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Abstract

In this paper a numerical approach for the optimization of stirrer configurations
is presented. The methodology is based on a flow solver, and a mathematical opti-
mization tool, which are integrated into an automated procedure. The flow solver is
based on the discretization of the incompressible Navier-Stokes equations by means
of a fully conservative finite-volume method for block-structured, boundary-fitted
grids, for allowing a flexible discretization of complex stirrer geometries. Two deriva-
tive free optimization algorithms, the DFO and CONDOR are considered, they are
implementations of trust region based derivative-free methods using multivariate
polynomial interpolation. Both are designed to minimize smooth functions whose
evaluations are considered to be expensive and whose derivatives are not available or
not desirable to approximate. An exemplary application for a standard stirrer con-
figuration illustrates the functionality and the properties of the proposed methods.
It also gives a comparison of the two optimization algorithms.
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1 Introduction

Stirring and mixing devices are utilized in chemical, pharmaceutical, and
biotechnological industries for different purposes: mixing of two substances
with each other, generation of a spatially homogeneous concentration in a re-
actor, preventing sedimentation, disintegrating bacteria etc. In the past, the
design of stirring devices for such purposes has been made mostly by a scale-
up of small scale experiments. Because the similarity parameters used in this
process can never take into account all details of the geometry and the flow,
the final large scale design often did not achieve the desired goals. On the
other hand, minimization of the amount of energy needed for the creation of
certain mixing conditions, the material costs for the stirrer, as well as the life-
time and the breakdown security are important economic issues for the stirring
process which depend on the various geometric parameters of the stirrer and
the vessel as well as on the rotation rate and the fluid properties. Therefore,
numerical simulations are needed for the computation of the fluid flow inside
the stirrer for various Reynolds numbers. In Section 2, we shortly describe the
CFD solver FASTEST-3D applied to Rushton turbine.

There is a large number of stirrers used in the industry for different mixing
tasks. Experimental investigations for selecting or designing a “good” stirrer
for a specific process with respect to given criteria are usually very costly and
time consuming. Numerical simulation techniques provide great flexibility in
dealing with variation of geometric parameters. Therefore, the combination
of the flow solver together with mathematical optimization methods can be
a very useful tool for the selection or design of stirrers with higher product
quality, reduced costs, and lower energy consumption.

In many large scale computations, when flow simulation packages are used,
either the calculation of the objective function is very expensive or the gra-
dient of the objective function is not available. In such circumstances, for
the minimization of functions of several variables, derivative-free optimization
methods can be used instead of gradient based algorithms. In Section 3, we
describe two such derivative-free optimization methods, DFO and CONDOR.

The DFO algorithm in combination with FASTEST-3D has been applied to
Rushton turbine in [14]. In Section 4, computational results obtained by DFO
and CONDOR are presented to show how the derivative-free methods can be
helpful in industrial applications. Moreover, within the section the results of
both algorithms we applied are compared for two different Reynolds numbers.

The paper concludes with some future perspectives for improving both opti-
mization methods by using the structure of the objective function calculated
by the flow solver.
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2 Flow Solver

The equations governing fluid dynamics within the stirrer are described in [14].
The numerical procedure adopted in FASTEST-3D [1] to solve the incompress-
ible Navier-Stokes equations is composed of a fully conservative second order
finite-volume discretization in time and space (central differences, deferred cor-
rection for the convective fluxes) for non-orthogonal, boundary-fitted, block-
structured grids, allowing a flexible discretization of even very complex stirrer
geometries. The nonlinear algebraic equations are solved at each time-step
implicitly by a multigrid method with a pressure-correction smoother. For
the parallelization, a block-structured grid partitioning method with auto-
matic load balancing and strongly implicit block coupling is used [9]. The grid
movement of the stirrer against the vessel is handled by a clicking mesh ap-
proach. The solver has already been applied to a variety of problems in stirrer
technology and has proved that it can compute complex problems on parallel
computers with high numerical and parallel efficiency [2,16].

The grid generation tool involves an algebraic method based on transfinite
interpolation for the generation of multi-block boundary-fitted grids, which
facilitates the accurate representation of the complex geometries associated
with stirrer configurations. In order to allow an easy design variation, the
grid generation is parametrized with respect to the characteristic geometric
quantities for the different stirrer types. Thus, the input parameters are radii
of hub, shaft, disk, vessel or the numbers and dimensions of blades, baffles
and so on. After specifying the number of control volumes for different stirrer
sections the grid is created automatically by respecting basic criteria with
respect to grid quality, i.e., skewness, aspect ratio, and expansion factor [10],
as far as possible. Following this concept the geometrical input parameters
can be used directly in an easy way as design parameters for the optimization
purpose.

3 Derivative Free Optimization

Applications of numerical optimization techniques for fluid flow problems can
be found mostly in the field of aerodynamics. An overview of the subject
is given by Mohammadi and Pironneau [12]. For general fluid flow applica-
tions the resulting nonlinear optimization problems are typically solved by
employing descent algorithms based on gradient information. However, the
computation of the gradient of the objective function with respect to the de-
sign variables is usually very costly and contaminated by noise. Usually the
scalar objective function, f : x 7→ f(x), x ∈ Rn, is a result of very expen-
sive computer simulations and yet the derivatives may not be available at all.
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For the computer simulation of fluid inside the stirrer by the CFD package
FASTEST-3D was used in [14]. By simulating the complex discrete Navier-
Stokes system, the local gradient of the objective function f with respect to
the design variables x, are not provided by the flow solver and are not di-
rectly available. In such case we may easily apply derivative-free optimization
methods.

There are mainly two classes of derivative-free optimization methods. The
first class is based on direct search methods and doesn’t require smoothness
of the objective function f . A recent and comprehensive survey of this class
is given in [11]. The second class of methods is based on interpolation (or
approximation) and requires smoothness. These algorithms construct a basis
consisting of suitable polynomials spanning a certain space of functions, and
then, build a model, using a linear combination of basis polynomials, that
interpolates or approximates the known values of f at the point x. In this
paper, we consider two derivative-free optimization methods from this class:
the DFO (Derivative Free Optimization) method was developed by Conn and
co-workers [6–8] and the CONDOR (Constrained, Non-linear, Direct, parallel
Optimization using trust Region method for high-computing load function)
developed by Berghen [3] which is based on the UOBYQA of Powell [13]. Al-
though both methods were developed mainly for unconstrained optimization
problems and for easy (box) constraints, there are extensions for constrained
ones. The algorithms are based on a derivative-free trust region method ap-
proximating the objective function by a quadratic polynomial, which is then
minimized by a sequential quadratic programming (SQP) method.

DFO was successfully applied as a black-box optimization routine in optimiz-
ing energy systems [17] and for the helicopter rotor blade design [15], where
some practical aspects of DFO were described. Numerical tests in both pa-
pers show that DFO works faster and more accurate than the derivative based
methods such as the Quasi-Newton. CONDOR was also compared with DFO
in some respects for several test problems [4] and its applicability for some
CFD simulations has been shown in [3].

Surely, both methods have their own advantages and drawbacks. Below we
summarize the main steps as well as similarities and differences between the
two algorithms, DFO and CONDOR:

• Both methods choose a basis for the multivariate interpolation. DFO uses
Newton polynomials while CONDOR uses Lagrange polynomials as the
basis for the space of quadratic polynomials. The objective function f of n
independent variables x is then approximated by a quadratic model using
p = (n+1)(n+2)/2 interpolation points or at least a linear model (in DFO)
using p = n + 1 interpolation points over the well-poised interpolation set
which have to satisfy some geometric conditions that will be specified in the
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sequel. At the kth step the quadratic model within the trust-region Bk may
be given as

m(xk + s) = f(xk) + 〈g(xk) , s〉+
1

2
〈s , H(xk)s〉

for some g ∈ Rn and some symmetric n×n matrix H where 〈· , ·〉 denotes the
inner product. The vector g and the matrix H do not necessarily correspond
to the first and second derivatives of the objective function f , since they
are either unavailable or not desirable to approximate.

However, both algorithms differ in constructing the model m, the polyno-
mial interpolation: If {φi}p

i=1 , p ≤ (n + 1)(n + 2)/2, is a basis in the space
of quadratic polynomials then the interpolation condition

m(yj) =
p∑

i=1

αiφi(yj) = f(yj), j = 1, . . . , p

emphasizes that the coefficient matrix Φ(Y) = [φi(yj)] at the interpolation
points yj ∈ Y , is closely affected by the chosen basis polynomials as well
as the interpolation set Y . For instance, the choice of Newton polynomi-
als (in DFO) causes the matrix to be lower triangular with a special block
diagonal structure, while the use of Lagrange polynomials (in CONDOR)
results in an identity matrix. Conversely, the reduced forms of Φ(Y), which
can be obtained by a procedure similar to the Gram-Schmidt orthogonal-
ization process, provide the bases of fundamental polynomials. The total
number of (n + 1)(n + 2)/2 function evaluations in order to build the full
quadratic model is involved with high complexity in linear algebra due to
repeated minimization. Therefore, the use of DFO and CONDOR in prac-
tice is limited to problems with a very moderate number of variables. For
problems with more than 20 variables both methods are computationally
very intensive.

• In each of the algorithms the constructed model is minimized over a trusted
region (an n-dimensional ellipsoid around the current iterate). The mini-
mization of the quadratic model is done by applying a standard optimiza-
tion procedure, for instance, a sequential quadratic programming (SQP)
method; and in our case, an interface to IPOPT [18], which is also pro-
vided by the DFO package, is used. After computing the optimal point, the
achieved reduction in the objective function is compared to the reduction
obtained by the model by the ratio

rk =
f(xk)− f(x̂k)

m(xk)−m(x̂k)
,

where x̂k is such that

m(x̂k) = min
x∈Bk

m(x).
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• The next step is the updating of interpolation points which is the most
critical part. If the reduction of the objective function compared to the
reduction rk of the model is good enough, this point will be included in the
interpolation set, otherwise a new point is added to the interpolation set
which will improve the approximation model. Interpolation points far from
the current iterate or points that are not sufficient to describe a well-posed
geometry are removed from the interpolation set.

Furthermore, when the computation of the trust-region radius δ is com-
plete checking of the validity (within ε) of the model around the point xk

in CONDOR is based on whether any of the following conditions [3]

‖xj − xk‖ ≤ 2δ for all j (3.1)

1

6
M ‖xj − xk‖3 max

d
{|Pj(xj + d)| : ‖d‖ ≤ δ} < ε for all j (3.2)

holds for the Lagrange interpolating basis {Pj}, where
∣∣∣ d3

dα3 f(x + αv)
∣∣∣ ≤ M

such that ‖v‖ = 1 and α ∈ R. Condition (3.1) prevents the algorithm from
sampling the model at (n + 1)(n + 2)/2 new points. However, the checking
of the validity of the model in DFO is mainly based on condition (3.2), which
is not very often satisfied by the trust-region radius. Hence, in some cases
more function evaluations are needed in order to rebuild the interpolation
polynomial. Usually one wants to use most possible interpolation points at
which objective function values are known and which are referred as sample
points. Not all new points are taken in the interpolation set, they have
to satisfy some geometric requirements, so called well-poisedness [6,15,17],
because of the non-uniqueness of quadratic interpolation polynomial. The
set Y = {y1, · · · , yp} is poised if the determinant of Φ(Y) = [φi(yj)] is
nonzero. It may occur that this matrix ill-conditioned for some iterates.
This indicates that the interpolation problem is not good for this set of
points Y . This can be improved by adding or removing some points.

• Another essential difference between the DFO and the CONDOR algorithm
is that the former uses the smallest Frobenius norm of the Hessian matrix to
minimize the local model, which may cause numerical instability, whereas
CONDOR uses the Euclidean norm which is more robust.

• After the evaluation of the true objective function value and depending
on the quality of the achieved reduction and the predicted one, that is,
depending on the ratio,

rk =
f(xk)− f(xk)

m(xk)−m(xk)
,

where xk is such that

f(xk) = min f(Y \ {xk}),

either the new point xk is accepted as the new iterate xk+1 and the trust
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region radius is increased, or it is rejected and the trust region radius is
decreased.

3.1 The Automated Procedure

The components described above are combined within an integrated opti-
mization tool by means of a control script in a modular form which makes it
straightforward to modify or replace individual components of the procedure.
This automated procedure is illustrated schematically in Figure 1.

Read initial solution

Write result

Convergence flow solver

Read initial solution

Write result

Flow solver
Conservative parameters

Exclude design variables

Convergence optimizer

Convergence flow solver

Flow solver

Grid generation

Initialisation

End

Optimizer

NoNo

Yes

No

Yes

Yes

Fig. 1. Flow chart of control script for automated optimization.

After initializations, the procedure involves the following major modular steps [14]:

(1) Optimizer: At each iteration the optimizer computes a new set of design
variables unless it converges.

(2) Grid variation: When new design variables are available, the grid gen-
eration tool creates the new geometry and the corresponding numerical
grid.

(3) Flow simulation: The flow solver computes the flow field and the corre-
sponding objective function value for the new geometry.

(4) Flow solver convergence test: If the flow solver converges, then the op-
timizer produces new geometrical design variables unless the objective
value is found to be minimum. Otherwise, FASTEST-3D runs with more
conservative parameters to achieve convergence in its inner calculations.
Even if this is not possible, both optimization algorithms may reject the
use of those design variables.

(5) Optimizer convergence test: The optimizer decides, by a given criterion,
whether the current value of the objective function is accepted as opti-

7



mum. If yes, the procedure is finished, if not, with the new design variables
the optimization procedure is continued to the next iterate.

It is of great importance to note that the flow-chart in Figure 1 represents
a systematic way in the optimization of industrial applications, instead of
experimenting with several control variables. The presented automated pro-
cedure can easily be applied, for instance, in shape-optimizations problems in
industry.

4 Computational Results

We consider a Rushton turbine as a representative test case for optimizing a
practical stirrer configuration. The geometric parameters, which are consid-
ered to define the standard configuration, are given in Table 1.

Parameter Value

Tank diameter T = 0.15m

Impeller diameter D = T/3 = 0.05m

Bottom clearance C = H/2 = 0.075m

Height of the liquid H = T = 0.15m

Length of the baffles W = 3D/10 = 0.015m

Length of the blade ` = D/4 = 0.0125m

Height of the blade w = D/5 = 0.01m

Disc thickness x = D/5 = 0.00175m

Diameter of the disk d = 3D/4 = 0.0375m

Table 1
Geometrical parameters of standard stirrer configuration.

The working Newtonian fluid is a glucose solution with density ρ = 1330 kg/m3

and viscosity µ = 0.105 Pas.

The numerical grid consists of 22 blocks with a total number of 238 996 control
volumes. 17 blocks are defined as rotating with the stirrer while the remaining
5 blocks are defined as stationary with the vessel. A sketch of the considered
configuration and the corresponding surface grid of the stirrer are shown in
Figure 2. For computational purposes, but not to be too restrictive, the grid on
one half of the tank is used due to symmetry. One time step integration needs
approximately 20 seconds of computing time on an eight processor Redstone
cluster machine. This results in about 8 hours of computing time to reach a
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steady state flow in the sense of a frozen rotor computation, a criterion that
we adopt for all cases.

C

w

l

T

x

D

H

W

d

Fig. 2. Sketch of geometrical parameters of stirrer configuration (left) and its cor-
responding surface grid (right).

The dimensionless Newton number, Ne, which relates the resistance force to
the inertia force,

Ne =
P

ρN3D5
, P = −

∫

S

(puj + τijui) nj dS ,

is considered as the characteristic reference quantity to be minimized. Here N
denotes the rotational speed of the impeller and P is the power computed from
the flow quantities over the surface S of the impeller (ui is the component of the
velocity vector corresponding to the Cartesian coordinate xi, p is the pressure,
τij is the viscous part of the stress tensor for incompressible Newtonian fluids,
and nj is the component of the outer unit normal vector).

The design variables are the disk thickness x, the bottom clearance C, and
the baffle length W , for which the inequality constraints 0.001 ≤ x ≤ 0.005,
0.02 ≤ C ≤ 0.075, and 0.005 ≤ W ≤ 0.03 are prescribed. All other parameters
are kept fixed according to the standard configuration.

Because the gradient information is not available, for both algorithms the
minimum trust region radius, δmin, is used as a stopping criterion. However,
their default stopping criteria were selected in both algorithms for the sub-
minimization problem. We have investigated two cases of the Reynolds num-
ber, Re = ρND2/µ: 100 and 1000. In DFO, for Re = 100, δmin = 0.0001
and for Re = 1000, δmin = 0.001 were chosen. For CONDOR, we have used
δmin = 0.0001 for both Reynolds numbers.
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As a first example we consider the minimization of the Newton number for a
Reynolds number of Re = 1000. Figure 3 shows the Newton number versus
the number of cycles for the two optimization algorithms. For both algorithms
the Newton number attains the same optimum. CONDOR terminates earlier
then the DFO although the latter oscillates around the optimum. Figure 4
depicts the corresponding changes of the design variables during the func-
tion evaluations. The three design parameters assign almost the same optimal
values. We remark that the two optimization tools differ in building the start-
ing model: DFO starts to build the model objective function approximation
(unique or not) from the very beginning. That is, its starting objective poly-
nomial approximation is not fully quadratic. On the other hand, CONDOR
starts with a fully quadratic model for the objective function. Despite its
long initialization it turns out that CONDOR needs less function evaluations
than DFO to reach an optimum point after completing the initial quadratic
approximation. DFO, as the time passes, oscillates around the minimum al-
though it approaches the minimum very sharply at the beginning. CONDOR
waits for a full quadratic polynomial to build its model, and then gradually
approaches the minimum, using a complete interpolating bases. The insignif-
icant overshoots/undershoots (in CONDOR) in the design variables are due
to the stopping criteria when the constrained minimization is considered [3,
Chapters 9 and 10]. In any case, however, both algorithms reach the same
optimized Newton number which is significantly (about 37%) lower than the
one for the standard tank configuration stated in Table 1.

Number of loops

Ne

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

CONDOR
DFO

Fig. 3. Newton number versus number of the loops.

As a second example we consider the minimization of the design parameters
for the Reynolds number Re = 100. Figure 5 depicts the Newton numbers
versus number of the function evaluations and shows the local minima of
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Fig. 4. Design variables (disc thickness, bottom clearance, baffle length) versus num-
ber of function evaluations

the objective function. The corresponding design parameters are presented in
Figure 6, where we can see the optimum for the clearance C has been achieved
differently in each algorithm. In this case the CONDOR and DFO terminate
at different Newton numbers, which indicate that they have attained different
local minima. The same behavior can be observed for the design variables; disc
thickness and baffle length have almost the same optimal values, whereas the
optimal bottom clearance resulting from the DFO and CONDOR algorithms
are different. This is due to the starting initial trust-region radius and the
initial model built within the trust-region. We have used as the initial trust
region radius for DFO δinitial = 1 and for CONDOR δinitial = 0.1. We remind
the reader that CONDOR uses a quadratic polynomial while DFO builds a
first-order polynomial initially to start the optimization procedure.

Two different versions of the DFO algorithm were used; DFO 1.2, for Re =
1000 and DFO 2.0 for Re = 100. The oscillatory behavior around the optimal
value of the DFO 1.2 in Figures 3 and 4 for Re = 1000 was eliminated in DFO
2.0 (see Figures 5 and 6) for Re = 100.

Another observation that can be obtained from the graphs is that the number
of function evaluations in DFO is less than the number of function evaluations
in CONDOR. Although the optimum obtained in DFO is “better” than the
one obtained in CONDOR, we are not in a position to conclude that either
of the algorithm is “better” than the other. But, we should keep in mind that
the initialization step of CONDOR algorithm is costly in order to complete
the interpolation basis and build a quadratic initial model. This might be a
disadvantage for large scale optimization problems. However, it seems, in this
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Fig. 5. Newton number versus number of the loops.
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Fig. 6. Design variables (disc thickness, bottom clearance, baffle length) versus num-
ber of function evaluations

example, it is better to start the optimization by building a cheap model and
gradually to complete the interpolation basis and to use quadratic polyno-
mials whenever possible along the way: this can always be applied when the
dimension is large in order to start the optimization algorithm immediately,
hoping that linear approximations sufficiently mimics the objective function.
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5 Conclusion

In this study we have presented a numerical approach for optimizing practi-
cal stirrer configurations. The automated integrated procedure consists of a
combination of a parametrized grid generator, a parallel flow solver, and a
derivative-free optimization procedure. For the latter, two different methods
(DFO and CONDOR) have been investigated with respect to their character-
istic convergence properties.

The numerical experiments have shown the principle applicability of the con-
sidered approach. For the Rushton turbine, considered as examples in this
paper, it has been possible to achieve a significant reduction of the Newton
number with relatively low computational effort.

Of course, in a mixing process the power consumption is important but not the
sole quantity in obtaining an optimum stirrer configuration. In particular, a
satisfactory mixing should be achieved. Due to the generality and modularity
of the considered approach, other objectives and/or other design variables can
be handled straightforwardly in a similar way.

It should be remarked that; since no rigorous convergence properties for glob-
ally optimal solutions are available, the optimal solutions obtained with both
optimization tools must be considered as local ones. This aspect can be inves-
tigated by variations of the starting value and/or the trust region radius.

As we have seen, if the number of design variables increases, due to the large
number of function evaluations, the computational cost of the algorithms be-
comes very high. For structured problems this cost can be reduced by using
the separability of the objective function. The concept of the partially sepa-
rability was exploited for unconstrained optimization problems by Ph. Toint
in a series of papers (see for example [5]) and implemented in the package PS-
DFO. The FASTEST-3D flow solver, with finite volume discretization, may
give us the opportunity to compute the desired function values within blocks
and their neighbors and allows us to use the concept of partially separability.
A future application would be to apply PSDFO using the structure of the dis-
cretized Navier-Stokes equations by the finite volume method within domain
decomposition.
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