. 

Step 6 For each tY , select 

( )

( ) arg max  ( , )
t

t t

b A Y

A Y Q Y b�

	

�
�����

.              (11)

The learning rate is represented by )  in (10).  Its value weights how much the previous 
value of  ( , )tQ Y a  and the evaluation of immediate reward with future reward should affect 
the new value of ( , )tQ Y a .  The Q-value is a prediction of the sum of the reinforcement one 
receives when performing the associated action and the following given policy.  To update 
the prediction ( , )tQ Y a , one must perform the associated action a, causing a transition to the 
next state 1tY � , and returning a scalar reinforcement 1( , , )t t tr Y a Y � .  Then one only needs to 
find the maximum Q-value in the new state, 

1
1( )

max ( , )
t

tb A Y
Q Y b

�
�

	
, to have all necessary 

information for revising the prediction (Q-Value) associated with the action just performed.  
Q-learning does not require one to calculate the transition probabilities to successor states.  
The reason is that a single sample or a successor state for a given action is an unbiased 
estimate of the expected value of the successor state.   

         The action selection heuristics in step 2 of the QBH procedure are described as 
follows. 

 
 
 



 14 

Action Selection Heuristics 

Budget allocation for each agent represents the action a  in step 2 of the QBH.  It is very 
important to select an action wisely as this is the exploration part of the RL.  Three heuristics 
are introduced as follows.  In the Q-Learning QBH procedure, one of the heuristics is 
randomly selected during each execution of action selection. 

 
Heuristic 1: Random Allocation 

In this heuristic, the remaining budget is allocated to a random set of agents at a random 
amount level.   

 
Heuristic 2: High Willingness State Agent First 

This heuristic focuses on allocating the remaining budget to those agents who have a 
higher chance of recruitment success.  This may not be the best way to obtain the highest 
payoff because the agents with a high willingness state may generate smaller amount of 
Resource B collection volume compared to agents with a low willingness state who generate 
a higher amount of collection volume. 
 
Heuristic 3: High Collection Volume Agent First 

This heuristic focuses on allocating the remaining budget among those agents who 
generate higher amount of Resource B collection volume.  This may not be the best way to 
obtain the highest payoff because agents with a higher collection volume may be very hard to 
recruit.  In other words, recruiting many willing small agents may result in a higher amount 
of total collection volume.   

 
The QBH uses the action selection heuristics to explore the action and state spaces.  The 

exploitation applies (10) to update the Q-value for a state-action pair.  According to Gosavi 
(2003), the Q-Learning method gives a near-optimal solution when the maximum number of 
iterations is large enough. 

In order to perform a large number of iterations in a reasonable computation time, the 
computational complexity of the algorithm should be analyzed.  In step 4, the number of 
steps required to update ( , )tQ Y a  in (10) requires first a search for the initial value of ( , )tQ Y a  
and second the maximization of 1( , )tQ Y b�  for every value of 1( )tb A Y �	 .  The value look-up 
for ( , )tQ Y a  is performed in ( )O +  steps, where +  is the size of a typically large Q-table.  A 
Q-table is a look-up table that stores the value of ( , )Q state action  for every encountered 
state-action pair.  This step takes ( )O + , number of actions  at states 1tY � , which is typically 
large.  In summary, every computation of (10) in step 4 of the Q-Learning Based Heuristic 
requires: 

Time Complexity of (10) = ( ) | |O A+ � . (12)
Two modifications are introduced to speed up this step.  The first is to set the learning rate )  
equal to 1 and the second is to store the Q-values using a hash table.  Each of these 
modifications is described in the following paragraphs. 
 
Learning Rate Equal to One 

With )  = 1, equation (10) becomes 

1
1 1( )

( , ) ( , , ) max ( , )
t

t t t t tb A Y
Q Y a r Y a Y Q Y b

�
� �

	
* � . (13)
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Instead of storing 1( , )tQ Y b�  for every value of 1( )tb A Y �	  and searching for the maximum of 

1
1( )

max ( , )
t

tb A Y
Q Y b

�
�

	
 in every iteration, it is much simpler to store the maximum of 1( , )tQ Y b�  into 

max 1 max( , )tQ Y b� . Under this modification, the update of ( , )tQ Y a  becomes: 

max max max max 1 max 1 max( , ) max[ ( , ), ( , , ) ( , )]t t t t t tQ Y a Q Y a r Y a Y Q Y b� �� � . (14)
Basically, retrieving 

1
1( )

max ( , )
t

tb A Y
Q Y b

�
�

	
 can be done in complexity of ( )O +  by looking up 

max 1 max( , )tQ Y b� .  The update of max max( , )tQ Y a  is performed if the new value of 

1 max 1 max( , , ) ( , )t t t tr Y a Y Q Y b� ��  is higher than the previous value of max max( , )tQ Y a .  In this step, 
the best action maxa  is also updated accordingly. 

In addition to this modification, the Hash Table data structure is applied to the QBH 
method.  It is described as follows. 

 
Hash Table 

The QBH method requires a large Q-table in order to retrieve Q-values of corresponding 
states and actions.  Computationally, it is time-consuming to retrieve the selected Q-value 
using a traditional array for the data-structure. As a better alterative, Hash Tables (Knuth 
1973) are used as a Q-value data structure to improve the look-up time.  The Q-value can be 
retrieved in complexity of (1)O  in the average case and best cases. The worst case search 
time is ( )O + ; however, the probability of this happening is vanishingly small.  This data 
structure technique does not have an impact on the solution quality of the QBH method.  The 
procedure is the same.  The only change is the retrieval time of the Q-value of any state-
action pair in (10). 

Employing the hash table data structure for Q-values and fixing the learning rate )  to 
one, the computational complexity of (10) in step 4 of the QBH is reduced from ( ) | |O A+ �  
to (1)O  in the average and best cases.  In the worst case, it is ( )O + .  This improvement 
reduces computational requirements for exploitations.  Completely ignoring the previous 
value of Q-value by setting the learning rate )  to one may affect the resulting quality of the 
heuristic solution, but the computational effort is significantly reduced to facilitate overall 
problem solution. 

 
4.3 A Rolling IP with DP Heuristic 

As an alternative to the QBH procedure, a heuristic employing integer programming (IP) 
has been explored.  The heuristic is based on an observation of the DP algorithm described in 
section 4.1.  An optimal recruitment policy for an individual agent can be found using the DP 
algorithm because the number of states and actions is small.  This characteristic may be 
exploited to solve the overall recruitment problem.  The main concept of this heuristic is to 
shrink a multi-period problem so as to think of it a one-period problem.  First, the optimal 
policy for each individual agent is solved for T  periods using the DP algorithm.  Then, all of 
these individual agent solutions are used to find the best combination of budget allocations 
among agents.  The resulting solution is implemented for the first time period where the 
selected agents receive their given first period budget allocations.  Next, the optimal policy 
for each individual agent is solved for the remaining 1T �  periods.  Then the procedure 
repeats itself until the final period is solved.  The example of an agent for whom a 
recruitment budget is allocated in the first and second period is shown in Figure 7. 
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Figure 7:  The Rolling Horizon Concept 

 

A key step in this approach is an optimization problem that selects the best combination 
of individual policies to use to maximize the collective recruited agents’ collection volume, 
subject to the overall recruitment budget constraint.  This approach is suboptimal because it 
does not take advantage of the ability to observe and respond to recruitment during the policy 
execution.  To improve performance, a rolling horizon implementation is applied.  The 
remaining unspent funds allocated to those agents who have been recruited and unspent funds 
allocated to retailers not recruited are added back to the available recruitment budget amount 
and then the optimization problem is resolved with the updated information. 

The reason why this approach is suboptimal is because it does not take an action based 
on the information about how the retailers respond to the expenditures.  It allocates a budget 
to be spent for the entire period on the retailer and only reactively reallocates money from 
among retailers who are recruited early on in the process. 

The stochastic recruitment function is denoted by max( , , )SR i B t  as a function that returns 
the solution from solving the recruitment problem with the DP algorithm (developed in 
section 4.1) for retailer i  for t  periods given the starting total budget maxB .  The solution 
yields the optimal budget allocation policy in each period and the expected collection volume 
from retailer i  over t  periods.  Next, the optimization problem that selects the best 
combination of individual policies among all retailers is formulated.  In order to limit the 
problem size, we discretize the budget parameter in the formulation.  The index, parameters, 
and variables are defined as: 
 
Index: 
i  Index of agents ( i  = 1, 2, …,  m� ) 
j  Index of budget levels ( j   = 1, 2, …,  J ) 

 
Parameters: 

maxB  Maximum starting total budget over total T  periods 
start
tB  Maximum starting budget at period t  

jb  Budget allocation the collector choose to spend on the retailer, which is the value 
of thj  entry in 1( ,..., ,..., )j JB b b b�  

ijv�  Maximum expected increment of capacity volume that can be collected from 
retailer i  if budget amount jb  is allocated to that retailer.  The value of ijv�  can be 

obtained from solving ( , , )jSR i b t  using the DP approach.   

 

Optimal Policy for 1 period 

If allocated, spend budget in the first period 

If allocated, spend budget in the second  

Optimal Policy for 2 periods 
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Decision Variables: 

ijx  = 
�
�
�

 
1     if budget amount  jb  is allocated to retailer i  
0     otherwise  

The integer programming problem denoted the Rolling IP for period t  can be formulated 
as:  
 
Rolling IP ( )tRP  for Period t  
 
Maximize 

ij ij
i j

v x�� �   (15)

Subject to: 1ij
j

x 
�  i�  (16)

 
start

j ij t
i j

b x B
��   (17)

 {0,1}ijx �  ,i j� . (18)
 

The objective function (15) is the sum of collection volume.  Constraints (16) permit 
only one budget amount to be allocated to retailer i .  Constraint (17) restricts the overall 
spending budget to be less than the budget limit.  Constraints (18) force ijx  variables as 
binary variables. 

The procedure for the Rolling IP with DP method is discussed next by combining the 
Rolling IP formulation together with the rolling horizon concept. 

 

Rolling IP with DP Heuristic (RIDH) Solution Procedure 
Step 0 Set 1t �  and max

0
startB B� .  

 
Solve for ijv�  from ( , , )jSR i b T  as defined earlier in this section for all agents i  and 

budget level j using the DP approach developed in section 4.1.  The initial state of 
( , , )jSR i b T  is [0, initial willingness state of retailer i , jb ]. 

 
Step 1  Formulate the rolling IP ( )tRP  model and solve for ijx . 

Step 2 For the retailers for where a recruiting budget has been allocated, simulate the 
action in period t  only. 
 
If t T� , obtain the total increment in collection volume from period 1 to period T  
and exit.  Otherwise, go to Step 3. 

Step 3 Set 1t t� � .   

Update the value of ijv�  from for all ,i j .  Note that there is no need to resolve 

MDP for each retailer.  Obtain the ijv�  by changing the starting initial state to [t+1, 
new willingness state, remaining budget].  For example, if the initial state is 
[0,M,30], a budget amount 10 is applied to this period, the next period status 
change to H, and the overall remaining budget is 10, then ijv�  can be looked up 
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from state [1,H,10]. 
 
Update remaining budget start

tB , ( 1
start start
t tB B �� �  actual budget spent in the 

previous period). 
 
Go to Step 1 

 
These steps can be summarized by the flow chart shown in Figure 8. 
 

 
 

Figure 8:  Procedure for the RIDH Solution Approach 

5. Computational Results 
In this section, the alternative solution approaches are applied to small and large 

examples.  Since the DP algorithm can find an optimal solution for a small example in a 
reasonable computation time, its solution can be used as a benchmark against the solutions 
obtained by the RIDH, and QBH.  For the large example, the computational requirements are 
prohibitive for the DP algorithm.  Thus, only the results from the two heuristics are 
compared.  All the computation experiments are solved using a Windows 2000-based 
Pentium 4 1.80 GHz personal computer with 640MB of RAM with CPLEX version 8.0 
(www.ilog.com) for the optimization software. 

 
 

5.1 Small Example 
For our small example, the recruitment willingness factors for the willingness state of 

each retailer are defined as 2H� � , 1M� � , and 0.5L� � .  Equation (1) is used to compute 
the probabilities of recruitment, ( ( )LRPr a , ( )MRPr a , ( )HRPr a ), for the given willingness state 
and budget allocation ( a ).  If recruitment does not occur, then there is still the chance the 
state of retailer will change.  This also depends on the recruitment budget threshold of the 

Set 0t �  

Obtain final result 

Obtain the value for all ijv�  

Formulate and solve IP ( )tRP  

Simulate and update the actual 
state of each retailer. 

Set 1t t� �  

t T�
 

No 

Yes 

Update remaining budget and ijv�  
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retailer.  When the given budget allocation fails to recruit the retailer, two cases are 
considered. 

 
Case A: If ia �- , the transition probabilities are depicted in Figure 9. 

 
Figure 9:  Transition Probabilities for Case A 

Case B: If 0 ia �
 � ,  the transition probabilities are depicted in Figure 10. 

 
Figure 10:  Transition Probabilities for Case B 

 
With these settings, we generate four test cases that have different retailers’ initial 

willingness states as shown in Table 1.  Table 2 shows the amount of collection capacity and 
recruitment budget threshold of each retailer.  The alternative budget limitation settings are 
spaced 10 units apart 10, 20, …, 100 and the budget allocation settings are similarly spaced.  
The number of time periods is chosen to be three.  From the collective retailer collection 
capacities, the maximum system collection capacity in all these four cases is 220 pounds, 
over a given time period. 

 
Table 1:  Small Example Data 

 
Case Initial Willingness State 

1 LLLLL 
2 MMMMM 
3 HHHHH 
4 MHHMH 

 
 
 
 

0.1 
0 0.1 

0 

0 

0.9 0.9 

H M L 

0.1 0.9 

0.4 0.3 

0.4 0.6 

H M L 

0.3 0.4 0.6 

0 

0 
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Table 2:  Small Example Data 
 

Retailer Collection Capacity (lb.) Recruitment Budget Threshold 
1 10 5 
2 30 15 
3 70 49 
4 20 20 
5 90 81 

 
Tables 3,4,5, and 6, display the solution average collection capacity, computation time, 

and optimality gap for solution approaches DP, RIDH, and QBH for different maximum 
budget settings of cases 1,2,3, and 4 respectively. 

The average collection capacity is computed from the results obtained by applying the 
policy resulting from the different solution methods for 100 replications.  The optimality gap 
illustrates the solution quality found by the RIDH and QBH methods compared to the optimal 
solution obtained by the DP algorithm.  For the DP algorithm, the computation time is 
obtained by examining every possible state and action in every period and selecting the 
policy that yields the maximum average collection capacity.  For the QBH solution approach, 
the maximum number of iteration is set to 100,000. 

 
Table 3:  Case 1 Solution: Average Capacity Collection, Solution Time and Optimality Gap 

 
 Solution Approaches 

 DP RIDH QBH 

Maximum 
Budget 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

10 12.4 16 12.4 5 0.0 11.6 6 6.4 
20 27.6 118 28.5 7 0.0 21.5 6 22.1 
30 46.3 568 41.4 9 10.5 40.4 7 12.7 
40 76.8 2,086 80.4 14 0.0 8.0 8 89.5 
50 90.1 8,282 91.0 19 0.0 27.9 9 69.0 
60 106.7 61,229 103.0 23 3.4 75.9 9 28.8 
70 - 86,4003 114.7 32 - 92.8 10 - 
80 - 86,400 138.1 41 - 92.1 11 - 
90 - 86,400 153.8 59 - 93.0 11 - 

100 - 86,400 165.2 65 - 95.6 11 - 
 

  The results for Case 1 show that the solution averages for the collection capacity 
obtained by the RIDH method are close to the optimal solution for every maximum budget 
setting.  The largest optimality gap is 10.5%.  For maximum budget settings of 20, 40, and 
50, the average solution for collection capacity found by the RIDH approach happens to be 
slightly higher than the value found by the DP approach because of the random numerical 
evaluation found by simulating 100 replications.  For this situation, the optimality gap is set 
to zero.   

The computation time requirements for the RIDH approach are much smaller than those 
for the DP method. The QBH method requires the least amount of solution time for every 
                                                
3

 Algorithm was stopped when the computation time requirement reached 86,400 seconds or one day. 
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maximum budget setting, but the optimality gap is larger than that found by the RIDH 
approach.  In fact, its solution is worse than solution obtained by the RIDH approach for 
every maximum budget setting.  For maximum budget settings of 80 to 100, the DP method 
cannot obtain optimal policy within the stopping time limit of one day of computational 
effort. 

 
Table 4:  Case 2 Solution:  Average Capacity Collection, Solution Time and Optimality Gap 

 
 Solution Approaches 

 DP RIDH QBH 

Maximum 
Budget 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

10 12.2 1 12.6 4 0.0 1.5 6 87.7 
20 47.2 8 44.4 6 5.9 5.6 6 88.1 
30 84.8 40 82.6 8 2.5 16.3 6 80.7 
40 100.6 138 99.1 11 1.4 56.7 7 43.6 
50 131.4 393 130.7 15 0.5 52.1 8 60.3 
60 158.9 962 155.5 16 2.1 45.4 8 71.4 
70 175.3 2,097 165.4 23 5.6 82.3 9 53.0 
80 187.2 4,419 180.1 26 3.7 84.7 9 54.7 
90 201.5 8,417 197.5 38 1.9 117.9 9 41.4 

100 210.0 15,309 201.4 41 4.1 181.3 10 13.6 
 

The overall results for Case 2 follow the same trends as Case 1.  For the same maximum 
budget setting, the average solution’s collection capacity in this case is higher than in Case 1 
because the retailers in Case 2 start in more favorable states than ones in Case 1.  
Furthermore, the computation time requirements are less in this case because the probability 
of the retailer moving back to state L is small. 
 

Table 5:  Case 3 Solution:  Average Capacity Collection, Solution Time and Optimality Gap 
 

 Solution Approaches 
 DP RIDH QBH 

Maximum 
Budget 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

10 44.1 1 46.9 5 0.0 5.4 6 87.7 
20 90.0 1 90.0 3 0.0 54.9 6 39.0 
30 137.7 2 139.7 5 0.0 63.1 6 54.1 
40 171.1 5 166.9 6 2.4 84.8 7 50.4 
50 199.1 11 189.4 6 4.8 100.8 7 49.3 
60 211.5 27 210.0 10 0.7 194.8 8 7.9 
70 220.0 59 220.0 9 0.0 205.3 8 6.6 
80 220.0 116 220.0 16 0.0 220.0 8 0.0 
90 220.0 215 220.0 22 0.0 220.0 9 0.0 

100 220.0 377 220.0 24 0.0 220.0 9 0.0 
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  For the solution of Case 3, the overall results follow the same trends as in Cases 1 and 
2.  For the same budget limit, the average solution’s collection capacity in this case is higher 
than ones in Cases 1 and 2 because the retailers in Case 3 start with highest favorable states 
compared to the ones in Cases 1 and 2.  Furthermore, the computation time requirements are 
less in this case.  When the maximum budget equals 70, every retailer can be recruited into 
the system.  It is interesting to see that the QBH approach performs almost as well as the DP 
algorithm when the budget limit is equal or greater than 60.  
 

Table 6:  Case 4 Solution:  Average Capacity Collection, Solution Time and Optimality Gap 
 

 Solution Approaches 
 DP RIDH QBH 

Maximum 
Budget 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

Average 
Collection 
Capacity 

(lb.) 

Solution 
Time 
(sec.) 

Optimality 
Gap (%) 

10 46.2 1 47.5 4 0.0 30.0 6 35.0 
20 90.0 1 84.8 4 5.7 50.0 6 44.4 
30 138.3 4 139.2 5 0.0 60.0 7 56.6 
40 177.7 15 173.6 6 2.3 64.6 7 63.6 
50 178.2 44 192.5 8 0.0 77.8 7 56.3 
60 199.1 103 199.1 10 0.0 90.1 8 54.7 
70 212.5 226 213.4 12 0.0 111.0 8 47.7 
80 219.9 468 219.8 19 0.1 127.3 8 42.1 
90 220.0 863 220.0 24 0.0 168.4 9 23.4 

100 220.0 1,615 220.0 26 0.0 150.5 9 31.5 
 
For Case 4, the quality of the solution obtained by the RIDH approach is almost as good 

as the solution obtained by the DP algorithm for every maximum budget setting.   The QBH 
approach does not provide very good solutions for this case. 

The results from the small example show that the RIDH solution approach performs 
almost as well as the optimal DP procedure in all cases, with much lower computational 
effort.  The QBH method solves the small example recruitment problem with the least 
computational effort, but yields the worst average collection capacity solutions compared to 
the DP and RIDH methods.  Next, we test these procedures on a larger problem.  

5.2 Large Example 
In this section, we construct three cases to examine for the large example.  Case 5 

consists of a different number of retailers (5,10,15,20) with large collection capacities and all 
retailers starting in willingness state L.  The solution results are shown in Table 7.  Case 6 
consists of a different number of retailers (5,10,15,20) with small and mid-size collection 
capacities and all retailers starting in willingness state M.  The solution results are shown in 
Table 8.  Case 7 consists of a different number of retailers (5,10,15,20) with large collection 
capacities and all retailers starting in willingness state H.  The solution results are shown in 
Table 9. 
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Table 7:  Results for Case 5 
 

  Solution Approaches 
  RIDH QBH 

Number of 
Retailers 

Maximum 
Budget 

Average 
Collection 

Capacity (lb.) 

Best 
 Collection 

Capacity(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 

Capacity(lb.) 

Best  
Collection 

Capacity (lb.) 

Solution 
Time 
(sec.) 

5 50 66.3 90 9 6.1 90 6 
  100 146.4 230 16 112.6 150 7 
  150 242 320 31 141.6 220 9 
  200 325.8 390 52 187.7 240 10 

10 50 76.5 90 12 8.5 90 11 
  100 162 230 25 85.4 140 16 
  150 251.3 340 56 81 170 26 
  200 347.5 430 114 193.2 230 32 

15 50 74.7 90 16 1.6 80 17 
  100 152.5 230 33 93.8 140 30 
  150 261.7 340 82 86.7 170 54 
  200 362.8 450 165 196.8 230 65 

20 50 74.7 90 16 12.8 80 23 
  100 147.5 230 41 93.1 140 45 
  150 263.1 340 124 114.1 210 74 
  200 359 450 191 192.4 230 85 

 
Table 8:  Results for Case 6 

 
  Solution Approaches 
  RIDH QBH 

Number of 
Retailers 

Maximum 
Budget 

Average 
Collection 

Capacity (lb.) 

Best  
Collection 

Capacity(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 

Capacity(lb.) 

Best  
Collection 

Capacity (lb.) 

Solution 
Time 
(sec.) 

5 50 98.2 110 8 79.8 110 8 
  100 144.6 150 9 141.6 150 9 
  150 150 150 19 150 150 8 
  200 150 150 31 150 150 9 

10 50 117.8 130 9 94.6 120 13 
  100 207 230 17 134.8 180 20 
  150 274.3 300 33 210.8 250 26 
  200 302.7 310 62 271.4 310 27 

15 50 122.2 140 12 73.6 120 21 
  100 235.9 260 23 146 180 35 
  150 323.6 350 49 223.8 260 51 
  200 399.1 430 96 298 340 56 

20 50 127.2 140 12 103.5 110 30 
  100 260.1 280 27 148 190 51 
  150 360.1 390 63 212.2 270 66 
  200 451.7 490 114 327.6 330 75 
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Table 9:  Results for Case 7 
 

  Solution Approaches 
  RIDH QBH 

Number of 
Retailers 

Maximum 
Budget 

Average 
Collection 

Capacity (lb.) 

Best  
Collection 

Capacity(lb.) 

Solution 
Time 
(sec.) 

Average 
Collection 

Capacity(lb.) 

Best  
Collection 

Capacity (lb.) 

Solution 
Time 
(sec.) 

5 50 218.5 310 6 155.6 320 6 
  100 387.9 390 6 317.5 390 7 
  150 390 390 15 381.6 390 9 
  200 390 390 21 390 390 9 

10 50 231.7 300 8 156.6 330 11 
  100 462.7 550 11 349.3 530 13 
  150 661.3 790 21 528.5 560 16 
  200 788.6 790 33 600.4 720 16 

15 50 241.5 350 10 122.2 250 15 
  100 465.9 550 14 412.3 500 18 
  150 688.7 810 27 464.6 570 23 
  200 879.7 970 51 736.4 790 26 

20 50 248.5 350 10 188.1 320 20 
  100 473.4 600 18 425.6 480 25 
  150 695.3 860 36 586.8 680 37 
  200 908.6 1040 62 667.3 760 43 

 
The results from Cases 5, 6, and 7 show that the RIDH approach outperforms the QBH 

method in every case.  The best collection capacity represents the largest collection capacity 
that the solution method has found so far and has set as a target to achieve.  Even though the 
QBH approach requires less computational effort to obtain the resultant policy, its average 
solution collection capacity is dominated by the one obtained by the RIDH approach, which 
also provides higher best collection capacities than the one obtained by the QBH method. 

6. Conclusions 
This paper is the first to employ a recruitment concept for reverse supply chain 

applications.  We model the behavior of retailers who have different attitudes towards 
participating in recycling activities as a Markov process describing transitions that 
characterize their movement towards joining the network.  Using this mechanism, the 
recruitment problem is formulated as a stochastic dynamic programming problem.  This 
paper provides an exact solution method (DP algorithm) for small problems and two 
heuristics, QBH and RIDH, for larger problems.  The QBH approach is based on a 
simulation-based optimization technique to avoid computing the large transition probability 
matrix.  The RIDH method utilizes the benefit of a rolling horizon feature and IP capabilities 
in order to capture the recruitment decisions over time.  It uses a heuristic decomposition of 
the problem based on the policies that would be optimal for each retailer in the absence of 
any others. 

 
Numerical study demonstrates that the RIDH approach provides the average solution 

collection capacities almost as good as the ones obtained by exact the DP approach when a 
small example is considered.  Furthermore, the computational results also show that the 
RIDH method can solve large recruitment problems quickly with good solution quality.  The 
ability to solve an actual size recruitment problem can enables us examine multiple 
recruitment problems strategically.  In addition, the recruitment model can applied to many 
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types of recruitment problems such as recruiting supermarket stores for the collection of 
plastic bottles in the plastic recycling industry and recruiting the major electronic stores such 
as Best Buy and Circuit City for used electronics equipment in the electronic scrap recycling 
industry.  If these decisions were left up to individual store managers and not centrally 
mandated. 

Results from this paper raise new questions and several potential directions of future 
research.  Future extensions can be envisioned in both the modeling and solution 
methodology areas. 

Currently we have developed a tactical collection model under the assumption that once 
the agent is recruited to the network, it always stays in the network.  However, in actual 
situations, sometimes a collection agent may opt to leave the network.  Future work includes 
extending the recruitment model to include retention and defection considerations.  An 
important subtask is to define the criteria that determine the retention and defection actions of 
the agent after it is recruited.  The additional complexity will impact the capability of the 
current approach to solve large scale collection recruitment problems.  Another direction of 
future work includes exploring the collection logistics where the generation rate of collection 
material is stochastic among the agents.  With this uncertainty, the problem of routing a fixed 
number of finite capacity trucks to collect the material from the collection agents is more 
difficult.   

In addition, in the real application, the recruitment process and retailer retention may 
depend not only on the connection between the retailers and the recruiter, but also on the 
outside market, a competitor.  For example, currently  companies in China are showing 
interest in used carpet from U.S. sources to bring it to China for recycling.  Hence, there can 
be a competition for the desired source.  Retailers both in and out of the collection network 
may opt to give the source to competitor collectors who provide a better incentive.  This also 
affects the recruitment allocation plan for the carpet recycler in the U.S.  Adding a 
competition feature from the game theory perspective to the recruitment model can 
complicate the model framework but provides a deeper understanding of how the entities 
might act in the real situation. 
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