An Augmented Primal-Dual Method for Linear
Conic Programs

Florian Jarre
Institut fir Mathematik
Universitat Diisseldorf
Universitatsstrafie 1
D-40225 Diisseldorf, Germany

e-mail: jarre@Qopt.uni-duesseldorf.de
and
Franz Rendl
Institut fur Mathematik
Universitat Klagenfurt
Universitatsstrale 65-67
A-9020 Klagenfurt, Austria
e-mail: franz.rendl@uni-klu.ac.at

April 11, 2007

Abstract. We propose a new iterative approach for solving linear programs over convex
cones. Assuming that Slaters condition is satisfied, the conic problem is transformed to the
minimization of a convex differentiable function. This “agumented primal-dual function” or
“apd-function” is restricted to an affine set in the primal-dual space. The evaluation of the
function and its derivative is cheap if the projection of a given point onto the cone can be
computed cheaply, and if the projection of a given point onto the affine subspace defining the
primal problem can be computed cheaply. For the special case of a semidefinite program, a
certain regularization of the apd-function is analyzed. Numerical examples minimizing the
apd-function with a conjugate gradient method illustrate the potential of the approach.

Key words. Conic program, linear convergence, augmented primal-dual function.

1 Introduction

We present a new method for solving convex conic programs. The method is based on mini-
mizing a convex differentiable “augmented primal-dual function” (apd-function) that is related
to the augmented Lagrangian but less problem dependent and does not require any penalty
parameter. If Slaters condition is satisfied, the problem of solving the conic program is equiv-
alent to minimizing the apd-function. The evaluation of function value and gradient of the
apd-function requires two conic projections and four projections on an affine subspace. If these
projections are cheap it is possible to minimize the apd-function by any descent method such

as a conjugate gradient type method or a limited memory BFGS method. In our numerical
examples we report results obtained with a conjugate gradient approach.

When applying this algorithm to the apd-function of a linear program in standard form
with a system matrix A € R™*", a factorization of the matrix AA”T can be computed in a
preprocessing phase. Given this factorization the cost per iteration is of order O(mn) arithmetic
operations. When minimizing the apd-function of a linear program by Newton’s method — at
a cost of order O(n?) arithmetic operations per iteration — this algorithm converges in a finite
number of iterations. We therefore anticipate that a conjugate gradient or BFGS approach
will converge rapidly as well.

When applied to a semidefinite program having a unique and strictly complementary solu-
tion the algorithm is sublinearly convergent. We therefore derive a simple modification of the
apd-function for which Newtons method is locally quadratically convergent.

Our approach is related to projection methods such as considered for example in [1]. New
elements of this paper are a transformation of a conic problem into an affine-convex pair with
cheap projections onto the affine set, a conjugate gradient acceleration, a regularization for the
case of semidefinite programs, and promising numerical examples.

Several methods have been proposed in the literature to overcome the limits of interior
point methods for solving large-scale semidefinite programs. We recall the spectral bundle
method [4] which uses eigenvalue optimization. The low-rank factorization approach of Burer
and Monteiro [2] treats semidefinite programs using nonlinear optimization techniques. The
currently strongest computational results are reported in the papers by Toh [11] and by Kocvara
and Stingl [5]. Toh uses an iterative solver for the augmented KKT system, and Kocvara and
Stingl apply an iterative solver to a modified barrier problem. The approach presented in the
current paper is closely related to the ’boundary point method’ from [8] and the regularization
approaches in [6].

2 Linear conic programs
We consider linear conic programs of the form
(P) minimize (¢,z) |z € KN (L+D),

where K is a closed convex cone in a finite dimensional Euclidean space F, L is a linear
subspace, and b, ¢ € E are given data. We always assume that the dimension of E is denoted
by n. Our practical applications refer to the cases where K is the positive orthant in £ = R"
and where K is the cone of symmetric positive semidefinite matrices in £ = S' = {X € R |
X = XT}. Here,n=1(1+1)/2.

We always assume that K has a nonempty interior (no hidden equality constraints) and
that K is pointed (in LP-notation this assumption means there are no free variables).

Often the set £ is given in the form

L={i|Az=0} and L+b={z]|Ax= Ab}, (1)

where A is a matrix or some other representation of a linear operator. In particular, our
analysis yields an algorithm applicable to linear programs of the form

minimize ¢! z | Az =b, x>0,

where b := Ab.
We use the dual program as introduced in [7],

(D) minimize (b,s) | s € K2 N (LY +¢),
where £ is the orthogonal complement of £ and
KP ={secE|(s,z) >0Vz e K}

is the dual cone of K.
It is easily verified that weak duality holds, namely

(b,c) < {c,z) + (b,s)

for all z, s that are feasible for (P) and (D). When (P) satisfies Slaters condition and (D) has
a feasible solution then strong duality holds, see [7]. In this case, a point z is optimal for (P)
if, and only if, there exists a point s feasible for (D) with

(b,c) = (c,z) + (b, s). (2)

We denote such z and s by z°P! and s,

3 Decomposing the conic program

The linear constraints of (P) and (D) (including (2)) are satisfied for all points in the affine
space
A= (L+0) x (L2 +¢) N {(2:5) | {e,2) + (b,5) = (b,)} € E x E,

and the conic constraints are satisfied for all points in the cone
C=KxKPCExE.

By the assumption on K, it follows that C is full dimensional, dim(C') = 2n. We assume that
A is of dimension n — 1. (In the case that b € £ and ¢ € £+ the set A is of dimension n. As
we do not provide solutions in the relative interior of the solution set, this case is trivial with
optimal solution 2°P! = 0.)

Solving (P) hence is equivalent to finding z := (x;s) € ANC where A is an affine subspace
and C a convex cone. Moreover, as we will see, projections onto A and C' are easily computable
for the case of linear or semidefinite programming.

For a closed set C and a vector Z we denote the distance of Z to C by

d(z,C) := min{||z — z||2 | z € C}.
Thus, solving (P) is also equivalent to finding z such that
_1 2 2y _
¢(Z) T 2(d(2? A) + d(Z,C)) - 07

i.e. such that the differentiable convex function ¢ is minimized. (Differentiability of ¢ is shown
in Remark 1 below.)

When (P) is a linear program in standard form, the function d(z,C)? is of the form
>i((2)1)? where (2;)T := max{0, z;} . Thus, ¢ is closely related to the augmented Lagrangian
function. We therefore call ¢ an augmented primal-dual function. It differs from the augmented
Lagrangian in that the representation of the linear subspace £ (i.e. the matrix A when L is of
the form (1)) does not enter the representation of ¢. In other words, ¢ is less “data dependent”
than the augmented Lagrangian — and it depends on a larger number of unknowns. As we will
see, however, the dependence on a large number of unknowns does not imply that computations
with ¢ are numerically expensive.

Remark 1 For a closed convex set C let
II¢ be the orthogonal projection

(with respect to the Euclidean norm) onto C. Then, given an algorithm for the evaluation of
Il¢, the distance d(z,C) = ||z — H¢(z)l|2 is easily computed. Moreover, a steepest descent step
of step length 1 starting at z for minimizing the differentiable function ¢¢ with

1d(z,C)2

de(z) = 5

will lead to the nearest point minimizing d (i.e. to ll¢(2)). Unfortunately, this property is lost
when minimizing the sum ¢(z) = 3(d(z, A)*> + d(z, C)?) by the steepest descent method.

Proof. For completeness we provide an elementary proof of Remark 1. We show that ¢¢(2)
is a differentiable function and Ve (z) = z — Il¢(2). Let 2 :=Il¢(2). Let Az be arbitrary. We
show that

de(z 4+ AA2) = de(2) + AAZT (2 — 2) 4+ o(|N)).

First note that
20c(2 + AAz) < [|2 = (2 4+ M) |3 = ||2 — 2|5 — 2A(2 — 2)T Az + O(\?).

On the other hand, let 2()\) := He(z + AAz). As 2()\) € C it follows (2(\) — 2)T(z — 2) <0,
and [[Z(A) — 2|2 < ||AAz]|2. It follows

2¢c(z +AA2) = [[2(A) = (2 + AA2) 13 = [[(2(N) — 2) + (2 — 2) — AAz|3
> 12— 213 =202 — 2)TAz — O()\?).
This completes the proof of Remark 1. 0

Note that the projections onto A and C' — and thus the function ¢ — are easy to compute
for the case of linear and semidefinite programming:

For the case of linear programming, C is the positive orthant in R?", and the projection onto
C' can be performed in O(n) arithmetic operations. In the case of semidefinite programming,
C is the cartesian product of the semidefinite cone with itself, and the projection onto C' can
be computed by performing the eigenvalue decompositions of two symmetric matrices (order
I3 operations).

In Section 6 it is shown that also the projection onto A can be done efficiently for these
two examples. If £ is given as in (1) with Ab € R™ and the Cholesky factorization of AAT
is computed in a preprocessing step before starting the algorithm then the projection can be
evaluated in O(mn) operations.

4 Solving (P) and (D)

As shown in the previous section, solving (P) and (D) is reduced to finding a point in the
intersection of the two convex sets A and C, both of which are explicitely given. In this
section we assume that the intersection of A and C' is nonempty.

4.1 Minimizing the distance between A and C

Standard projection methods solve the problem of finding a point in A N C by the following
stmple algorithm:

Algorithm 1 (Alternating projections)
Initialization: Let 20 € A be given. Set k = 0.

1. Set 2F =T (29).

2. Set 2P =TI 4 (2%). Set k =k +1. Go to Step 1.

By Remark 1, one iteration of Algorithm 1 can be interpreted as one steepest descent step
for minimizing %d(., C)? followed by a steepest descent step for minimizing %d(LA In
general, such method converges very slowly. We therefore consider an acceleration minimizing
the sum of both functions by a conjugate gradient scheme:

4.2 Minimizing ¢

The first simple approach for minimizing ¢ is a conjugate gradient type method with Polak-
Ribiere type update or Fletcher-Reeves type update of the search direction. For descent meth-
ods it is important to understand the behavior of the second derivative of the objective function.

For linear and semidefinite programming, the function ¢ is twice differentiable almost
everywhere. (It is differentiable everywhere.) For linear programming the eigenvalues of the
Hessian H of ¢ at any point z such that H(z) exists are at most 2 (as each of the Hessians of
3d(. ,A)? and 3d(. ,C)? only has the eigenvalues zero and one.) The eigenvalues of H are
nonnegative, but unfortunately, they may be zero or arbitrarily close to zero. This makes the
application of descent methods for minimizing ¢ difficult. Before continuing our analysis of the
function ¢ we reduce the number of degrees of freedom by restricting ¢ to a lower dimensional
subspace:

Note that A is an affine subspace. We restrict ¢ to A and define the function ¢ by

BE) = 0(2) = A, C)f forze A (3)

We stress that (B is not defined outside A. To emphasize this fact we also denote the variable
by Z rather than just z.

Remark 2 The function ¢ is differentiable, and for 2 € A its gradient is given by

Vé(2) = 2 — M4 (e (2)).

Proof. Let A = z + L where z is a fixed vector and L a linear subspace. Note that

Z2-NA(Ip(2)) =0, (2 - Oe(2)).
By Remark 1 it therefore suffices to recall the following more general (and well known) state-
ment:

If p: E x E — R is a differentiable function, then the gradient of the restriction ¢ of ¢ to
A is given by
V() =1L (Ve(2)).

The gradient of ¢ at Z € A is a vector w € L such that
P2+ A2) = ¢(2) + Wl Az + o(A2)

for all sufficiently small AZ € L. The vector w := Il (Vp(Z)) certainly lies in L. For Az € L
it follows from symmetry of 117, that

This completes the proof. 0

A steepest descent step with line search for minimizing ¢ starting at a point 2 = zF € A is
the same as the computation of z*+1 with Algorithm 1 followed by an extrapolation along the
line 2% + A(2F! — 2*). We briefly list a conjugate gradient acceleration of the steepest descent
approach:

Algorithm 2 (cg-method for minimizing (;3)
Let 2° € A be given. Let AZ° := —V$(Z0). Set k =0.

~

. Let Ay, == argmin{¢(z* + AAZ*) | A > 0}.

2. Set 2= zF 4 N\ AZR.

3. Compute AZF+L from AZF and V(]B(Ekﬂ) using an update formula such as Polak-Ribiére.
4. If k is a multiple of (n — 1) set AZFH1 .= —V@(ZF+1) (restart).
5

. Setk:=k+1. Go to Step 1.

Remark 3 The concept of Algorithm 2 is in some sense ’complementary’ to the boundary
point method of [8]. The latter algorithm generates iterates within the primal-dual cone ap-
proaching the set of linear constraints, while the iterates in Algorithm 2 always satisfy the
linear constraints and approach the primal-dual cone.

Remark 4 When C is polyhedral, and (P), (D) have a unique optimal solution 2°Pt then the
Hessian of ¢ is piecewise linear and positive definite near z0pt~(smce 2°Pt is necessarily strictly
complementary!) and thus, Newton’s method for minimizing ¢ converges in a finite number of
iterations.

Now consider the case where C' is not polyhedral. Below we give a very simple example
with a unique, strictly complementary optimal solution z°P! of (P) and (D) such that there are
directions 2°P! + AAZ through 2z°?! along which the intersection of A and C is “tangential” (the
function gg in (3) growing in the order of A*) and other directions along which the intersection of
A and C' “transversal” (& growing in the order of A?). This implies that the condition number
of the Hessian of gg near z°P* is unbounded and the conjugate gradient method is likely to
converge sublinearly! For the case of semidefinite programs we therefore derive an acceleration
for this situation.

5 Application to semidefinite programs

In this section we use the following notation common for semidefinite programs: The space
of real symmetric [x l-matrices is denoted by S'. The dimension of S' is n := (I + 1)/2.
The notation X = 0 (X = 0) is used to indicate that X € S' is positive semidefinite (positive
definite). The standard scalar product on the space of [x l-matrices is given by

l
(C,X) :=C e X :=trace(CTX) = Z Ci ;i Xij
ij=1
For given matrices AW € 8§, i =1,2,...,m, we define a linear map A : S" — R™ by

A o X
A(X) := : , XedSh
Alm) ¢ X

The adjoint operator A* : R™ — S! is given by
m .
A(y) =Y 5AD, yeR™
i=1

With these definitions, the standard pair of primal and dual linear semidefinite programs
can now be stated as follows:

(P) minimize C e X subject to A(X)=b X =0
and
(D) maximize b’y subject to A*(y)+S=C, S>0.

The dual program is equivalent (in the sense that the optimal solutions coincide) to
(D) minimize BeS subjectto SeLlt+C, S=0,

where B € S is such that A(B) =band £ ={X € S' | A(X) =0}.

Assumption 1 Throughout this section we assume that the matrices AW are linearly inde-
pendent and that (P) and (D) are strictly feasible and that there is a unique and strictly
complementary solution Z°Pt = (X°Pt, S°Pt) of (P) and (D) satisfying X°P! + SP = 0.

Simple example: We give a simple example of a pair of semidefinite programs (P) and (D)
satisfying Assumption 1 such that the Hessian of ¢ (see (3)) has an unbounded condition
number for Z near Z°P!. (The Hessian is not defined at Z°P*.) Let m = 1 and the data of (P)
and (D) be given by

(00 (10 m._ (11
c._(o 1), B._<0 0), and A <1 O)

The primal-dual optimal solution Z°Pt = (X°Pt S°P') = (B, () is unique and strictly comple-
mentary. The space L := £ x LN {(AX,AS)| C e AX + B e AS = 0} is given by

:{AZ:(AX,AS): ((f‘; _ba><:z _Ob)>| a,beR}.

By construction, Z?' + AZ € A for AZ € L, and for small |a|, |b| it is easily verified that
d(ZP'+ AZ,C)=0(b)) ifa=0, d(Z% +AZC)=0(a? ifb=0.

Thus, the second directional derivative of <;~5 is zero Z°P! along the direction b = 0 and positive
along the direction @ = 0. Minimizing ¢ by some conjugate gradient scheme will result in a
very slow algorithm.

Discussion: Of course, the above example is not surprising. We have given a convex char-
acterization of the optimal solution of a convex program as the intersection of two convex
sets A and C, each of which is easily computable. We do not have the property that this
characterization is well conditioned under “reasonable assumptions”. So far, a computable
characterization of the optimal solution of a convex program with both properties — convexity
and well conditionedness — is unknown. (The KKT conditions are well conditioned under suit-
able assumptions but the complementarity part of the KKT conditions is non convex.) This
lack of a convex and well conditioned characterization of the optimal solution is responsible for
the fact that most polynomial-time methods for convex programs use some homotopy approach
to compute an optimal solution.

5.1 A local acceleration

We propose an acceleration that can be applied locally near the optimal solution ZP! =
(X P!, S of (P) and (D), e.g. when the minimization of b is turning slow.

Let f(Z) = f(X,S):= || XS — SX||%. The non convex function f is minimized at Z°Pt. It
is differentiable and the derivative

2XSX — X285 — SXx?2
Vzf(Z) =2 (QSXS ~- $2X — X52>

can be computed in order n? operations. More precisely, by exploiting the fact that XS =
(SX)T, it can be evaluated with three matrix-matrix multiplications: two for evaluating
2XSX — XXS — SXX = X(SX — XS) + (X(SX — XS))T, and one more for the second

block of Vf(Z). Also the derivative of the restriction of f to A can be computed as in the
proof of Remark 2.

We therefore propose to solve (P) and (D) in two stages, the first one minimizing gb for
Z € A, and when convergence of this stage is slow, starting a second stage minimizing gz§+ f for
Z € A. For both stages we may use a nonlinear cg-method as in Algorithm 2. The cg-method
is n-step locally quadratically convergent if the objective function is three times differentiable
near Z°P* and if the Hessian at Z°P! is positive definite. In Lemma 1 below, we show a slightly
weaker statement.

Note: In the following we will only consider points in A. For compactness of notation we
omitt the additional identifcation Z to indicate that Z € A and shortly write Z € A. The
restriction of ¢ + f to A will be denoted by ¥,

U(Z):=¢(Z)+ f(Z) for Z € A.
Again, we emphasize the restriction to A.

Lemma 1 The gradient of W is strongly semismooth and the generalized Hessian is positive
definite at Z°Pt.

By Theorem 3.2 in [9], Lemma 1 implies quadratic convergence of Newton’s method for
minimizing . We therefore anticipate that also conjugate gradient type algorithms or limited
memory BFGS algorithms will converge rapidly.

Proof. Strong semismoothness of the gradient of ¥ at Z°? follows from [10]; here, we prove
positive definiteness of the generalized Hessian.

We start by noting that in spite of f not being convex, the eigenvalues of the Hessian of f
at Z°P! are nonnegative since Z°P! is a minimizer of f. Hence it suffices to show that either ¢
or f has a positive curvature along any given direction through Z°P.

Let a perturbation AZ = (AX,AS) with Z%' + AZ € A and |AX||% + [|AS]|% = 1 be
given. It suffices to show that there exists a p > 0 independent of AZ such that

1 ~
id(Zf’Pt +AAZ,C) 4 f(ZP' + NAZ) > NPp

for sufficiently small A > 0. By complementarity, X°P!SPt = (0 = S°PLX°P! and thus the
matrices X°Pt = 0 and S = 0 commute. This guarantees that there exists a unitary matrix
U and diagonal matrices

A= diag ()\1,)\2, .. .,)\Z) > 0 and X = diag (01702, ce ,O'l) > 0 (4)
such that
Xt = UAUT and S =UXUT. (5)

By strict complementarity we may assume without loss of generality that there exists a k <
such that
/\12)\22---2)%>O:)\k+1:-'-:)\l

and
01202:...:Uk:0<0'k+1S...SO’[.

As shown in Corollary 1 in [3], the following system of m + 2n linear equations for 2n + m
unknowns (AXAS, Ay):

A(AX) =p,
A*(Ay) + AS =Q, (6)
My, (UT(AXSOPE 4+ XPEAS)U) =7,
is nonsingular. Here, IL,,(UT (AX S + X°P!AS)U) denotes the upper triangular part of the

matrix UT(AX S + XPPAS)U; the right hand side of (6) consists of p € R™, Q € S' and
the upper triangular part r of an [x [-matrix. For brevity we write r € R".

We eliminate the variable Ay from the second equation of (6). To this end let F : S' —
R™™™ be a linear operator of full rank such that F(A*(y)) = 0 for all y € R™. Let ¢ := F(Q).
By construction of F, also the linear system

A(AX) p
M @é{) — F(AS) — |y (7)
M (UT (AX SOPE 4 XOPEAS)U) r

has full rank. Here, (p”,¢")” € R” and r € R".

First note that ||(p”, ¢*,rT)T|| = | MAZ|| > 1/||M~}||2 since ||AZ|| = 1. From ZP'+AZ €
A it follows that p = 0 and ¢ = 0. Hence , ||r||2 > 1/||M Y.

Note that problems (P) and (D) remain invariant when replacing B with X! and C with
St Hence, from ZP' + AZ € A it follows that

0=CeAX +BeAS

= S e AX + X' o AS. (®)
Let AX := UTAXU and AS := UTASU. The last equation in (7) then states that

I, (AXY + AAS) =7, (9)
while relation (8) and UU” = I imply that

0=AXeX+ASeA. (10)

As U is wnitary, [AX | r = |AX|p, [|AS|F = |AS]F.

We partition AX conforming with the zero-structure of A and 3,
AX — (Az(}’1 Az(12) 7
AXy AXao
where 5)/(11 e S* and X)/(gg € SI=F. Likewise we partition AS. Let
€ := min{\g, og11,1/\1,1/07,1/2}.
From (9) follows

[71? < |AX 1250 % + [AX 22590 + A11AS11[|% + [|A11AS 123,

10

and by ||7|l2 > 1/||M |2 this, and the definition of ¢ imply
|AX 127 + [AX 27+ 1AS 17 + [AS12]7 2 €/ M7 3. (11)

Let ¢ € (0, 1] be given.

Assume that |AX || > €5/(4|M~||2) =: . The maximum absolute value of the eigen-
values of AX 99 is at least u/n. If the maximum diagonal element is at least u/8n? it follows
from (10) and the definition of € that the smallest diagonal element of Diag(g)/(22, Zgn) and
hence its smallest eigenvalue is at most —e?j/8n3. If the maximum diagonal element is less
than p/8n? there is a 2 by 2 submatrix of AX 9o with eigenvalue less than —pu/8n?. By the
interlacing property, AXy, has an eigenvalue less than —pu/8n2. Thus, in both cases, the
distance of Z°P' + AAZ to C is at least Ae?u/8n3, and the function ¢ grows quadratically
with A.

The same argument holds when HZEHHF > L.

Now assume that HK)J(QQHF + HKEHHF < 2u. By (11) it follows that and ||§(12H% +
|AS12]|% > €2/(4||M~13). By symmetry of (P) and (D) we may assume again without loss
of generality that ||AS12||F > €/(4]|[M~1||2). Observe that

F(ZP £ AAZ) = (A + AAX)(Z + AAS) — (2 + AAS) (A + AAX) |2
= A2(|AAS + AXY — SAX — ASA|Z) + O(AY)
> 2)2[[A11AS 1 + AX 1530)|2 + O(AY).

For small A, the fourth order term is dominated, and
F(ZP' £ AAZ) > N2 A1 A1y + AX 1550]|%.

We now assume by contradiction that HAllZElQ + E(lQZQQ”%—\ < 6% :=e8/(64]|M~1|3). This
implies ||A11A8122521 + AXq9||p < /€ and
5(12 ° /55/12 < —A11/Ax§1222_21 ° /&glz -+ (5/6)”/5512“}7
< —AS e ASE% + (5/€)||AS 12| r
< —[[ASw|[f(e — 4| M 20/%)

< —[|AS12]%e?/2 < —p.

On the other hand, (since ||§(11H% + ||K§22H% <1)

0=AXeAS
= AX e AS
:ﬁll‘/&gll+2§(12.Z§12+§(22.Z§2Q
< 20+ 2AX 15 ¢ AS1o
<2pu—2p=0,

which yields the desired contradiction. 0

11

Remark 5 The computational effort of the evaluation of the gradient off 1s comparable to the
evaluation of the gradient ofgb Thus, it may be cheaper to first minimize gb until convergence
slows down, and then minimize qﬁ + /if where the factor k > 0 is chosen as to compensate for
the fact that f s not invariant under scaling of X and S.

6 Cheap computation of the projection onto A

First note that a projection onto an n — 1-dimensional affine subspace of R?" can (after an
initial factorization of the projection matrix) generally be done in order n? operations. To
make our algorithm practical we show that it can be done in a cheaper way for the particular
sets A arising in linear programming. (Of course, the same reasoning applies to semidefinite
programming replacing A” with the adjoint .A*.)

The computation of the projection below is closely related to rank-one update formulae for
inverse matrices. There are two differences: We update a projection rather than an inverse
matrix and the matrix defining the projection is never explicitely formed. (The matrix defining
the projection may be nonsparse while A and the Cholesky factor of AA” used below may be
sparse.)

We assume that £+ b = {z | Az = Ab} C R" where A has full row rank. Let a point
x € R™ be given. Then it is easy to verify that

x—Tpp(z) = AT(AAT) YAz —b) and |z —Tlppp(2)]3 = (z — b)TAT(AAT) L A(z — b).
Likewise, for s € R™ we have
s —Tlpi () = (I — AT(AAT) " A)(s —)

and
Is =Tz c(s)]13 = (s —)T (I = AT(AAT) T A)(s — ¢).

The factorization of AAT can be computed once in a preprocessing stage at the beginning of
Algorithm 2 and can then be used without modification throughout. It is the same matrix
that is usually factored in interior-point methods. For semidefinite programs, however, the
factorization of AA* may be substantially cheaper than the systems factored at each iteration
of an interior point algorithm; prime example being semidefinite programs arising from the
semidefinite relaxation of the max clique problem that results in the factorization of dense
matrices in interior point methods while AA* is a diagonal matrix.

After this preprocessing the projection of a point z = (z, s) onto
Ay = (L4D) x (LY +¢)

can be computed (separately for x and s) in order mn operations, namely two back-solves
using the factorization of AAT and two matrix vector products Az or As and some order-n-
operations. Let

As = {(.ZC,S) ’ <C,.%'> + <b7 S> = <b7 C)}a

so that A = A; N Ag # 0.
The following simple scheme computes the projection of a point 2° onto A:

12

Algorithm 3 (Projection onto A))
Set z = HAI(ZO), 2i=1MQ4,(2), 2:=114 (%), and 2t =24+ X2 — 2) where A > 0 is chosen
such that z+ lies in the Hyperplane As.

Claim: 2" =1I 4(2").

Note that projecting back and forth between A; and A2 will yield a sequence that converges
to a point in A7 N As. The above algorithm abbreviates this process by extrapolating within
A; until the hyperplane A, is hit at 2.

Proof. We first show 2T = z* := IT 4 (z). By construction, clearly, 2T € A. (The assumption
that there exists no A > 0 defining the point z* readily leads to a contradiction.) Now, assume
by contradiction that ||z — 2*||3 < ||z — 2|3

Define the segments 1 := [z, 2] and Iy := [2,2"]. Any point in /1 is mapped to l2 under
IT 4, since the linear map Iy, (z) maps the end points of I; to the end points of ly. Likewise,

any point in Iy is mapped to l; under HAl since the end points are mapped to Zand 2t in [.
As z — % is perpendicular to Az it follows (z — 2)T(2 — z*) =0 and (2 — 2)T(2 — 21) = 0.
Hence, there is a p > 0 such that

12
12

lz = 213 + 12 = 2" 13 = llz = 2" |3 < e = 2|5 = p = ll= = 25 + 112 = =73 — p,

Le. |2 =23 < (|2 - 25— p.
Likewise ||z — z*||2 < [|Z — 27|12 — p.
Repeating the process of projecting back and forth between A; and Aa we see that the

projected points are always closer to z* than to z*, and the squared difference is at least p. On
the other hand these points remain in /1 and Iy and converge to 2 which is a contradiction.

Finally, if 20 ¢ Ay, it follows as in the above proof that we may use a “zero-th” step to
project z° onto A; and then start the above extrapolation from the projected point z. 0

Note that for linear programs the computation of the projection II A2(Z) can be done in
order n operations and is thus negligible. Hence, the projection II 4 (z) of z onto A by the above
process takes four back-solves with the factorization of AA” (or two back-solves if z € Aj)
and the same number of matrix vector multiplications Ax or As.

In particular, each iteration of Algorithm 2 takes four back-solves with the factorization of
AAT and four matrix vector multiplications Az or As.

Note that Remark 4 is also true when A is replaced with the larger subspace A; and qg(,%)
is replaced with ¢(Z) + 1d(Z, A2)? for Z € Ay. The projections onto A; cost half as much as
the projections onto A. Likewise, the accelerated local method for semidefinite programs can
be applied for Z € A; and the function

f(2) + %d(Z, C)?+ %d(Z, Aj)%

Numerical examples to compare both approaches are the subject of future research.

13

7 Numerical Results

Algorithm 2 has been implemented in Matlab and tested on some randomly generated linear
semidefinite programs. Initially, the algorithm is always applied to minimizing the function QNS
for z € A, and when this minimization slows down, a Phase 2 is started, where a “regularizing”
function f is added to ¢.

Under standard assumptions Lemma 1 garantees that the term || XS — SX||% may serve
as a regularizing function. Note that also the term || XS + SX||% is minimized at the optimal
solution of the problem (P). Thus, at the point Z° it has nonnegative curvature as well and
hence, Lemma 1 also applies to the function

1
IXSIIE = 5 (1XS = SX|[F + | XS + SXI[)-

This term yielded the best numerical results in our examples, and the results listed below refer
to this regularizing term — while Lemma 1 is proved under slightly weaker conditions (namely
just the term || XS — SX||%).

7.1 The intersection of two cones

The prime application targeted by the apd approach is the Lovasz relaxation of the max-clique
problem for which the matrix AA* is a diagonal matrix, while interior point methods factor a
at full matrix of the same size at each iteration. The Lovasz-Schrijver relaxation is a sharper
relaxation for which the semidefinite cone is replaced with the intersection of the semidefinite
cone and the cone of matrices with nonnegative entries. Unfortunately, while the projection
onto either of the two cones is straightforward, the projection onto their intersection is less
trivial. We therefore present an approach that allows the application to problems of the form

(P) minimize (¢,z) | z € KN K N (L +b),
where K and K are both pointed closed convex cones such that the interior of K N K is
nonempty. Again, we assume that £ + b is given by a set of linear equations Az = b for which
a factorization of AAT is computed once, and that projections onto K and K are easy to
compute.

Problem (P) is equivalent to

minimize <(g> (i>> | (z) e (K x K)n (£ + (Z))
er ()= () 1=t a=i)

This is a problem of the form (P). By our assumption, projections onto K X K — and hence

also projections onto its dual — are easy to compute. Thus, in order to apply the apd algorithm

it suffices to verify that projections onto L are easily computable given a factorization of AAT.
This, however, is readily seen, as

() (0 2= (0 2= (i s i)

provides the desired factorization.

where

14

7.2 Rescaling

We emphasize that Algorithm 2 is essentially a first order method, and hence, it is sensitive
to scaling of the data. Even for data that “looks nice” (all data integers of absolute value less
than 10) the following rescaling may turn out to be crucial:

First, replace b with IT,1b. (The set £ + b remains invariant with this change!) Likewise,
replace ¢ with IIzc. Then set b = b/||b||2, ¢ = ¢/||c||2, and rescale x, s accordingly. Note that
by this normalization, the duality simplifies to (b, s) + (¢, z) = 0, and in particular, the set Ao
now is a linear subspace.

Moreover, the origin x = 0 has distance exactly 1 from £ + b, and likewise s = 0 has
distance exactly 1 from £ + ¢. For a semidefinite program, the point z(©) = s(© =1 //nis a
canonical starting point: Its duality gap satisfies (x(o), 3(0)> =1, and the distance of (¥ from
L + b is bounded by 2, same as the distance of (9 from £+ + c.

While the above rescaling of b and ¢ appears to be natural, it is certainly far from optimal.
When convergence slows down, it may be possible to identify a more suitable scaling based on
the current iterate. The numerical results below simply refer to the above scaling.

7.3 Preconditioning

We point out that the above rescaling may be generalized slightly. Indeed, let M be a non-
singular matrix, then the preconditioning X — MXM?T, B — MBM", £ — MLM" and
S — M TSM~', C — M~TCM™! results in an equivalent semidefinite program, and the
solution of either program can easily be recoverd from the solution of the other. Of course, the
functions ¢ and f change when replacing X, S with MXMT M~TSM~", and thus the perfor-
mance of Algorithm 2 will vary. It is still an open question how to determine suitable scalings
that accelerate Algorithm 2. When M is a diagonal matrix, the projections onto MLM7 and
its orthogonal complement can be performed just as cheaply as for £ and £+

Likewise, one may look at preconditionings of the form || XS|% — [|[MX SM |2, for some
nonsingular M .M. Here, the function gg is not changed, and here as well, the selection of
suitable preconditionings is subject to further research.

7.4 Randomly generated SDP

To give some impression of the practical behaviour of our approach, we provide some compu-
tational results on randomly generated SDP. These instances are generated as follows. First
we select semidefinite matrices X and S with XS = 0. The nonzero eigenvalues of the matri-
ces X and S in Table 1 are uniformly distributed in [0,100] and in [0, 10], respectively. The
common eigenbasis is obtained from the orthogonalization of another random matrix. Then
we generate the linear constraints by selecting matrices A; having specified sparsity properties.
In our case, we generate A; to have nonzero support only on a submatrix of small order. This
defines b := A(X). We select dual variables y normally distributed. This gives C = AT (y) + S.
Thus, we have generated an instance with known optimal solution. We also provide the seed
for the random number generator to make the data reproducible. The generator was written
in MATLAB, and is accessible through http://www.math.uni-klu.ac.at/or/Software.

In the following table we provide some preliminary computational results. The parameters
n and m indicate the size of the problem as defined before. The parameter 'seed’ is used to
initialize the random number generator and makes the instances reproducible using MATLAB.
The column ’opt’ contains the optimal value of the SDP. Then we provide the objective value

15

n m seed opt apd error
400 30000 400303 | -339098.8 -339091.4 | -0.0004
400 40000 400403 | -114933.8 -114931.1 | -0.0002
500 40000 500403 | 571791.9 571801.9 | -0.0005
500 50000 500503 | -47361.2 -47353.4 | -0.0003
600 40000 600403 97145.8 97186.6 | -0.0016
600 50000 600503 | -279848.9 -279810.6 | -0.0012
600 60000 600603 | 489181.8 489194.5 | -0.0004
700 50000 700503 | -83535.4 -83488.7 | -0.0014
700 70000 700703 | -364458.8 -364476.1 | -0.0004
800 80000 800803 | -112872.6 -112817.4 | -0.0011

1000 100000 1000013 | 191886.2 191954.5 | -0.0012

Table 1: Randomly generated SDP. The column labeled ’apd’ contains the function value after
50 iterations of our augmented primal-dual method. The most negative eigenvalue of X and
S is displayed in the last column.

of our approach (in column ’apd’) after 50 function evaluations. The last column gives the
most negative eigenvalue of X and S which measures the error of our approach. We have used
a ’quick-and-dirty’ implementation of our approach, without any parameter tuning. The error
of our approach is rudely estimated by the most negative eigenvalue of X and S. We note that
in all these instances, the most negative eigenvalue (which keeps us away from feasibility) is
close to 0, and indicates that our approach has a potential for problems where the contraints
are sufficiently sparse (AA” is manageable), and n is not too large, so that the projection onto
the semidefinite cone is tractable.

The computations were done on a Pentium IV (2.1 Ghz, 2G memory) using Matlab. It took
about 45 minutes for the largest instance, and a few minutes for the smallest one. Since this is
a preliminary implementation, we expect that there is quite some room for improvement. The
present paper sets the theoretical stage for the new approach. A competitive implementation
is beyond the scope of the current paper and will be presented in a separate study.

8 Concluding remarks

This paper proposes a reformulation of a linear program over a convex cone into the problem
of minimizing a differentiable convex apd-function in a certain primal-dual space. The apd-
function is related to the augmented Lagrangian function, but is slightly less data dependent.
For large classes of conic programs including linear, semidefinite and SOC problems, its function
and gradient evaluations are rather cheap. For the case of a semidefinite program, a certain
regularization of the apd-function is analyzed. Numerical examples minimizing the function
with a conjugate gradient method illustrate the potential of the approach. Extensions for the
case that Slaters condition is not satisfied and to other cones are subject of future research.

16

Acknowledgement

The authors acknowledge partial financial support by the Marie Curie Training Network Algo-
rithmic Discrete Optimization (ADONET), MRTN-CT-2003-504438, financed by the European
Union, and by the GICOLAG program at the International Erwin Schrédinger Institute for
Mathematical Physics (ESI) Vienna, Austria.

References

1]

2]

Bauschke, H.H, Combettes, P.L., and Kruk, S.G. (2006): Extrapolation algorithm for
affine-convex feasibility problems, Numerical Algorithms 41, 239-274.

S. Burer and R.D.C Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Mathematical Programming (Series B), 95:329-357,
2003.

Freund, R.W. and Jarre, F. (2004): A sensitivity result for semidefinite programs, Oper-
ations Research Letters 32(2), 126-132.

C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming.
SIAM Journal on Optimization, 10(3):673-696, 2000.

M. Kocvara and M. Stingl. On the solution of large-scale sdp problems by the modified
barrier method using iterative solvers. Mathematical Programming, 109:413-444, 2007.

J. Malick, J. Povh, F. Rendl and A. Wiegele. Regularization methods for semidefinite
programming, working paper, University of Klagenfurt (2007), in preparation.

Nesterov, Y., and Nemirovskii, A. (1994): Interior-Point Polynomial Algorithms in Convex
Programming, Society for Industrial and Applied Mathematics, Philadelphia.

J. Povh, F. Rendl, and A. Wiegele. Boundary point method to solve semidefinite programs.
Computing, 78:277-286, 2006.

Qi, L., Sun, J. (1993): A nonsmooth version of Newton’s method, Math. Prog. 58, 353
367.

Sun, J., Sun, D. (2002): Semismooth matrix-valued functions, MOR 27: 150-169.

K.C. Toh. Solving large scale semidefinite programs via an iterative solver on the aug-
mented systems. SIAM Journal on Optimization, 14:670-698, 2004.

17

