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Abstract

We present a strengthened integer programming formulation for the open pit mine
production scheduling problem, where the precedence and production constraints are
combined to form 0-1 knapsack inequalities. Addition of corresponding knapsack cover
inequalities decreases the computational requirements to obtain the optimal integer solu-
tion, in many cases by a significant margin.
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1 Introduction

The design and scheduling of open pit mines is a significant and complex problem in mine
planning. The principal aim of a mining operation is to ensure that an ore body is exploited in
a way such that the value realized from the mine is maximized. A well-known early contribution
to this field was made by Lerchs and Grossmann [8], who presented a graph-theoretic algorithm
for determining the final contour of the open pit, known as the ultimate pit, such that the
total profit from the mine is maximized. Since the life of an open pit mine can be as long
as 40 years, recent developments have adopted the net present value of the operation as the
criteria for mine project evaluation. The open pit mine production scheduling problem seeks
to determine the sequence in which material should be removed over the lifetime of the mine in
order to maximize net present value. The removal of material is contingent upon the removal of
a cone of material situated above it, the size and shape of which is dictated by the requirement
of safe wall slopes for the pit. This is modelled in the precedence constraints for the mine.
An additional class of constraints are the production constraints, imposed by the availability
of extraction and processing capacity in each year. Techniques applied to solve the mine
production scheduling problem include heuristics (Gershon [5]), parametric methods (Whittle
[15]), dynamic programming (Onur and Dowd [11], Wang [14], Tolwinski and Underwood [12])
and integer linear programming (Gershon [4], Smith [10], Caccetta and Hill [2]). The major
limitation with these approaches is that they encounter significant computational difficulties
when trying to solve problems of realistic size.

In this paper, we consider the integer linear programming formulation presented by Caccetta
and Hill [2]. We combine the precedence and production constraints to form constraints that
possess the structure of 0-1 knapsack inequalities. Corresponding knapsack cover inequalities
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are then generated, which, in the case of single units of material, identify the earliest time
period in which each unit of material can be extracted from the pit, as shown in Section 3.
Addition of these constraints to the standard integer programming formulation eliminates a
number of decision variables from the model prior to optimization. Consequently, a tighter
root node relaxation is obtained, and a dramatic decrease is seen in the computation time
required to obtain the optimal integer solution for certain pits.

Generation of knapsack cover inequalities in the case of multiple units of material is consid-
ered in Section 4. We test the effectiveness of the inequalities, first by adding constraints for all
covers of size two, a priori, at the root node (Section 4.3). To see if these inequalities can further
tighten the LP relaxation, we implement a cutting plane approach, with straightforward exact
separation, and demonstrate computationally that further improvements in gap are possible
(Section 4.4).

2 Integer programming formulation

The most commonly used representation of an ore body for the purposes of mathematical
modelling is as a block model, described by Hustrulid and Kuchta [6]. The ore body is divided
into a regular three dimensional array of blocks, each of which has individual attributes such as
the tonnage of rock and ore contained within the block, assigned using geological techniques, and
the expected in-ground value, based on current costs and forecasted commodity prices. These
attributes of the block model are used as input parameters for the integer linear programming
formulation for the mine production scheduling problem.

In this paper, we consider the following generalized version of the integer program presented
by Caccetta and Hill [2]. The pit contains N blocks, and is to be scheduled over T" time periods.
The extraction of block i in time period ¢ results in a discounted cash flow of ¢! units. A set
of attributes A of concern to the mining operation is determined when generating the block
model, for example the tonnes of ore and tonnes of impurities contained in each block. Hence
each block 7 is assigned a value ¢} for each attribute a € A. A bound on the tonnage of each
attribute able to be processed in time period ¢ is given by u’. E; is the minimal set of blocks
that must be removed for block 7 to be removed, including block 7. Frequently E; has the three
dimensional shape of an inverted cone. Note that for computer memory management, for each
block ¢ it is sufficient to consider a smaller set of predecessor blocks S;. Depending on the
required angle for safe wall slopes, S; could be as small as the set of immediate predecessors of
block 7; see Figure 1.

(1) Immediate 2) Entire
Predecessor Predecessor
Set (S) Set (E)
"Nt/

Figure 1: Illustration of (1) The immediate predecessor set (2) The entire predecessor set.



The decision variables of the model take the form

i=1,...,N, t=1,...,T.
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¢ 1, if block 7 is mined in periods 1,...,%
. = X
0, otherwise

For ease of notation throughout this paper, we introduce a set of dummy decision variables
), i=1,..., N, which are assigned the value 0. The generalized integer program for the mine

production scheduling problem is then given by (1)-(6):
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The objective (1) is to maximize the net present value of the mining operation. Constraints
on the amount of each attribute a € A able to be extracted or processed in each time period are
enforced by (2). These constraints are generally referred to as production constraints. There
are also constraints enforcing the rule that each block can be mined at most once (3), and
the block precedence constraints (4). The formulation (1)-(6) contains NT binary decision
variables. A moderate open pit mine production scheduling problem consists of 100,000 blocks
to be scheduled over 10 years, requiring 1,000,000 binary decision variables. Efficient solution
of integer programs of this size is beyond the scope of most commercial solvers on current
hardware.

Caccetta and Hill [2] developed a customized Branch-and-Cut method to solve their for-
mulation of the mine production scheduling problem, where two attributes were considered.
The algorithm was implemented in C++ and contained about 17,000 lines of code [2]. We
have implemented the formulation (1)-(6) in CPLEX version 8.0 by ILOG Inc., a commercially
available mixed integer optimization software package. In Sections 3 and 4, we motivate and
develop valid inequalities that, when added to the formulation, reduce the computation time
required to find the optimal integer solution in almost all cases.

3 Strengthening the formulation: single block case

Our aim is to reduce the number of decision variables in the formulation (1)-(6) by identifying
variables that can be eliminated prior to optimization. This is achieved by combining the block
precedence constraints (4) with the production constraints (2), aggregated over a sequence of
time periods, for a particular attribute. To achieve this, we define the total set of predecessors
for all blocks § = {(4,7) : i € {1,...,N},j € S;}. Let £ be the transitive closure of S. Then
for each block 7, the entire set of blocks including block ¢ that must be extracted for block 7 to
be mined is given by E; = {i} U{j : (i,j) € £}. For the extraction of block ¢ in time period ¢
to be feasible, each of the blocks j € E; must be removed in time period ¢ or earlier. If, for any
attribute, the production capacity required to achieve this exceeds the cumulative production
capacity available up to and including time period ¢, block ¢ cannot be extracted in time period



t or earlier, that is, z{ = 0, 1 < s <t. Hence, intuitively we have that

¢
i =0 if Zq}l > Zuz for some a € A. (7)

JEE; s=1

Although this relationship is intuitively clear, it is possible to deduce it analytically from
the original constraints. The cumulative available production capacity for a particular attribute
a € A, up to and including time period t, is given by the aggregated production constraints,
where (2) is summed over times 1,.. .,
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These can be reduced as follows. For given t € {1,...,T} and a € A, (8) is equivalent to
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i=1 s=1
N ¢
N > g ot <> ui sinceal=0,i=1,...,N. (11)
i=1 s=1

Now for any ¢ € {1,..., N}, E; C{1,...,N}, so

Z ¢l < Z u, = Z qf) zt < Z ug since zj <z forall j € E;.  (12)
el

JEE; s=1 s=1

Thus, since z is binary,

t
<) uy/ D ¢ t=1,...,T, i=1,...,N,a€ A, (13)
s=1

JEE;

which is equivalent to our intuitive conclusion.

Inclusion of (13) in the model (1)-(6) allows a number of variables to be fixed to 0 prior to
optimization, resulting in a reduction in the number of decision variables in the model. The
formulation (1)-(6) with and without this variable fixing has been tested on two pits provided by
our research partner BHP Billiton. The block models for each pit were tested at four different
resolutions, to investigate the effect of our inequalities on models with different block sizes. Note
that we only store the average data values for each block, so a larger number of blocks represents
greater data resolution. Pit 1 is a shallow pit, where the height of the blocks is constant at each
of the four resolutions. Hence the lower resolution instances correspond to flat block shapes,
which become more cubic as the resolution is increased. So for Pit 1 all blocks can be accessed
early in the mine’s life, and there are relatively few precedence constraints in the formulation.
Pit 2 is a deeper pit, where the number of layers of blocks is also increased as the resolution is
increased. Hence for Pit 2 the block shapes are approximately cubic at all resolutions, and there
are a greater number of precedence constraints per block in the formulation. All formulations
were solved using CPLEX v8.0 via ILOG Concert Technology on a Professional Station XP1000
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with 2GB RAM. The default settings for mixed integer optimization in CPLEX were used, and
all integer programs were solved to an optimality gap of 1%. The base case for all models has a
mine life of 15 years. Hence the cases tested in Table 1 correspond to five time periods of three
years each, and ten time periods of eighteen months each. In all cases the block models contain
two attributes, namely the tonnes of rock and the tonnes of ore in each block. The capacity
constraints are such that the entire ore body can be extracted over the life of the mine, with
the production capacity for each attribute identical in all time periods. The computational
advantage of the tighter formulation is shown by the results in Table 1. In all tables in this
paper, we calculate the root node gap using the LP relaxation after CPLEX has performed
its automatic preprocessing algorithms (node 0% in CPLEX terminology). Clearly, constraints
(13) are not automatically detected and applied in the preprocessing phase by CPLEX.

Standard Formulation Strengthened Formulation

Data No. | No. No. B | Root | CPU No. No. B | Root | CPU

Set Time || Dec & B Node | Time Dec & B Node | Time

Pers | Vars | Nodes | Gap | (secs) || Vars | Nodes | Gap | (secs)

(%) (%)
| Pit1 | | | | | |
N =67 3 335 2700 9.5 24.6 || 289 900 3.3 9.4
€] =190 10 670 | 21327007 | 11.3 | 40300" | 567 | 3768100™ 4.7 | 50000"
N =115 3 975 3840 6.0 103.1 || 535 610 2.3 22.6
|E| = 368 10 1150 | 1935300* 7.0 | 100000" | 1044 456000 3.2 | 17479.6
N =182 ) 910 1100 3.9 101.3 || 870 100 1.8 28.5
|E| =615 10 1820 143400 4.4 | 15843.7 || 1719 27210 2.3 | 2469.5
N =354 5 1770 500 1.5 159.6 || 1749 290 1.1 189.9
|E] = 1670 | 10 3540 28900 1.7 | 13745.2 || 3450 29970 1.3 | 12753.0
| Pit2 | H | | | |

N = 66 3 330 800 0.2 15.3 || 292 60 3.4 2.3
|E| = 312 10 660 15700 8.9 946.1 | 566 13030 5.0 251.9
N =90 2 450 4700 | 10.3 75.0 || 396 300 4.8 9.0
|E| = 544 10 900 1016200 | 11.9 | 64183.3 | 760 172700 5.4 | 5410.8
N =166 3 830 3300 | 39.3 434.7 | 621 2290 5.0 103.7
|E] = 1551 10 1660 | 1520500" | 45.2 | 360000 || 1185 164320 7.2 | 13035.4
N = 420 ) 2100 19800 | 68.5 | 10232.8 | 1481 1200 9.7 652.6
|E] = 5900 | 10 4200 | 119000* | 70.2 | 360000" || 2816 101500 9.3 | 60463.3

Table 1: Computational Results for Single Block Case

Note that a T in the table indicates an instance where the formulation was unable to find the

optimal integer solution, either before the branch-and-bound tree reached an imposed memory
limit of 1GB, or the CPU time reached 100 hours. It is evident from Table 1 that dividing the life
of the mine into smaller time periods significantly increases the difficulty of the integer program,
in terms of both the CPU time and the number of branch-and-bound nodes required to find
the optimal integer solution. In addition, the resolution of the block model has a significant
effect on the difficulty of solving the integer program to optimality. In each of the sixteen
instances tested, the strengthened formulation gave a significantly tighter root node relaxation
than the standard formulation. In the eleven instances where both formulations found the



optimal integer solution and the strengthened formulation computationally outperformed the
standard formulation, the strengthened formulation was an average of 4.8 times faster and
required an average of 6.4 times less branch-and-bound nodes.

4 Strengthening the formulation: multiple block case

4.1 Valid knapsack inequalities and covers

We define the union of the entire precedence sets for the blocks in the set X to be E(X) =
Usex E;. We extend the idea developed in the single block case by considering the blocks in
E(X) and the cumulative production capacity available up to and including time period ¢. This
relationship can be described by aggregated production constraints for the blocks in the set X,
again derived by summing (2) over time periods 1,...,t.

However, when considering a set of blocks, it is possible for the union of the entire precedence
sets of the blocks to overlap. To ensure that each block is only counted in the aggregated
production constraints once, we let Px = {P, : i € X} define a partition of E(X) such that
UiexP; = E(X), P,CE; forall ie X, ,NP;=0 forall i%# j. We call such a partition
precedence aligned. An example of a set of blocks X, the union of the entire precedence sets
E(X), and a corresponding precedence aligned partition in a two-dimensional case are given
in Figure 2, where we use a slope angle of 45°, so that the minimal immediate predecessor set
S; for each block 7 contains the block immediately above it, and the block either side of that
block.

(1)
b c
X={a,b,c}
(2)
b c
EaU EbU EC
(3)

P,UP,UP,

Figure 2: Tllustration of (1) A possible cover set X (2) The union of the entire precedence sets
E(X) (3) A precedence aligned partition Px of E(X).



Theorem 1. For given attribute a € A, period t € {1,...,T}, set X C {1,...,N} and
precedence aligned partition Px

5 (zq;) de Y (1)

i€X \jeP; s=1
s a knapsack inequality valid for the mine scheduling polytope.

Proof: By (11), and since E(X) C {1,..., N}, the following inequality is valid: ZjeE(X) qj :c; <
Zi:l u?. Hence, and since Py partitions E(X), it must be that the following inequality is
also valid: >,y (Zjepi q;‘asg) < 3!, u}. Furthermore, for all i € X, P; C E; and 2 < z}
for all 7 € E;; the result follows. O

In what follows, we will focus on knapsack covers for (14) that include variables z! for all
1 € X. We will call such a cover a complete cover. We now show that for complete covers the
choice of partition becomes irrelevant. Suppose X is a complete cover for (14), i.e. suppose
that Y ey (YCjep @f) > Yoy ug. But {P : i € X} partitions E(X), s0 Y, (3 cp, ¢7) =
ZiEE(X) g¢. Thus we may equivalently define X to be a complete cover for attribute a and

period t if
t
D@ > u (15)
s=1

i€B(X)

Clearly (15) does not depend at all on the choice of precedence aligned partition.
For X a complete cover for some attribute a and period ¢, the corresponding cover inequality

3 at < x| -1 (16)

1€X

is valid for the mine scheduling polytope; as the above discussion shows, it is simply a cover
inequality for a valid knapsack inequality. This significantly simplifies the problem of discovering
covers. Note that (13) from Section 3 is a special case of (16), since it is an inequality for
complete covers X with | X| = 1.

In closing this section, we note that it is not hard to show that we can always derive a
knapsack constraint and corresponding complete cover from any knapsack constraint of the
form of (14). (If X' C X gives rise to a cover for (14), choose any partition {Q; : i € X'} of
E(X")\ Uiex' P; with Q; C E;, and set Px» = {P;,UQ; : i € X'}. Then Px: is a precedence
aligned partition of E(X'), and X' is a cover for (14) with X’ and Py in place of X and Px
respectively.)

4.2 Connections to the precedence constrained knapsack polytope

An alternative derivation of the valid inequalities (16) stems from the following observation.
Consider a time period ¢t € {1,...,T} and an attribute a« € A. The aggregated production
constraint for time period ¢, given by (11), combined with the precedence constraints (4) on
the time period ¢ decision variables describe a polytope known as the precedence constrained
knapsack (PCK) polytope. Let us denote such an instance as PCK; ,. Johnson and Niemi
[7] showed that the PCK problem is NP-complete. The polyhedral structure of the problem
was first investigated by Boyd [1], who generalised results corresponding to finding cover in-
equalities for the standard knapsack polytope. In particular, Boyd derived conditions under



which inequalities of the form (16) are facet-defining for the convex hull of the feasible solu-
tions to PCK;, restricted to the variables in £(X). Further investigation of the PCK polytope
is presented by both Park and Park [9] and van de Leensel et. al. [13], where lifting orders
and general sequential lifting procedures are derived to lift valid inequalities from lower di-
mensional polytopes into facets of the PCK polytope. Note that the polytope of the open pit
mine production scheduling problem lies in the Cartesian product of the PCK; , polytopes for
allt € {1,...,T} and a € A. Hence inequalities that are facet-defining for PCK, , will not
necessarily be facet-defining for the mine production scheduling problem.

4.3 The two block case

To test the effectiveness of the complete cover inequalities we consider complete covers X with
|X| = 2. For all pairs of distinct blocks i,5 € {1,..., N}, we find the latest time period
t(i,5) € {1,...,T} such that both ¢ and j cannot be mined by period (7, j) without violating
the cumulative capacity constraint for some attribute. In other words, (i, ) is the maximizer
of t over all t = 1,...,T such that ZkeEquj qp > 2221 u}, for some a € A, if one exists. For
each pair 4, j for which #(i, j) is found, provided that neither i nor j can be removed as single
block complete covers, i.e. eliminated using the results of Section 3, a constraint of the form

is added to the formulation (1)-(6), (13) prior to optimization.

Rather than directly add all such block pair inequalities to the formulation, we instead add
them to a pool of cuts in CPLEX known as UserCuts. Cuts from this pool are then added
to the formulation by CPLEX during the optimization if they are violated by the incumbent
solution. Adding the cuts in this way ensures that the solution of the linear programming
relaxation is not slowed down due to the inclusion of a large number of redundant inequalities.
Results following the addition of such two block inequalities to the strengthened formulation
are presented in Table 2. Note that the IP CPU time column does not include determination
of the constraints (17), while the overall CPU time column does.

In all instances tested, the root node gaps are less than or equal to those of the single
block case reported in Table 1. In ten instances the CPU times were improved further (an
average of 2.0 times faster), and in nine instances the number of branch-and-bound nodes was
further reduced (an average of 3.0 times less nodes). Note that we also considered adding only
two block inequalities that were facet-defining for PCK, , according to Boyd’s condition [1], as
discussed in Section 4.2. However, in all cases adding all the two block inequalities as in Table
2 gave significantly better computational results.

4.4 The multiple block case and a cutting plane approach

Clearly, finding and adding all complete cover inequalities a priori is impractical in general.
Thus to test the effectiveness of such inequalities for complete covers of size greater than two,
we develop a cutting plane approach, using a straightforward integer program to solve the
separation problem exactly, and applying constraints at the root node only.

The separation problem for the complete cover inequality can be formulated as follows.
Given fractional solution #! to the root node relaxation, we seek a time period ¢, an attribute
a, and a complete cover X for ¢ and a, such that (16) is violated by Z*, i.e. such that

Y@ > X|-1. (18)

1€X



Data No. | No. User | No. User | No. B | Root 1P Overall

Set Time Cuts Cuts & B | Node | CPU CPU

Pers | Applied Added | Nodes | Gap | Time Time

(%) | (secs) | (secs)

| Pit1 | | | | | | | |
N = 67 5 14 86 940 3.3 7.7 7.9
€] =190 10 59 238 | 566600 4.3 | 9249.5 | 9249.8
N =115 5 25 187 500 1.9 21.4 22.2
|E] = 368 10 41 420 | 138700 2.8 | 5194.5| 5195.4
N =182 5 24 198 200 1.7 35.5 38.2
|E] = 615 10 74 886 | 185740 2.2 | 16933.4 | 16936.5
N =354 5 5 80 270 1.1 163.1 181.0
|E] = 1670 | 10 24 620 | 36950 1.2 | 13331.4 | 13350.3
| Pit2 | | | | | | | |

N = 66 5 12 93 80 2.4 2.6 2.8
|E] = 312 10 23 181 3800 3.9 87.5 87.8
N =90 5 6 81 100 3.3 7.5 8.0
|E| = 544 10 33 337 | 23100 3.8 818.9 819.5
N = 166 5 24 326 400 4.7 42.9 45.9
|E] = 1551 10 41 1039 | 24900 5.7 | 44155 | 4419.2
N =420 5 44 667 3000 8.0 1173.1 1221.5
|E] = 5900 | 10 67 2346 | 73820 7.9 | 56614.5 | 56668.9

Table 2: Computational Results for Addition of Two Block Inequalities

A model of the separation problem must count each block in the union of the entire prece-
dence sets of the blocks in X exactly once, as in the development of the aggregated production
constraints for multiple blocks. To derive a linear integer programming model of the separation
problem, for each time period ¢, we let

1, if block 7 is included in the set X .

ZZ — . 1 = 1’ ey N,
0, otherwise

w = 1, if block. i is included in E(X) i=1.. ..N
0, otherwise

We implemented a cutting plane algorithm to be applied at the root node of the branch-and-
bound tree. At each iteration of the algorithm, the complete cover separation problem is solved
by solving an integer program formulated using the binary variables z; and w; defined above.
If a violated complete cover inequality is found, the complete cover is reduced, if necessary,
to ensure that it is minimal (in the sense that > . px\ ) @ < S wg for all i € X),
and the corresponding constraint is added to the formulation. Following completion of the
cutting plane algorithm, the inequalities found are added to the pool of UserCuts in CPLEX,
and the incumbent integer program is solved to determine the optimal integer solution. This
cutting plane algorithm has been implemented for the data sets tested in Section 3, with
A = {rock tonnage, ore tonnage}. The number of separation instances solved, along with
the number of cover inequalities added to the formulation, is reported in Table 3. We also
experimented with running the cutting plane algorithm for one of the attributes only. In
general the results were equivalent or worse than those presented in Table 3.
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Data No. No. No. No. Cut No. Root | Final
Set Time | User | Covers | Sep Plane | B & B | Node IP

Pers Cuts | Added | Probs CPU Nodes | Gap CPU

Applied Solved | Time (%) | Time

(secs) (secs)

| Pit1 | | | | | | | | |
N =67 5 52 56 90 75.8 510 2.2 8.7
€] =190 10 94 110 360 168.0 | 871950 4.0 | 18920.1
N =115 5 39 46 90 239.4 200 1.9 15.6
|E| = 368 10 99 111 560 806.5 | 137900 2.5 | 7796.0
N =182 5 54 59 110 830.1 800 1.5 74.2
€] =615 10 123 140 640 2620.0 | 66950 2.0 | 6807.9
N = 354 5 55 62 270 2351.4 400 1.1 228.5
|E] = 1670 | 10 85 95 400 4549.0 2600 1.2 | 1784.4
[ Pit2 | | | | | | | | |

N = 66 5 16 22 60 8.9 50 2.3 3.1
IE| = 312 10 37 44 140 23.3 900 3.1 46.8
N =90 5 27 30 140 63.6 120 3.0 8.1
|E| = 544 10 62 69 240 116.2 7050 2.6 445.0
N = 166 5 47 54 240 1306.6 360 2.5 67.8
|E] = 1551 | 10 85 96 380 2995.0 | 64400 2.9 | 12320.9
N = 420 5 114 117 520 | 110932.7 700 5.3 | 1016.0
|E] = 5900 | 10 240 253 1660 | 389083.9 | 67000 5.4 | 93665.7

Table 3: Computational Results for Exact Separation, Inequalities Added as User
Cuts

The greatest benefit from the cutting plane algorithm reported in Table 3 is that in all
cases, the root node gap has decreased when compared to the gaps reported in Tables 1 and
2. In nine of the sixteen instances tested, the number of branch-and-bound nodes required to
find the optimal integer solution after implementation of the cutting plane algorithm is the
lowest of the four approaches tested in this paper (an average of 2.5 times less nodes). In
four instances the CPU time required to solve the final integer program is the fastest after the
implementation of the cutting plane algorithm (an average of 2.5 times faster). This indicates
that there is potential for further computational improvement if effective inequalities can be
derived efficiently.

Clearly the computation time for finding violated complete cover inequalities by solving an
integer program is prohibitive. However the structure of the separation problem is quite nice; it
is close to a precedence constrained knapsack problem. Hence finding efficient exact algorithms
or effective heuristics may be possible; this is a direction for future research.

5 Conclusions and future work

The single block complete cover inequalities derived in Section 3 were found to be highly
beneficial in the majority of cases tested, in particular for reducing the CPU time required by
the solver as the height of the blocks decreased. A priori addition of two block complete cover
inequalities was also found to be beneficial.
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As seen in Section 4.4, when generating complete cover inequalities in the case of multiple
blocks we need to be careful. No variables are eliminated by such constraints, and generation of
these inequalities can be inefficient. This can lead to an increase in the overall CPU time. Hence
the development of efficient algorithms for solving the separation problem is an important area
for future research, as already mentioned. Nevertheless, the addition of such inequalities can
lead to computational benefit in solving the integer program.

Other work for the future includes applying complete cover inequalities in a branch-and-cut
framework. Particularly on branches for which variables have been set to one, thus reducing
available production capacity, local single block elimination is likely to be particularly effective.

The constraints used in this paper were all unlifted, but can all be viewed as valid inequal-
ities for a particular precedence constrained knapsack (PCK) polytope. As mentioned earlier,
techniques for lifting such inequalities have been developed (Park and Park [9] and van de
Leensel et. al. [13]); these could be applied to further strengthen the inequalities added.

Finally, future work would seek valid inequalities that are facet-defining, or at least strong,
for the convex hull of the formulation. Inequalities that are facet-defining for the PCK polytope
may be helpful. This approach could be particularly effective if an efficient scheme for deriving
these inequalities is developed. This work is in progress.
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