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Abstract

In this paper, we study the pricing problem for the class of multiasset European options

with piecewise linear convex payoff in the asset prices. We derive a simple upper bound on the

price of this option by constructing a static super-replicating portfolio using cash and options

on smaller subsets of assets. The best upper bound is found by determining the optimal set of

strike prices that minimizes the cost of this super-replicating portfolio. Under the no-arbitrage

assumption, this bound is shown to be tight when the joint risk-neutral distributions for the

smaller subsets of assets are known but the complete risk-neutral distribution is unknown. Using

a simulation-based optimization approach, we obtain new price bounds for the basket option,

an option on the maximum of several assets and an option on the spread between the maximum

and minimum of assets. Extensions to markets where only a finite set of options are traded on

smaller subsets of assets is also provided. The paper thus extends some of the recent results in

Aspremont and Ghaoui [1] and Hobson et al. [15] to a larger class of options under more general

assumptions.

Keywords: Option pricing, Multiple assets, Super-replication, Simulation-based optimization

∗This research was partially supported by the Singapore-MIT Alliance, NUS Risk Management Institute and NUS

Statup Grant R-146-050-070-133.
†Department of Mathematics, National University of Singapore, Singapore 117543. Email: matkbn@nus.edu.sg.

1



1 Introduction

Let x̃ = (x̃1, x̃2, . . . , x̃N ) denotes the random non-negative prices of N different risky assets at time

T . The traditional Black-Scholes model [5] assumes a correlated geometric Brownian motion for

the asset prices. Under the assumption of no-arbitrage, the price of an option on these assets is

given by the discounted expected payoff under the risk-neutral distribution. Let f(x̃) denote the

payoff of the European option at maturity time T . The price of this multiasset option at time 0 is

then given as:

Eπ [f(x̃)] =

∫

x≥0
f(x)dπ(x), (1)

where π is the risk-neutral distribution. For simplicity, we assume that the risk-free rate r is zero.

Examples for which the prices can be computed in closed form in the Black-Scholes setting include

standard call and put options (Black and Scholes [5]), exchange options (Margrabe [21]) and options

on the maximum of several assets (Johnson [13]). Evaluating the option price in (1) for general

payoffs in high dimensions is however a challenging numerical problem. Typically, practitioners use

simulations, bounds or approximations to estimate these prices.

In this paper, we study the pricing problem for the class of multiasset European options with

piecewise linear convex payoff given as:

f(x̃) = max
p∈P

(wp · x̃ − kp) = max (w1 · x̃ − k1, w2 · x̃ − k2, . . . ,wP · x̃ − kP ) . (2)

The vector wp =
(

w
(1)
p , w

(2)
p , . . . , w

(N)
p

)

denotes the asset weights in the pth term in the option

payoff . This option allows the holder to trade a portfolio of assets at maturity among the following

choices: the first portfolio of assets (given by vector w1) at k1 or the second portfolio of assets

(given by vector w2) at k2 and so on. At maturity, the holder trades the portfolio that gives the

largest positive payoff 1. Special cases of this class of options include:

(i) Basket/multiple spread option with payoff (w · x̃ − k)+,

(ii) Option on the maximum of assets with payoff (maxi x̃i − k)+,

(iii) Option on the spread between maximum and minimum with payoff (maxi x̃i − mini x̃i − k)+.

1Typically, the holder also has the option of not exercising the option. This is incorporated by setting wP = 0

and kP = 0.
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For the basket option with weights w ≥ 0 and a payoff that depends on a single weighted linear

combination, there is no explicit analytical formula in the Black-Scholes setting. The difficulty

arises due to the lack of the availability of the distribution of the sum of correlated lognormal

distributions. Instead, we focus on a simple upper bound that has been developed in Deelstra et

al. [8] and Hobson et al. [15] using call option prices. The upper bound on the basket option price

therein is obtained by solving the N -variable minimization problem:

Eπ [w · x̃ − k]+ ≤ min
λi≥0,

∑

i λi=1

(

wi

N
∑

i=1

Eπi

[

x̃i −
λik

wi

]+
)

, (3)

where πi is the marginal risk-neutral distribution for asset price x̃i. Formulation (3) is based on

the construction of a static portfolio of call options that super-replicates the payoff of the basket

option with probability one. The optimal strike prices for each of these call options are determined

by constructing this portfolio at minimum cost. This provides the tightest possible upper bound

on the basket option price with known marginal distributions πi, but without knowledge of the

complete joint distribution π. This formulation can also be obtained from a result in the paper by

Meilijson and Nadas [22], albeit in a different context. The goal in [22] is to find a bound on the

expected project tardiness with x̃ denoting random activity times and k denoting the target project

duration. A similar bound for the option on the maximum of the asset prices can also be obtained

from the results in Lai and Robbins [17] and Ross [25] for order statistics. The upper bound using

call option prices is therein obtained by solving the single-variable minimization problem:

Eπ

[

max
i

xi − k

]+

≤ min
z

(

(z − k)+ +
n
∑

i=1

Eπi
[x̃i − z]+

)

. (4)

These results have been extended to the setting where the exact marginal distribution πi is unknown,

rather it lies in a set πi ∈ Πi. The model in Hobson et al. [14], Hobson et al. [15] and Aspremont

and Ghaoui [1], describes Πi by a known set of call option prices for a finite number of strike prices.

In this paper, we extend this idea to derive a price bound that works for a larger class of options

under more general distributional assumptions. Our key contributions are summarized below:

(i) In Section 2, we super-replicate the payoff of the multiasset option in (2) with a portfolio of

cash and options on smaller subsets of assets. The strike prices in this static super-replicating

portfolio are determined by constructing this portfolio in the cheapest possible manner. Such

an approach is useful when the dependence among assets in smaller financial markets are well
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understood but the dependence across markets is not clearly understood. Using options prices

in these smaller markets as data, we can find a tight arbitrage-free upper bound on the price

of the more complicated options that depend on the entire set of assets. This approach hence

naturally leads to a hierarchy of relaxations that provide better and better estimates on the

actual price of the option.

(ii) In Section 3, we consider applications of these price bounds to specific multiasset options

(i)-(iii). Using a simulation-based optimization approach, we indicate the potential of this

method in pricing and hedging multi-asset options.

(iii) In Section 4, we extend the results to the finite market case where only the prices of a finite

set of financial options that traded on the smaller sets of assets are known. We then provide

two new polynomial sized bounds for this class of multiasset options that can be computed

using linear and semidefinite programming.

2 Pricing in Incomplete Markets

The price of the multiasset European option with piecewise linear convex payoff is given by the N

dimensional integral:

Eπ

[

max
p∈P

(wp · x̃ − kp)

]

=

∫

x≥0
max
p∈P

(wp · x − kp)dπ(x). (5)

Consider the following market setup: We partition the entire set of N assets into R disjoint subsets:

N = {1, 2, . . . , N} = N1 ∪N2 ∪ · · · ∪ NR

such that each Nr ⊆ N and Ni ∩ Nj = ∅ for all i 6= j. Given a vector x̃ ∈ ℜN
+ , we let x̃r ∈ ℜNr

+

denote the subvector formed with entries x̃i for i ∈ Nr. Hence x̃ = (x̃r)r. Suppose, we know the

risk-neutral distributions πr for each of the subsets of asset prices x̃r. Let M(π1, . . . ,πR) denote

the set of distributions2 π for x̃ with the known distributions πr for each x̃r. Since the exact

distribution π ∈ M(π1, . . . ,πR) is not known, the market is incomplete. The option price in (5) is

not uniquely defined and hence an exact replication is not possible. We consider finding the largest

2For simplicity, we focus only on continuous distributions from this point onwards. The results can be extended

to more general distributions.
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possible price for the multiasset option using a static super-replicating portfolio.3 This brings us

to our main result.

Theorem 1 Let π ∈ M(π1, . . . ,πR). A tight upper bound on the price of a multiasset option with

piecewise linear convex payoff is found by solving the convex minimization problem:

max
π∈M(π1,...,πR)

Eπ

[

max
p∈P

(wp · x̃ − kp)

]

= min
z1,...,zP

(

max
p∈P

(e · zp − kp) +

R
∑

r=1

Eπr

[

max
p∈P

(wpr · x̃r − zpr)

]

)

,

where e is a vector of ones of dimension R. The optimal variables zp = (zpr)r are the strike prices

in the cheapest static super-replicating portfolio that consists of:

(i) Cash worth max
p∈P

(e · zp − kp)

(ii) A set of r = 1, . . . , R options each with payoff max
p∈P

(wpr · x̃r − zpr).

Proof. We first show that the right-hand side minimization problem provides an upper bound on

the option price. For any term p ∈ P and for arbitrary zp, we have:

wp · x̃ − kp = (e · zp − kp) + (wp · x̃ − e · zp) ,

= (e · zp − kp) +
R
∑

r=1

(wpr · x̃r − zpr) ,

≤ max
p∈P

(e · zp − kp) +
R
∑

r=1

max
p∈P

(wpr · x̃r − zpr) .

Taking the maximum of the left hand side over p ∈ P, we obtain the inequality:

max
p∈P

(wp · x̃ − kp) ≤ max
p∈P

(e · zp − kp) +

R
∑

r=1

max
p∈P

(wpr · x̃r − zpr) .

This inequality can be interpreted as the construction of a static portfolio that consists of cash

and smaller options that super-replicates the payoff of the multiasset option. The variables zpr

corresponds to the strike prices in this portfolio. Taking expectations on both sides of this inequality

and minimizing over all zp, we obtain:

Eπ

[

max
p∈P

(wp · x̃ − kp)

]

≤ min
z1,...,zP

(

max
p∈P

(e · zp − kp) +
R
∑

r=1

Eπr

[

max
p∈P

(wpr · x̃r − zpr)

]

)

.

3Finding the best lower bound is also an interesting problem which we do not consider in this paper. A simple

bound can be obtained by using Jensen’s inequality.
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Since this inequality is valid for every risk neutral distribution π ∈ M(π1, . . . ,πR), we obtain the

upper bound:

max
π∈M(π1,...,πR)

Eπ

[

max
p∈P

(wp · x̃ − kp)

]

≤ min
z1,...,zP

(

max
p∈P

(e · zp − kp) +

R
∑

r=1

Eπr

[

max
p∈P

(wpr · x̃r − zpr)

]

)

.

The proof of the tightness is provided in the Appendix.

In Theorem 1, the decision variable zpr can be interpreted as the strike price for the pth term of the

option payoff for the rth subset of assets. The cash payoff term links the strike prices among the

different subsets while the option payoff terms depends on the individual subsets only. Theorem

1 thus generates the seller’s price of the multiasset option by constructing such a buy-and-hold

super-replicating portfolio in the cheapest possible manner. This approach to pricing the option is

useful when the dependence structure among the asset prices in the rth subset is well-understood

but the relation between assets in two different subsets is not well-understood. Each of the R

smaller options can then potentially be priced with high accuracy using simulation or any other

technique. For the appropriately identified strike prices, the seller can compute an arbitrage-free

tight upper bound on the multiasset option price.

For a fixed number of assets N , Theorem 1 can be used to construct a hierarchy of relaxations

that provides increasingly tighter price bounds by reducing the number of subsets R. For R = N ,

the super-replicating portfolio consists only of cash and options on individual assets. This is the

simplest possible relaxation that has been developed in Deelstra [8], Hobson et al. [15], Lai and

Robbins [17], Ross [25] (see Formulations (3)-(4)). Therein, the basket and maximum option price

is obtained using a portfolio of cash and simple call options. By decreasing R below N , Theorem

1 allow for the possibility of using more sophisticated options that depends on combinations of

assets in the super-replicating portfolio. Setting R = 1, of course we recover the exact price of the

option with the decision variables set to kp. Decreasing R however comes with a possible increase

in computational complexity that arises from the need to evaluate more complicated option prices.

For example, assume that each of the N assets are divided into M price levels. Then to compute

the exact price of the option in (5) with a lattice based approach, one would need to need to

construct a multidimensional lattice with O(MN ) nodes. Assuming that each of the R subsets

contains exactly N/R assets, solving the formulation in Theorem 1 would need the construction

of a multidimensional lattice of O(RMN/R) nodes. It is clear from Table 1 that for large R this
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can be significantly smaller as the prices of the options on the smaller lattices can be evaluated

independently for a set of strike prices.

R/N 1 2 4 8 16 32

1 1 × 101 1 × 102 1 × 104 1 × 108 1 × 1016 1 × 1032

2 - 2 × 101 2 × 102 2 × 104 2 × 108 2 × 1016

4 - - 4 × 101 4 × 102 4 × 104 4 × 108

8 - - - 8 × 101 8 × 102 8 × 104

16 - - - - 16 × 101 16 × 102

32 - - - - - 32 × 101

Table 1: Lattice sizes need to solve Theorem 1 for M = 10 price levels.

2.1 Numerical Methods

An alternative interpretation of Theorem 1 is as a two-stage stochastic program with recourse.

The strike prices zpr need to be determined in the first stage taking into account the deterministic

cash flow and the future (second stage) option payoffs with respect to these strikes. One possible

approach to solve the formulation in Theorem 1 is to use a Monte Carlo simulation-based optimiza-

tion approach as proposed in Shapiro and Homem-de-Mello [26]. Let {xr1, xr2, . . . ,xrMr
} be i.i.d

(independent identically distributed) random samples generated from the distribution πr for x̃r.

The samples for the different subsets r can be generated independently in this case. The two-stage

stochastic program can then be approximated as:

min
z1,...,zP

(

max
p∈P

(e · zp − kp) +
R
∑

r=1

Mr
∑

i=1

1

Mr
max
p∈P

(wpr · xri − zpr)

)

,

or equivalently the linear program:

min
zp ,y,yri

(

y +
R
∑

r=1

Mr
∑

i=1

1

Mr
yri

)

s.t. y ≥ e · zp − kp, p ∈ P

yri ≥ wpr · xri − zpr, p ∈ P, i = 1, . . . , Mr, r = 1, . . . , R.
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However this can be a very large-sized linear program if the total sum of samples
∑

r Mr is large. A

more practical approach in this case is to use a simulation-based subgradient method. The update

step in the subgradient method is:

(

z(k+1)
pr

)

pr
=
(

z(k)
pr

)

pr
− αk

(

g(k)
pr

)

pr
,

where z
(k)
pr is the kth iterate, αk > 0 is the step-size and g

(k)
pr is the subgradient of the objective func-

tion with respect to zpr at the current iterate. In Theorem 1, the subgradient can be approximated

using a simulation based approach as:

g(k)
pr = I

(

e · z(k)
p − kp is max

)

−
Mr
∑

i=1

I

(

wpr · x(k)
r − z(k)

pr is max
)

,

where I(·) is the indicator function. Detailed convergence results for this approach are discussed in

Shor [27] and Bertsekas [2].

3 Examples of Multiasset Options

In this section, we apply the pricing bounds to some popular multiasset options that are traded in

the market or have been considered in literature (cf. Zhang [28]). The three options we consider

are:

(i) Basket/multiple spread option with payoff: (
∑

i wix̃i − k)+,

(ii) Option on the maximum of assets with payoff: (maxi x̃i − k)+,

(iii) Option on the spread between maximum and minimum with payoff: (maxi x̃i − mini x̃i − k)+ .

The general formulation in Theorem 1 has O(P × R) strike prices that need to be determined

where P is the number of terms in the option payoff and R is the number of disjoint subsets. This

can however be often significantly reduced using the structural properties of the option payoff. We

indicate this simplification for the three options considered above.

Proposition 1 Let π ∈ M(π1, . . . ,πR).

(i) For the basket/multiple spread option, the tightest upper bound on the price is given as:

R
∑

r=1

Eπr

[

∑

i∈Nr

wix̃i − zr

]+

,

8



where the optimal strikes z and the dual variable λ solves the system of equations:

Pπr

(

∑

i∈Nr

wix̃i ≥ zr

)

= λ, r = 1, . . . , R,

R
∑

r=1

zr = k.

(ii) For the option on the maximum of assets, the tightest upper bound on the price is given as:
(

(z − k)+ +
R
∑

r=1

Eπr

[

max
i∈Nr

x̃i − max(z, k)

]+
)

,

where the optimal strike z solves the equation:

R
∑

r=1

Pπr

(

max
i∈Nr

x̃i ≥ z

)

= 1.

(iii) For the option on the spread between maximum and minimum with R > 1, the tightest upper

bound on the price is given as:
(

(z1 − z2 − k)+ +
R
∑

r=1

Eπr

[

max
i∈Nr

x̃i − z1

]+

+ Eπr

[

z2 − min
i∈Nr

x̃i

]+
)

.

where the optimal strikes z1 and z2 can be determined in the following manner:

1. Solve the two equations:

R
∑

r=1

Pπr

(

max
i∈Nr

x̃i ≥ z1

)

= 1 and

R
∑

r=1

Pπr

(

min
i∈Nr

x̃i ≤ z2

)

= 1,

If z1 ≥ z2 + k, these are the optimal strikes, else go to 2.

2. Solve the equation:

−
R
∑

r=1

Pπr

(

max
i∈Nr

x̃i ≥ z1

)

+
R
∑

r=1

Pπr

(

min
i∈Nr

x̃i ≤ z1 − k

)

= 1,

and set z2 = z1 − k.

Proof.

(i) Using Theorem 1, the tight upper bound on the price of the basket/multiple spread option is

obtained by solving:

min
z1,...,zR





(

R
∑

r=1

zr − k

)+

+
R
∑

r=1

Eπr

[

∑

i∈Nr

wix̃i − zr

]+


 .
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The cash term (
∑

r zr − k)+ is non-decreasing in zr for any r. Say, the term (
∑

r zr − k) is

strictly positive ǫ > 0. We can then decrease at least one of the zr’s by ǫ such that the cash

term decreases by ǫ while one of the option price terms would increase by atmost ǫ. Using a

similar argument for a strictly negative ǫ, we can verify that there exists an optimal solution

which satisfies
∑

r zr = k. The optimality conditions to the problem:

min
z1,...,zR

R
∑

r=1

Eπr

(

∑

i∈Nr

wix̃i − zr

)+

s.t.
R
∑

r=1

zr = k,

provides (i) where λ is the Lagrange multiplier for the equation
∑

r zr = k.

(ii) Using Theorem 1, the tight upper bound on the price of the option on the maximum of several

assets is obtained by solving:

min
z1,...,zR

(

(

max
r=1,...,R

zr − k

)+

+
R
∑

r=1

Eπr

[

max
i∈Nr

x̃i − zr

]+
)

.

This can be simplified to a single variable problem. Without loss of generality, let z1 ≥ z2 ≥

. . . ≥ zR denote an optimal solution to the problem. For any r > 1, by increasing zr up to z1,

the first cash term remains unaffected while the second option price term is non-increasing in

zr. Hence there exists an optimal solution with all the zr values equal. Thus we need to solve

the single variable optimization problem:

min
z

(

(z − k)+ +
R
∑

r=1

Eπr

[

max
i∈Nr

x̃i − z

]+
)

.

Clearly, the optimal z ≥ k. Else, we can increase the z, without increasing the objective but

possibly decreasing it. The optimality conditions then provides (ii).

(iii) Using Theorem 1 for R > 1, the tight upper bound on the price of the option on the spread

between the maximum and minimum of assets is obtained by solving:

min
z1,z2

(

(

max
i=1,...,n

zi1 − min
i=1,...,n

zi2 − k

)+

+
R
∑

r=1

(

Eπr

[

max
i∈Nr

(x̃i − zi1)

]+

+ Eπr

[

max
i∈Nr

(zi2 − x̃i)

]+
))

.

Using an argument as in (ii), it can be checked that the optimal values of zi1 are all equal

and likewise the optimal values of zi2 are all equal. Thus we need to solve the two-variable
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minimization problem:

min
z1,z2

(

(z1 − z2 − k)+ +
R
∑

r=1

Eπr

(

[

max
i∈Nr

x̃i − z1

]+

+ Eπr

[

z2 − min
i∈Nr

x̃i

]+
))

.

The optimality conditions to this problem provides (iii).

Formulation (i) in Proposition 1 can be solved by searching for single variate optimal Lagrange

multiplier λ. Formulations (ii)-(iii) can be solved using a bisection search method. Simulations are

used to estimate the probabilities and expectations required to solve the formulations in Proposition

1.

3.1 Numerical Example

The example is based on a multivariate Black-Scholes model using parameters from Carmon and

Durrleman [7]. A set of N = 16 assets, all with initial values of $100 and the same volatility of

σ = 10% are considered. The correlation between any two assets in ρ = 30%. The interest rate is

zero and time to maturity is one year. For comparison, we use five partitions with R = 16, 8, 4, 2, 1

to obtain price estimates on the multiasset options (see Figure 1).

1 2 3 4 5 876 9 10 11 12 13 161514 R = 16

T
ig
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p
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ity

1 2 3 4 5 876 9 10 11 12 13 161514 R = 8

1 2 3 4 5 876 9 10 11 12 13 161514 R = 4

1 2 3 4 5 876 9 10 11 12 13 161514 R = 2

1 2 3 4 5 876 9 10 11 12 13 161514 R = 1

N = 16 Assets

Figure 1: Partition of assets into subsets.
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(i) Consider an equally weighted basket option with payoff

[

N
∑

i=1

x̃i/N − k

]+

. Due to symmetry

of the data, the optimal decision variables are zr = k/R with R subsets. The upper bound is

given as:

Basket option price bound = RE





N/R
∑

i=1

x̃i/N − k/R





+

.

(ii-iii) For the option on the maximum of asset prices, the upper bound is given as:

Max option price bound =

(

(z − k)+ + RE

[

max
i=1,...,N/R

x̃i − max(z, k)

]+
)

.

We use the closed form result from Johnson [13] to price the smaller options on the maximum

of N/R assets:

E

[

max
i=1,...,N/R

x̃i − max(z, k)

]+

=
N

R
NN/R (d1, Q1) − max(z, k)

(

1 − NN/R (−d2, Q2)
)

.

Here NN/R is the cumulative distribution function of a standard N/R-variate normal with the

vector entries given as:

d11 =





log
(

x
max(z,k)

)

+ σ2

2

σ



 and d1j =

(

σ

√

1 − ρ

2

)

, j = 2, . . . , N/R,

and

d2j =





log
(

x
max(z,k)

)

− σ2

2

σ



 , j = 1, . . . , N/R.

The correlation matrices are given as:

Qij1 =



















1, if i = j,
√

1−r
2 , if i = 1, j 6= 1 or j = 1, i 6= 1,

√

1
2 , otherwise.

and

Qij2 =







1, if i = j,

ρ, otherwise.

The optimal decision variable z is found by the solution to the equation:

NN/R (−d2, Q2) =
R − 1

R
.
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A similar approach can be used to find the bound in (iii), using the formulas for the option

on the minimum of the assets from Johnson [13].

The prices for the three options for different strike prices are provided in Figure 2. A total of

500000 simulations with an error tolerance of 10−4 was used in the optimization models. In this

example, the optimal strike prices are known in closed form for the basket option and identified

using bisection search for the other two options. Clearly, from Figure 2 the bounds become tighter

as the number of subsets decreases. For the basket and maximum option, our bounds for R < N

seem to be new. For the spread option between the maximum and minimum of asset prices, the

bounds seem to be new even for R = N . Figure 3 plots the optimal strike prices in the super-

replicating portfolios for these three options. Figure 4 plots the distribution of the minimum cost

super-replicating portfolios. The improvement in the fit is clearly observable as R decreases. A

summary of the result is provided in Table 2. Clearly, the computational time (CPU sec) increases

rapidly as R decreases. The hedging errors in the optimal super-replicating portfolios exhibits a

positive skewness with a small possibility of having large errors. The magnitude of these errors

however become lesser as R decreases.

13



80 85 90 95 100 105 110 115 120
0

5

10

15

20

25

Strike (k)

P
ric

e

Basket option on 16 assets

 

 
R = 16
R = 8
R = 4
R = 2
R = 1

100 105 110 115 120 125 130 135 140 145 150
0

5

10

15

20

25

Strike (k)

P
ric

e

Option on the maximum of 16 assets

 

 
R = 16
R = 8
R = 4
R = 2
R = 1

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Strike (k)

P
ric

e

Option on the spread between maximum and minimum of 16 assets

 

 
R = 16
R = 8
R = 4
R = 2
R = 1

Figure 2: Option price bounds for N = 16 assets.

14



80 85 90 95 100 105 110 115 120
0

10

20

30

40

50

60

Strike (k)

O
pt

im
al

 s
tr

ik
e 

z

Basket option on 16 assets

 

 

R = 16
R = 8
R = 4
R = 2

100 105 110 115 120 125 130 135 140 145 150
110

115

120

125

130

135

140

145

150

Strike (k)

O
pt

im
al

 s
tr

ik
e 

z

Option on the maximum of 16 assets

 

 

R = 16
R = 8
R = 4
R = 2

0 5 10 15 20 25 30 35 40 45 50
70

80

90

100

110

120

130

Strike (k)

O
pt

im
al

 s
tr

ik
e 

z2
   

   
   

   
   

   
   

   
   

   
   

   
   

 O
pt

im
al

 s
tr

ik
e 

z1

Option on the spread between maximum and minimum of 16 assets

 

 

R = 16
R = 8
R = 4
R = 2
R = 16
R = 8
R = 4
R = 2

Figure 3: Optimal strike prices for N = 16 assets.
15



5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Basket option on 16 assets with strike k = 100

Payoff of super−replicating portfolio

D
is

tr
ib

ut
io

n

 

 
R = 16
R = 8
R = 4
R = 2
R = 1

10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Option on the maximum of 16 assets with strike k = 120

Payoff of super−replicating portfolio

D
is

tr
ib

ut
io

n

 

 
R = 16
R = 8
R = 4
R = 2
R = 1

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
Option on the spread between maximum and minimum of 16 assets with strike k = 25

Payoff of super−replicating portfolio

D
is

tr
ib

ut
io

n

 

 
R = 16
R = 8
R = 4
R = 2	
R = 1

Figure 4: Distribution of super-replicating portfolios for N = 16 assets.
16



Basket option with strike k = 100

Actual price = 2.3421

No. of subsets 16 8 4 2

Price of option 3.9858 3.2292 2.7470 2.4791

CPU Time (sec) 0.14 0.29 0.60 1.44

Average super-replication error 1.6480 0.8772 0.4108 0.1443

Std. dev of super-replication error 1.0295 0.8083 0.5878 0.3749

Maximum super-replication error 6.5672 5.9426 4.5618 4.3224

Max option with strike k = 120

Actual price = 1.6370

No. of subsets 16 8 4 2

Price of option 2.3573 2.2739 2.1357 1.9286

CPU Time (sec) 0.30 0.53 4.00 42.0

Average super-replication error 0.7227 0.6405 0.5011 0.2870

Std. dev of super-replication error 3.6240 3.1272 2.3721 1.3766

Maximum super-replication error 197.5051 139.2040 99.5015 37.9512

Max-min option with strike k = 25

Actual price = 5.4147

No. of subsets 16 8 4 2

Price of option 14.4435 13.9326 12.9156 10.8642

CPU Time (sec) 0.35 0.60 5.00 101

Average super-replication error 9.0506 8.5397 7.5200 5.4629

Std. dev of super-replication error 10.5945 9.8080 8.4822 6.0876

Maximum super-replication error 273.3000 195.2905 139.9110 67.4794

Table 2: Prices of the options and super-replication errors.
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4 Pricing in Incomplete Markets with Other Options Being Traded

In this section, we extend the results to find semi-parametric price bounds in incomplete markets

that are valid under even weaker distributional assumptions (cf. Lo [20], Grundy [9], Boyle and Lin

[6], Bertsimas and Popescu [3], Aspremont and Ghaoui [1], Hobson et al. [15]). The central problem

addressed in these papers is: Suppose we are interested in finding bounds on the price of a multiasset

option with payoff f(x̃), consistent with known traded option prices Eπ [fj(x̃)] = qj , j = 1, . . . , M

in the market. Under no-arbitrage, the tightest possible upper bound on the price of this option is

found by solving the optimization problem:

max
π

Eπ [f(x̃)]

s.t. Eπ [fj(x̃)] = qj , j = 1, . . . , M

π ∈ M(ℜN
+ ),

(6)

where π is the risk-neutral measure defined on M(ℜN
+ ) (the set of probability measures supported

on ℜN
+ ).

Isii [12] and Bertsimas and Popescu [3] solved the problem in (6) by using a dual approach.

Introducing the dual variable y0 for the probability mass constraint and yj for the jth constraint,

the dual problem can be formulated as:

min
y0,yj

y0 +
M
∑

j=1

yjqj

s.t. y0 +

M
∑

j=1

yjfj(x) ≥ f(x), ∀x ≥ 0.

(7)

This is a semi-infinite optimization problem where the constraints are valid for every non-negative x.

Under standard constraint qualification conditions, strong duality holds and the two formulations

are equivalent. Bertsimas and Popescu [3] showed that for single-asset options (N = 1) with

piecewise polynomials payoffs fj(·) and f(·), the dual problem can be solved in polynomial time

using semidefinite programming. However as a negative result, they showed that finding tight

bounds for multiasset options is often much more difficult (NP-Hard in general). As a result,

weaker semidefinite programming relaxations have been proposed in Boyle and Lin [6], Zuluaga

and Pena [29], Han et al. [11] and Lasserre et al. [19]. The dual problem (7) has a natural financial

interpretation as the problem of finding a minimum cost buy-and-hold portfolio consisting of cash
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and options that are traded in the market that dominates the payoff of the option to be priced

with probability one (see Nishihara [23] et al.).

In this section, we extend Theorem 1 to find a new class of multiasset option pricing models

for which tight semi-parametric bounds can be found in polynomial time. Suppose the exact risk-

neutral distributions for each of the subsets of asset prices x̃r are not known. Rather there exists

a finite set of options that are traded on each of these assets for which the prices are known. We

denote the set of risk-neutral distributions for each set of assets x̃r as:

Πr =
{

πr ∈ M
(

ℜNr
+

) ∣

∣

∣
Eπr

[fr(x̃r)] = qr

}

,

where qr = (qr1, . . . , qrMr
) is the vector of option prices with payoffs fr(x̃r) = (f1(x̃r), . . . , fMr

(x̃r)).

Let M(Π1, . . . ,ΠR) denote the set of all joint risk-neutral distributions π for asset prices x̃ with

the risk-neutral distributions πr ∈ Πr for each x̃r. We need the following assumption that is key

to the results in this section.

Assumption 1 Suppose that:

qr ∈ int
{

Eπr
[f(x̃r)]

∣

∣

∣
πr is a distribution in ℜNr

+

}

, r = 1, . . . , R,

where int{S} denotes the interior of the set S.

Assumption 1 ensures that strong duality holds in this model. However checking this assumption

for arbitrary subset sizes Nr and payoffs f(x̃r) might not always be easy (cf. Bertsimas and Popescu

[3]). We now provide the extension of Theorem 1 to the incomplete market case with options being

traded.

Theorem 2 Let π ∈ M(Π1, . . . ,ΠR). Under Assumption 1, the tight upper bound on the price of

a multiasset option with piecewise linear convex payoff is found by solving the convex minimization

problem:

max
π∈M(Π1,...,ΠR)

Eπ

[

max
p∈P

(wp · x̃ − kp)

]

= min
z1,...,zP

[

max
p∈P

(e · zp − kp) +
R
∑

r=1

max
πr∈Πr

Eπr

[

max
p∈P

(wpr · x̃r − zpr)

]

]

.

Outline of Proof. Since the exact distribution πr ∈ Πr in Theorem 1 is not known, we find the

best upper bound by solving:

max
π∈M(Π1,...,ΠR)

Eπ

[

max
p∈P

(wp · x̃ − kp)

]

= max
πr∈Πr∀r

min
zp∀p∈P

[

max
p∈P

(e · zp − kp) +

R
∑

r=1

Eπr

[

max
p∈P

(wpr · x̃r − zpr)

]

]

.
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By interchanging the order of the maximum and minimum, we obtain the inequality:

max
π∈M(Π1,...,ΠR)

Eπ

[

max
p∈P

(wp · x̃ − kp)

]

≤ min
zp

[

max
p∈P

(e · zp − kp) +

R
∑

r=1

max
πr∈Πr

Eπr

[

max
p∈P

(wpr · x̃r − zpr)

]

]

.

Under Assumption 1, tightness can be proved using a duality-based approach as in Theorem 3.1

in Bertsimas, Natarajan and Teo [4]. Due to similarity of the proof, we skip it.

Substituting the inner maximization problems with the dual problem, we can reformulate The-

orem 2 as:

min
y,zp ,yr

(

y +
R
∑

r=1

yr · qr

)

s.t. y ≥ e · zp − kp, p ∈ P

yr · fr(xr) − wpr · xr + zpr ≥ 0, ∀xr ≥ 0, p ∈ P, r = 1, . . . , R.

(8)

This is a semi-infinite optimization problem, where the constraints are valid for every xr in the

nonnegative orthant. The variable y denotes the units of cash and yr denotes the units in the options

with payoffs fr(·) that are held in the minimum cost buy-and-hold super-replicating portfolio. The

variable zp denotes the strike prices of the smaller options that need to be super-replicated. In

general, when the functions fr(·) are piecewise-linear or piecewise-polynomial, Formulation (8)

can be approximated using linear or semidefinite programs. This follows from the well-known

relationship between non-negative polynomials and semidefinite programs (see Parillo [24], Lasserre

[18]). However these formulations can be exponentially large in the multivariate setting. We focus

on two models wherein Formulation (8) can be solved in polynomial time.

Proposition 2

(i) Suppose each subset r consists of at most three assets (Nr ≤ 3) with known mean µr and

covariance matrix Qr:

Πr =
{

πr ∈ M(ℜNr
+ )

∣

∣

∣
Eπr(x̃′

rx̃r) = Qr + µrµr
′, Eπr(x̃r) = µr

}

.

Then the tight upper bound on the price of a multiasset option with piecewise linear convex
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payoff is obtained by solving the semidefinite program:

min
y,zp ,yr ,Spr ,Npr

(

y +
R
∑

r=1

Yr · (Qr + µrµr
′) +

R
∑

r=1

yr · µr +
R
∑

r=1

yr

)

s.t. y ≥ e · zp − kp, p ∈ P




Yr (yr − wpr)/2

(y′

r − w′

pr)/2 yr + zpr



 = Spr + Npr, p ∈ P, r = 1, . . . , R

Spr � 0, Npr ≥ 0, p ∈ P, r = 1, . . . , R.

(ii) Suppose, for each subset r, we have:

Πr =

{

πr ∈ M(ℜNr
+ )

∣

∣

∣ Eπr

[

max
t=1,...,T

(Artxr − brt)

]

= qr

}

,

where the maximum is taken row-wise. Then the tight upper bound on the price of a multiasset

option with piecewise linear convex payoff is obtained by solving the linear program:

min
y,zp ,yr

(

y +
R
∑

r=1

yr · qr

)

s.t. y ≥ e · zp − kp, p ∈ P

−
T
∑

t=1

λprt · brt + zpr ≥ 0, p ∈ P, r = 1, . . . , R,

T
∑

t=1

Artλprt − wpr ≥ 0, p ∈ P, r = 1, . . . , R,

T
∑

t=1

λprt = yr, p ∈ P, r = 1, . . . , R.

Proof.

(i) The second constraint in Formulation (8) is equivalent to enforcing a quadratic polynomial to

be nonnegative over the nonnegative orthant:

x′

rYrxr + yr · xr + yr − wpr · xr + zpr ≥ 0, ∀xr ≥ 0.

The variables Yr, yr and yr are the dual variables corresponding to the second moment, first

moment and probability mass constraint in Πr. This nonnegativity constraint is equivalent to

enforcing the following matrix to lie in the cone of copositive matrices (see Kabadi and Murty
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[16]):




Yr (yr − wpr)/2

(y′

r − w′

pr)/2 yr + zpr



 ∈ CNr+1,

where CNr+1 is the cone of copositive matrices of dimension Nr +1. For Nr ≤ 3, the copositive

cone is exactly characterizable as the sum of a semidefinite cone (SNr+1) and nonnegative cone

(NNr+1) (see Diananda [10]):

CNr+1 = SNr+1 + NNr+1 for Nr ≤ 3.

Checking Assumption 1 in this case is equivalent to:




Qr + µr
′µr µr

µ′

r 1



 ∈ int(SNr+1) ∪ int(NNr+1).

Thus with each subset Nr having at most 3 assets, we obtain an exact polynomial sized

semidefinite formulation that can be solved efficiently. For larger subsets of assets, this pro-

vides an upper bound that is not necessarily tight. In this case, it is possible to obtain a

sequence of semidefinite approximations for the copositive cone using results from Parillo [24].

These are however not polynomial sized formulations.

(ii) The payoffs fr(xr) = maxt(Artxr − brt) are piecewise linear and convex. The second con-

straint in Formulation (8) is equivalent to:

min
xr≥0

{

yr · max
t=1,...,T

(Artxr − brt) − wpr · xr + zpr

}

≥ 0.

Introducing the decision vector sr, we have:

min
sr ,xr

{

yr · sr − wpr · xr + zpr

∣

∣

∣
sr ≥ Artxr − brt ∀t, xr ≥ 0

}

≥ 0

Using linear programming duality, we obtain:

max
λprt

{

−
∑

t

λprt · brt + zpr

∣

∣

∣

∑

t

λprt = yr,
∑

t

Artλprt ≥ wpr

}

≥ 0

This is equivalent to the set of linear constraints:
{

−
∑

t

λprt · brt + zpr ≥ 0,
∑

t

λprt = yr,
∑

t

Artλprt ≥ wpr

}

By incorporating these constraints for each p and r, we obtain the desired linear program.
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4.1 Numerical Example

We consider an extension of the example from Boyle and Lin [6] with an option on the maximum

of N = 6 assets. Each of the assets has an initial price of $40 and a volatility of σ = 30%. The

interest rate is r = 10% with a time to maturity of the option of one year. The correlation matrix

is given as:

Q =





























1.0 0.9 0.9 ρ ρ ρ

0.9 1.0 0.9 ρ ρ ρ

0.9 0.9 1.0 ρ ρ ρ

ρ ρ ρ 1 0.9 0.9

ρ ρ ρ 0.9 1.0 0.9

ρ ρ ρ 0.9 0.9 1.0





























,

with the exact value of ρ unknown. The first three assets and the last three assets are strongly

positively correlated to each other. However the exact correlation between these two subsets of

assets is not known. For simplicity, we assume that these correlations are the same and equal to

ρ. In this setting, we can use the semidefinite program in Proposition 2 (i) with three assets in

each subset to compute an upper bound on the option price. This price bound is valid under all

risk-neutral distributions with the given mean and covariance matrix and for all feasible values of

ρ. The semidefinite programs were solved using SeDuMi 1.1 in a MATLAB 7.3.0 environment. The

results are summarized in Table 3 and Figure 5. The quality of the bound clearly improves as the

two subsets of asset are more negatively correlated.

Strike price Exact Black-Scholes price Upper bound

k ρ = −0.9 ρ = −0.5 ρ = 0.0 ρ = 0.5 ρ = 0.9

0 53.1012 51.9954 50.3710 48.1851 44.9749 58.1985

40 16.9078 15.8899 14.5511 12.8166 10.3196 22.0043

50 8.4607 8.2044 7.6126 6.6338 5.0889 13.1139

60 3.5616 3.5364 3.4035 3.0073 2.2365 7.7827

70 1.3934 1.3874 1.3667 1.2385 0.9095 5.2839

Table 3: Black-Scholes price and upper bound.
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5 Appendix

Theorem 1 (Proof Continued). To prove the tightness of the bound, we construct a distribution

π∗ from the optimal solution to the minimization problem:

min
z1,...,zP

(

max
p∈P

(e · zp − kp) +
R
∑

r=1

Eπr

[

max
p∈P

(wpr · x̃r − zpr)

]

)

The Karush-Kuhn-Tucker conditions provide the necessary and sufficient optimality conditions for

this convex minimization problem. We define Spr to be the event:

Spr =

{

xr

∣

∣

∣
wpr · xr − zpr ≥ max

q∈P:q 6=p
wqr · xr − zqr

}

.
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The optimality conditions can then be expressed as:

(i) λp ≥ 0 for all p ∈ P,

(ii)
∑

p∈P

λp = 1,

(iii) λp

(

max
p∈P

(e · zp − kp) − (e · zp − kp)

)

= 0 for all p ∈ P,

(iv) λp = P (Spr) for all p ∈ P and r = 1, . . . , R.

Consider an optimal solution z∗

1 , . . . ,z∗

P and λ∗
1, . . . , λ

∗
P that satisfies conditions (i)-(iv). Construct

the multivariate distribution π∗ as follows:

(a) Choose p ∈ P with probability λ∗
p,

(b) For each r = 1, . . . , R, generate x̃r ∼ πr(xr)I(Spr)/λ∗
p,

where I(S) is the indicator function of the set S. Note that the cross dependency between x̃r1
and

x̃r2
for r1 6= r2 is not important in this construction. For a fixed p, the distributions for each x̃r can

hence be generated independently. Under this construction, if π′

r(·) denotes the joint distribution

of x̃r, then we have:

π′

r(xr) =
∑

p∈P ′

λ∗
p

(

πr(xr)I(Spr)

λ∗
p

)

,

= πr(xr)
∑

p∈P ′

I(Spr),

= πr(xr).
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Hence, the joint distribution π∗ ∈ M(π1, . . . ,πR). Furthermore, under this distribution, we have

Eπ∗

[

max
p

(wp · x̃ − kp)

]

≥
∑

p∈P

λ∗
p

(

∑

r

(

∫

(wpr · xr)I(Spr)πr(dxr)

λ∗
p

)

− kp

)

,

=
∑

p∈P

∑

r

(∫

(

wpr · xr − z∗pr + z∗pr

)

I(Spr)πr(dxr)

)

−
∑

p∈P

λ∗
pkp,

=
∑

r

∑

p∈P

∫

(

wpr · xr − z∗pr

)

I(Spr)πr(dxr) +
∑

p∈P

∑

r

z∗pr

∫

I(Spr)πr(dxr)

−
∑

p∈P

λ∗
pkp,

=
∑

r

Eπr

[

max
p∈P

(

wpr · x̃r − z∗pr

)

]

+
∑

p∈P

λ∗
p(e · z∗

p
− kp),

=
∑

r

Eπr

[

max
p∈P

(

wpr · x̃r − z∗pr

)

]

+





∑

p∈P

λ∗
p





(

max
p∈P

(e · z∗

p
− kp)

)

,

=
∑

r

Eπr

[

max
p∈P

(

wpr · x̃r − z∗pr

)

]

+ max
p∈P

(e · z∗

p
− kp).

Since π∗ generates an expected objective value that is greater than or equal to the optimal solution

from the minimization problem, the bound is tight.
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