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Abstract

In this work, a semi-obnoxious facility must be located in the Euclidean
plane to give service to a group of customers. Simultaneously, a set of popu-
lated areas, with shapes approximated via polygons, must be protected from
the negative effects derived from that facility. The problem is formulated as
a margin maximization model, following a strategy successfully used in Sup-
port Vector Machines. Necessary optimality conditions are studied and a finite
dominating set of solutions is obtained, leading to a polynomial algorithm.

Keywords: Continuous Location, Computational Geometry, Semi-Obnoxious Facilities,
Optimization.

1 Introduction

For the last years, the location of semi-desirable facilities has been a widely studied topic
by the researchers in location theory (see [1, 2, 3, 7, 10, 11, 12, 15]). A facility is said
to be semi-desirable (or semi-obnoxious) when it gives service to certain customers in the
neighborhood but, on the other hand, is felt as obnoxious to its environment. For instance,
hospitals, airports or train stations are examples of semi-obnoxious facilities, since they
are useful and necessary for the community, but they are a source of negative effects, such
as noise, and therefore, they are considered as NIMBY (not in my backyard) facilities.
In our problem, a semi-obnoxious facility must be located in the plane and there are two
different groups of customers to be considered. On the one hand, there exists the group of
attracting points, whose demand must be satisfied by the facility which must be therefore
as close as possible to all of them. On the other hand, there exists a set of repelling regions,
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which represent populated areas (whose shapes will be approximated via convex polygons)
to be protected from the noxious effects coming from the facility, and hence, they must
be as far as possible from the facility.
In the next section, we introduce a formulation of this problem as a margin maximization
model similar to Support Vector Machine methods in Machine Learning. In section 3,
several structural properties are proved leading to a finite dominating set. This allows to
obtain a polynomial solution method in section 4, which will be tested on several artificial
databases in section 5.

2 The model

2.1 The basic aim

Consider G+ and G− two groups of objects in the Euclidean plane, where G+ is a finite
set of points G+ = {x1, . . . , xn} ⊂ R2, and G− is a set of convex polygonal areas G− =
{S1, . . . , Sm} ⊂ R2 (with n, m ≥ 3). The points of G+ represent individual customers
to be serviced by the facility, while the polygons represent areas to be protected from
the inconveniences of the semi-obnoxious facility to be located. The points of G+ are
assumed not to be contained in any element of G−. Also the polygons in G− are assumed
to have pairwise disjoint interiors. Note that this is not a restriction because any (possibly
disconnected) polygonal region can be decomposed into a finite set G− which satisfies our
assumptions.
Our aim is to locate a single semi-obnoxious facility, x0 ∈ R2, which is as near as possible
to the points of G+ (attracting elements) in order to receive a high-quality service, and
far from the polygons of G− (repelling elements).
In this work, the location of the facility will be done through the construction of a ball
B(x0, r), with x0 ∈ R2 and r ∈ R+, such that every point of G+ is strictly contained in
the ball and every polygon of G− lies outside the ball.
In Figure 1, an example of the problem is depicted. The black points represent the
attracting points of G+, whereas the grey-coloured areas represent the repelling elements
of G−. Our problem is to build a ball such that it contains all the points and it does not
intersect the interior of any polygon.
Different solutions may exist separating the elements in G+ and G−. For instance, in
Figure 1 two possible circles separating the two groups have been depicted. In order to
single out one ball, we follow the strategy successfully used in Support Vector Machines,
[4, 16], and maximize a margin as defined in next section. Following this strategy, the
smallest circle in Figure 1 will be preferred as a solution.

2.2 The optimization problem

Given the elements of the two groups, G+ and G−, the following constraints must be
satisfied, if possible,

d2(x0, xi) < r2, ∀xi ∈ G+ ↔ ‖x0 − xi‖2 < r2, ∀xi ∈ G+, (1)
d2(x0, Sj) ≥ r2, ∀Sj ∈ G− ↔ min

x∈Sj

‖x0 − x‖2 ≥ r2, ∀Sj ∈ G−, (2)
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Figure 1: Two possible separating balls

where d and ‖ · ‖ are the Euclidean distance and norm, respectively.
Constraints (1)-(2) are equivalent respectively to

r2 − ‖x0 − xi‖2 > 0, ∀xi ∈ G+ ↔ min
xi∈G+

(r2 − ‖x0 − xi‖2) > 0, (3)

min
x∈Sj

(‖x0 − x‖2 − r2) ≥ 0, ∀Sj ∈ G− ↔ min
Sj∈G−

min
x∈Sj

(‖x0 − x‖2 − r2) ≥ 0. (4)

Following the strategy used in Support Vector Machines implies that we must maximize
the minimum of the two positive amounts described in (3)-(4), that is, the optimization
problem we want to solve is

max
x0,r

min
{

min
xi∈G+

(r2 − ‖x0 − xi‖2), min
Sj∈G−

min
x∈Sj

(‖x0 − x‖2 − r2)
}

. (5)

Denote by ∆ the margin, which is defined as the minimum between the two differences
considered in Problem (5),

∆ = min
{

min
xi∈G+

(r2 − ‖x0 − xi‖2), min
Sj∈G−

min
x∈Sj

(‖x0 − x‖2 − r2)
}

. (6)

Thus, our margin maximization problem can be written as

max
x0,r,∆

∆

s.t. ∆ ≤ min
xi∈G+

(r2 − ‖x0 − xi‖2)

∆ ≤ min
Sj∈G−

min
x∈Sj

(‖x0 − x‖2 − r2)
(7)

or equivalently,

max
x0,r,∆

∆

s.t. ∆ ≤ r2 − ‖x0 − xi‖2, ∀xi ∈ G+

∆ ≤ ‖x0 − x‖2 − r2, ∀x ∈ Sj , ∀Sj ∈ G−.

(8)
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Figure 2: Construction of the two separating concentric balls with maximum margin

If we denote by r2
+ = r2 − ∆ and r2

− = r2 + ∆, the objective function of Problem (8)

changes into ∆ =
r2
− − r2

+

2
, and the problem can be rewritten as

max
x0,r+,r−

r2
− − r2

+

s.t. ‖x0 − xi‖2 ≤ r2
+, ∀xi ∈ G+

‖x0 − x‖2 ≥ r2
−, ∀x ∈ Sj , ∀Sj ∈ G−

r+, r− ≥ 0.

(9)

In fact, this Problem (9) is more general since it also allows for situations with negative
optimal values, which were unfeasible problems according to (7).
It will follow from Theorem 3.1 that Problem (9) can be reformulated by taking into
account that, once the center x0 is fixed, the optimal radii are fully defined and therefore,
the objective depends on x0 only, as follows

max
x0∈R2

f(x0)

s.t. f(x0) = r2
−(x0)− r2

+(x0)
r+(x0) = max

xi∈G+

‖x0 − xi‖

r−(x0) = min
Sj∈G−

min
x∈Sj

‖x0 − x‖.

(10)

Therefore, our problem can be seen as that of obtaining two concentric balls B(x0, r+),
B(x0, r−), where the ball B(x0, r+) contains every point xi belonging to G+, the ball
B(x0, r−) does not contain strictly any points of the polygons of G− and the difference
between the squares of the radii is as large as possible, or geometrically, the area between
the two circles is as large as possible. Figure 2 shows the graphical idea of the problem.
Our problem is thus related with the so-called largest empty annulus problem [5], in
which an annulus of maximal area not containing points in its interior is sought, although
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in this problem, there is a unique set of points (instead of two groups) and no regions are
considered.
In the following section, we derive some necessary optimality conditions. We will use
(x0, r+, r−) to either denote a finite feasible solution to Problem (9) or assume that r+ =
r+(x0) and r− = r−(x0), as defined in Problem (10).

3 Necessary conditions for optimality

For deriving the necessary conditions for optimality of a feasible solution, the concept of
active element will be necessary.
A point xi from G+ is an active point for the solution (x0, r+, r−) iff the distance from xi

to the center x0 is exactly r+, that is, d(x0, xi) = ‖x0 − xi‖ = r+. Thus, the set of active
points of G+, which is denoted by A+(x0), is formed by the points lying on the boundary
of the ball B(x0, r+).
In the same way, a polygon Sj from G− is an active polygon for (x0, r+, r−) iff the distance
from Sj to x0 is exactly r−, that is, d(x0, Sj) = minx∈Sj ‖x0 − x‖ = r−. We denote by
A−(x0) the set of active polygons from G−.
When x0 is clear from the context, we will simply write A+ and A−.
In the proofs, the way to show that a feasible solution (x0, r+, r−) is not optimal will be
by finding another solution (x′0, r

′
+, r′−) with a better value of the objective function or by

exhibiting a direction of increase of f at x0.

Theorem 3.1. If (x0, r+, r−) is an optimal solution, there exists at least one active el-
ement in each group G+ and G−, that is, the sets A+ and A− of active elements are
non-empty.

Proof.
Suppose that A+ is an empty set. Since (x0, r+, r−) is a feasible solution of Problem (9),
all the points of the group G+ must be (due to the emptiness of A+) contained strictly in
the ball B(x0, r+), that is, ‖x0 − xi‖ < r+, ∀xi ∈ G+.
Then, it is sufficient to take

r′+ = r+(x0) = max
xi∈G+

‖x0 − xi‖,

which is strictly smaller than r+, and we obtain (x0, r
′
+, r−), a feasible solution improving

strictly the value of the objective function.
On the other hand, suppose that A− is empty. Due to the feasibility of (x0, r+, r−), the
distance from x0 to every polygon of G− is strictly greater than r−, that is, d(x0, Sj) > r−,
∀Sj ∈ G−. Thus, it is sufficient to consider

r′− = r−(x0) = min
Sj∈G−

d(x0, Sj) = min
Sj∈G−

min
x∈Sj

‖x0 − x‖,

strictly greater than r−, and the solution (x0, r+, r′−) improves strictly the objective func-
tion.
In both cases, we conclude that the initial solution (x0, r+, r−) cannot be optimal.
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Theorem 3.2. Let (x0, r+, r−) be an optimal solution, one has that:

1. If r+ ≤ r−, then there must exist at least two active polygons in G−.

2. If r+ ≥ r−, then there must exist at least two active points in G+.

Proof.
By Theorem 3.1, if (x0, r+, r−) is an optimal solution, there must exist at least one active
point a in G+ and one active polygon S in G−. Below, we obtain new conditions about
the number of active elements in each case.

1. When r+ ≤ r−, suppose there is only one polygon S in the set A−. Let y be the
projection of x0 on S, i.e., the point in S such that d(x0, S) = minx∈S d(x0, x) =
d(x0, y) and consider the direction p = x0 − y. Our aim is to prove that this vector
p represents a direction of improvement for the objective function.

If we move x0 an amount ε > 0, small enough (for not finding any new active
element), in the direction u = p

‖p‖ , we obtain that x′0 = x0 + εu and r′− = r− + ε.

The other radius r′+ must be measured as the maximum distance from x′0 to the
points belonging to A+(x0).

In case we obtain that r′+ ≤ r+, because the new center is closer to all the points
in A+(x0), the radii r′+ and r′− will have decreased and increased respectively, and
consequently the objective function will also have strictly improved.

Otherwise, the radius r′+ will be the distance from x′0 to the point a of A+(x0) which
is now the furthest one (see Figure 3). Due to the triangle inequality on a, x0 and
x′0, one has that r′+ ≤ r+ + ε, and the value of the objective function is strictly
improved when r+ < r−, since

r′2− − r′2+ ≥ (r− + ε)2 − (r+ + ε)2

= r2
− − r2

+ + 2ε(r− − r+) > r2
− − r2

+.

In the case that r+ = r−, two cases can arise: either x′0, a and y are not collinear,
or a = y, but this last is contrary to our assumption that no point of G+ belongs
to an element of G−. Therefore, by strict triangle inequality r′+ < r+ + ε,

r′2− − r′2+ > (r− + ε)2 − (r+ + ε)2 = r2
− − r2

+.

2. When r+ ≥ r−, suppose there is only one active point a in A+. Then, the vector
p = a− x0 will be proved to represent a direction of improvement.

If x0 is moved an amount ε > 0, small enough for not having new active elements,
in the direction u = p

‖p‖ , we obtain that r′+ = r+ − ε. The radius r′− will be the
minimum distance from x′0 = x0 + εu to the polygons in A−(x0). If we obtain
that r′− ≥ r−, because the new center is further from all the polygons candidates
to become active, the two radii r′+ and r′− have improved and also the objective
function. Otherwise, we denote by S one of the active polygons for the center x0,
which is now also the closest to the new center x′0 (since there are not any new active
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Figure 3: Proof of Theorem 3.2, case r+ ≤ r−
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Figure 4: Proof of Theorem 3.2, case r+ ≥ r−: The distance to the polygon is
measured in the vertex

polygons in G−) and by y the projection of x0 on S, i.e., the point of S such that
d(x0, S) = minx∈S d(x0, x) = d(x0, y), and the objective function can be expressed
as follows,

r2
− − r2

+ = ‖x0 − y‖2 − ‖x0 − a‖2.

Three different situations must be considered.

• If y is a vertex of the polygon S and x0 is strictly contained in the normal cone
of S in y (denoted by NS(y)), that is, x0 satisfies that (x0 − y)t(y − s) > 0,
∀s ∈ S, then, for ε > 0 small enough, x′0 will also be contained strictly in this
normal cone, and d(x′0, S) = minx∈S d(x′0, x) = d(x′0, y) (see Figure 4).
In that case, due to the triangle inequality, one has that r− ≤ r′− + ε and
consequently, r′− ≥ r−− ε, and the value of the objective function is improved
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Figure 5: Proof of Theorem 3.2, case r+ ≥ r−: The distance to the polygon is
measured in the edge

in case r+ > r−, because

r′2− − r′2+ ≥ (r− − ε)2 − (r+ − ε)2

= r2
− − r2

+ + 2ε(r+ − r−) > r2
− − r2

+
(11)

For r+ = r−, we know that r− < r′− + ε, except for the case when x′0, y and a
are collinear. But this situation is not possible for r+ = r−, because it would
mean that a ∈ S, which is not allowed by assumption. Therefore,

r′2− − r′2+ > (r− − ε)2 − (r+ − ε)2 = r2
− − r2

+ (12)

• If the point y is on an edge of S, then, for an amount ε > 0 small enough, to
measure the distance from the new center x′0 to the polygon S, we also have to
find the point z (along the same edge of the polygon) which is the projection
of x′0 on S, i.e., the point satisfying d(x′0, S) = minx∈S d(x′0, x) = d(x′0, z) (see
Figure 5).
In that case, one has that

r− = min
x∈S

d(x0, x) ≤ d(x0, z) ≤ r′− + ε

by using the definition of r− and the triangle inequality on x0, z and x′0. Thus,
we have that r′− ≥ r− − ε and we can obtain again the same expression as in
(11). Then, the objective function is improved for r+ > r−.
And for r+ = r−, since r′− > r− − ε (except for the case in which x0, y and
a are collinear, and this situation cannot occur because it would mean that
a ∈ S), we obtain again the expression (12), and the objective function is also
improved.
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• If y is a vertex of S and x0 is on the boundary of the normal cone of S in y,
then the projection of the new center x′0 on S will be either the same vertex y
or a point z on an adjacent edge of S, depending on the position of a. Hence,
one of the two arguments used previously applies to find a solution with a
better value of the objective function.

Remark 3.1. It can be proved that without the assumption that all points of G+ lie outside
the elements of G−, Theorem 3.2 still holds in case of strict inequalities, but when r+ = r−,
one may only conclude in the existence of an optimal solution with two active elements
in G+, and of an optimal solution (possibly different from the previous) with two active
elements in G−.

Remark 3.2. Note that only the first case in Theorem 3.2 is of interest to our original
problem.

Theorem 3.3. If (x0, r+, r−) is an optimal solution, then the intersection of the convex
hulls of the two groups of active elements A+ and A− is a non-empty set.

Proof.
Suppose CH(A+) ∩ CH(A−), the intersection of the convex hulls of the sets of active
elements A+ and A−, is empty. In that case, a straight line h of equation ptx = c can be
found which strictly separates these two convex hulls, where p is a vector in R2 of unit
length and c ∈ R, such that the halfplane containing CH(A+) is defined by {ptx > c}.
Consider the straight line r : {x = x0 + λp, λ ∈ R}. We show now that the objective
function will be improved by moving x0 along this straight line a certain amount ε > 0,
small enough, which will terminate the proof.
Denote by S an active polygon from A−(x0) which is the closest one to the new center
x′0 = x0 + εp, and by a a point from A+(x0) which maximizes the distance from x′0 to
A+(x0). Denote by a0 the orthogonal projection of a on r. Let y be the point of S such
that d(x0, S) = minx∈S d(x0, x) = d(x0, y) and y0 its orthogonal projection to the straight
line r. With this notation, the objective function can be expressed as follows,

r2
− − r2

+ = ‖x0 − y‖2 − ‖x0 − a‖2

= ‖x0 − y0‖2 + ‖y0 − y‖2 − ‖x0 − a0‖2 − ‖a0 − a‖2

If we move x0 to x′0 along the straight line r, to measure the new radius r′−, three different
situations must be analyzed.

• In case the point y is a vertex of the polygon and x0 is strictly contained in the
normal cone of S in y, then, for an amount ε > 0 small enough, the new center
x′0 will also be contained strictly in the normal cone, and the distance from x′0
to S will continue being the distance from x′0 to the vertex y, that is, d(x′0, S) =
minx∈S d(x′0, x) = d(x′0, y).
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Then, since p = a0−y0

‖a0−y0‖ (observe that a0 6= y0, because r is orthogonal to the
separating hyperplane and hence, a0 and y0 are also separated by the straight line
h), the following calculation shows that the objective function improves,

r′2− − r′2+ = ‖x0 + εp− y0‖2 + ‖y0 − y‖2 − ‖x0 + εp− a0‖2 − ‖a0 − a‖2

= ‖x0 − y0‖2 + 2ε(x0 − y0)tp + ‖y0 − y‖2

−‖x0 − a0‖2 − 2ε(x0 − a0)tp− ‖a0 − a‖2

= r2
− − r2

+ + 2ε(a0 − y0)t a0 − y0

‖a0 − y0‖
= r2

− − r2
+ + 2ε‖a0 − y0‖ > r2

− − r2
+

• In case the point y is on an edge of the polygon S, then, for an amount ε > 0
small enough, to measure the distance from the new center x′0 to S, we also have to
move along the same edge of the polygon to find the point z such that d(x′0, S) =
minx∈S d(x′0, x) = d(x′0, z), the projection of x′0 on S (see Figure 6).

Consider z0 the orthogonal projection of z to the straight line r. Observe that
p = a0−z0

‖a0−z0‖ (a0 6= z0, because r is orthogonal to h and h separates a and z) and
observe also that x0 − y and z − y are orthogonal, because y is the projection of x0

on the edge containing z. Therefore, by Pythagoras’ Theorem, one has that

‖x0 − z0‖2 + ‖z0 − z‖2 = ‖x0 − z‖2 = ‖x0 − y‖2 + ‖y − z‖2

≥ ‖x0 − y‖2 = ‖x0 − y0‖2 + ‖y0 − y‖2 (13)

The objective function remains as follows,

r′2− − r′2+ = ‖x0 + εp− z0‖2 + ‖z0 − z‖2 − ‖x0 + εp− a0‖2 − ‖a0 − a‖2

= ‖x0 − z0‖2 + 2ε(x0 − z0)tp + ‖z0 − z‖2

−‖x0 − a0‖2 − 2ε(x0 − a0)tp− ‖a0 − a‖2

And now, by using inequality (13), we obtain

r′2− − r′2+ ≥ ‖x0 − y0‖2 + ‖y0 − y‖2

−‖x0 − a0‖2 − ‖a0 − a‖2 + 2ε(a0 − z0)tp

= r2
− − r2

+ + 2ε‖a0 − z0‖ > r2
− − r2

+

• In case y is a vertex of S and x0 is on the boundary of the normal cone of S in y,
then the projection of x′0 on S will be either the vertex y or a point z on an edge of
S, and, depending on the position of a, one of the two previous arguments applies
to find a solution which improves the objective function.

Remark 3.3. For the following theorem, we need the additional assumption that the data
must be in general position. This means the exceptional situations described below do
NOT appear. The aim of introducing this assumption is to avoid situations in which the
associated solution has a slightly different behaviour to the general one:
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Figure 6: Proof of Theorem 3.3, second part

1. One point of G+ and two vertices of two polygons of G− are collinear.

2. One point of G+ and one vertex of a polygon of G− define an orthogonal direction
to an edge of a polygon of G−.

3. Two points of G+ and one vertex of a polygon of G− are collinear.

4. Two points of G+ define an orthogonal direction to an edge of a polygon of G−.

Likewise, the concept of bisector for two convex polygons and breakpoints will be necessary
for the proof of Theorem 3.4 (see [6, 13] for a detailed description).

Definition 3.1. The bisector of two convex polygons S1 and S2 is the locus of points
x ∈ R2 satisfying that d(x, S1) = d(x, S2). One has that this bisector is a continuous open
curve consisting of linear segments and parabolic segments.
The points at which two such segments meet will be called breakpoints (see Figure 7).

Theorem 3.4. Under the assumption that the data are in general position, if (x0, r+, r−)
is an optimal solution, one of the following situations arises:

1. there exist at least four associated active elements ;

2. there exist at least three active elements, two polygons S1, S2 ∈ A− and one point
a ∈ A+, satisfying that y1, a and y2 are collinear, with yi such that d(x0, Si) =
minx∈Si d(x0, x) = d(x0, yi), i = 1, 2;

3. there exist at least three active elements, two polygons S1, S2 ∈ A− and one point
a ∈ A+, and x0 is a breakpoint.

Proof.
In the case in which the two radii are equal, we obtain directly the result of having four
active elements associated, by Theorem 3.2. Below, we consider the remaining two cases.
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S1

S2

Figure 7: Bisector of two polygons S1 and S2. Breakpoints •

1. When r+ < r−, by Theorems 3.1 and 3.2, we know that an optimal solution must
have at least two distinct active polygons S1, S2 ∈ A−, and one active point, a ∈ A+.
Suppose an optimal solution (x0, r+, r−) has been obtained with only these three
active elements.

Since x0 must be at the same distance from the two active polygons of A−, it must
be along their bisector which is composed of line segments and pieces of parabola.
So x0 is either a breakpoint or an ’inner point’ of such a segment or piece.

Then, in this last case, we must still show that a new better solution can be found,
and the following different cases must be considered.

• If there exist two vertices y1 ∈ S1 and y2 ∈ S2 which satisfy d(x0, Si) =
minx∈Si d(x0, x) = d(x0, yi), i = 1, 2, x0 lies on the mediatrix r between the
vertices y1 and y2 (see Figure 8).
Suppose that the active point a ∈ A+ is nearer to S1 than to S2 (the other
case is analogous by symmetry).
Define R the convex region determined by those points nearer to S1 than to
S2 which are in the normal cone of S1 at y1, that is, R = {x : d(x, y1) ≤
d(x, y2)} ∩NS1(y1). In this region, define the following function,

g(x) = ‖x− y1‖2 − ‖x− a‖2 = 2xt(a− y1) + C ′. (14)

where C ′ = ‖y1‖2 − ‖a‖2. One has that f(x) = g(x), ∀x ∈ R, with f the
objective function of Problem (10), in particular, f(x0) = g(x0).
In order to find a direction of improvement for the objective function in the
neighbourhood of x0, we study the directional derivatives of the objective
function f at this point. Since the function g is differentiable in the region
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Figure 8: Distances from x0 to the polygons are the distances to two vertices

R, and f ≡ g in R, we obtain that the gradient of the function at x0 is
∇g(x0) = 2(a− y1), and the directional derivative along a vector v is

∇vf(x0) = ∇vg(x0) = ∇g(x0)t · v = 2(a− y1)tv, ∀v = y − x0, with y ∈ R(15)

Hence, to obtain a direction of improvement, it is sufficient to choose a vector
v such that the scalar product (a− y1)tv is strictly larger than zero.
If we define the straight line orthogonal to the vector (a− y1) and containing
the point x0, that is, r : (a − y1)t(x − x0) = 0, and if we consider the region
Z determined by those points in R which are also in the positive halfplane
defined by the straight line r, that is, Z = R∩{x : (a−y1)t(x−x0) > 0}, then
the intersection Z ∩ B(x0, ε), with ε > 0 small enough, is not empty, except
for the case in which the straight line coincides with the mediatrix.
Then, we can find one point z ∈ Z ∩ B(x0, ε), and by moving the point x0 in
the direction v = z − x0, the objective function is improved.
The case in which r coincides with the mediatrix is only possible if y1, a, and
y2 are collinear, which is the exception number 1 in Remark 3.3. Anyway,
in this exceptional case, if we move x0 along the mediatrix, the value of the
objective function remains constant (then, the solution is not unique).

• If there exist a vertex y1 ∈ S1 and a point y2 lying on an edge of S2 such that
d(x0, Si) = minx∈Si d(x0, x) = d(x0, yi), i = 1, 2, x0 lies on a parabolic piece
of the bisector, this parabola being the bisector between the vertex y1 and the
edge of S2 (see Figure 9).
Suppose that the active point a ∈ A+ is nearer to S1 than to S2 (for the other
situation, see the reasoning described for the following case, with y1 and y2

lying on the edges of the polygons).
Define R = NS1(y1) ∩ {x : d(x, y1) ≤ d(x, y2)} and the function g as in ex-
pression (14). One has that f(x) = g(x), ∀x ∈ R, and hence, the expression
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Figure 9: Distances from x0 to the polygons are the distances to a vertex and to an
edge

(15) for the directional derivative of f at x0 along any vector v = y− x0, with
y ∈ R, remains valid.
Hence, to obtain a direction of improvement, it is sufficient to choose a vector
v such that the scalar product (a−y1)tv is strictly bigger than zero. And if we
define r : (a− y1)t(x− x0) = 0 (the straight line containing x0 and orthogonal
to (a−y1)) and Z = R∩{x : (a−y1)t(x−x0) > 0}, the intersection Z∩B(x0, ε),
with ε > 0 small enough, is not empty, except for the case in which the straight
line is tangent to the parabola. Then, a point z ∈ Z ∩ B(x0, ε) can be found,
and by moving the point x0 in the direction v = z− x0, the objective function
is improved.
The case in which r is tangent to the parabola is only possible when y1, a, x0

and y2 are collinear, that is, when a−y1 is orthogonal to the edge containing y2,
which is the exception number 2 of Remark 3.3 (in that case, a local optimum
is found).

• If there exist two points y1 and y2, with yi lying on an edge of Si, such that
d(x0, Si) = minx∈Si d(x0, x) = d(x0, yi), i = 1, 2, x0 lies on the bisectrix of the
angle formed by the two edges, which represents the bisector in this case (see
Figure 10).
Suppose that the active point a ∈ A+ is nearer to S1 than to S2 (by symmetry,
the other case is analogous).
Denote by a0 and y0 the orthogonal projections of a and yi on the bisectrix.
Then, the objective function can be written in x0 as

r2
− − r2

+ = ‖x0 − y1‖2 − ‖x0 − a‖2

= ‖x0 − y0‖2 + ‖y0 − y1‖2 − ‖x0 − a0‖2 − ‖a0 − a‖2.
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Figure 10: Distances from x0 to the polygons are the distances to two edges

The vector p = a0 − y0, if non-zero, will be a direction of improvement of the
objective function, for ε > 0, small enough.
Let z be the orthogonal projection of the new center x′0 = x0 + εp on the edge,
and z0 its orthogonal projection on the bisectrix.
If we move x0 along the direction p an amount ε > 0, the new value of the
objective function is

r′2− − r′2+ = ‖x0 + εp− z0‖2 + ‖z0 − z‖2 − ‖x0 + εp− a0‖2 − ‖a0 − a‖2

= ‖x0 − z0‖2 + 2ε(x0 − z0)tp + ‖z0 − z‖2

−‖x0 − a0‖2 − 2ε(x0 − a0)tp− ‖a0 − a‖2.

By Pythagoras’ Theorem, we obtain that

‖x0 − z0‖2 + ‖z0 − z‖2 = ‖x0 − z‖2 = ‖x0 − y1‖2 + ‖y1 − z‖2

≥ ‖x0 − y1‖2 = ‖x0 − y0‖2 + ‖y0 − y1‖2

In fact, the inequality is strict, since y1 6= z. Then, one has that

r′2− − r′2+ = ‖x0 − z0‖2 + ‖z0 − z‖2

−‖x0 − a0‖2 − ‖a0 − a‖2 + 2ε(a0 − z0)tp

> ‖x0 − y0‖2 + ‖y0 − y1‖2

−‖x0 − a0‖2 − ‖a0 − a‖2 + 2ε(a0 − z0)tp

= r2
− − r2

+ + 2ε(a0 − z0)t(a0 − y0) ≥ r2
− − r2

+

and the objective function has improved, since the vectors (a0−y0) and (a0−z0)
are parallel and in the same sense, for ε > 0 small enough.
In case a0 = y0, the objective function cannot be improved, thus we have
obtained a local optimal solution. The result is the situation 2 of Theorem
3.4, that is, three active elements (two polygons S1, S2 and one point a) with
the points y1, a and y2 being collinear.
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Figure 11: Two situations when r+ > r−

2. When r+ > r−, by Theorems 3.1 and 3.2, we know that an optimal solution of the
problem must have at least two active points a1, a2 ∈ A+, and one active polygon,
S ∈ A−. Suppose an optimal solution (x0, r+, r−) with only these three active
elements has been obtained. A new solution will be found with a better value of the
objective function.

Denote by r the mediatrix between the two active points of A+, by y the point
belonging to S such that d(x0, S) = minx∈S d(x0, x) = d(x0, y), and by a0 and y0

the orthogonal projections of the points a1 and y on the straight line r. We have
to consider two situations (y is a vertex of the polygon or y lies on an edge of the
polygon, see Figure 11), which are exactly the same as those described in the proof
of Theorem 3.3.

With a similar reasoning, we derive that a new feasible solution can be obtained
which improves the objective function. The exception in this case is when a1, y, x0

and a2 are collinear. This can happen because there are two points a1, a2 and a
vertex y of a polygon S which are collinear (exception 3 in Remark 3.3) or because
there are two points a1, a2 defining an orthogonal direction to an edge of a polygon
S (exception 4 in Remark 3.3).

The concepts of nearest and farthest-point Voronoi diagrams (see [13, 14]) for a set of
points or polygons will be necessary for the proof of Theorem 3.5.

Definition 3.2. Given the set of points {x1, . . . , xn} and the set of polygons {S1, . . . , Sm},
the farthest-point (resp. nearest-polygon) Voronoi cell associated to xk (resp. Sl) denoted
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by Vk (resp. Wl) is defined as follows:

Vk =
⋂

i∈{1,...,n}\{k}

{x : d(x, xk) ≥ d(x, xi)}, (16)

Wl =
⋂

j∈{1,...,m}\{j}

{x : d(x, Sl) ≤ d(x, Sj)}. (17)

The sets V =
⋃

k=1,...,n Vk and W =
⋃

l=1,...,m Wl are called the farthest-point and the
nearest-polygon Voronoi diagrams.

Theorem 3.5. If the convex hulls of the two groups G+ and G− are disjoint, that is,
CH(G+) ∩ CH(G−) = ∅, then the solution is unbounded and the separating balls are
transformed into straight lines.

Proof.
Since CH(G+) ∩ CH(G−) = ∅, a straight line h : {ptx = c}, with p ∈ R2 and c ∈ R,
separating the two convex hulls can be found, in the same way as done in the proof of
Theorem 3.3. Let l : {ptx = c′} be another straight line, parallel to h, such that every
point xk ∈ G+ satisfies that ptxk > c and ptxk < c′.
Construct the farthest-point and nearest-polygon Voronoi diagrams in the plane for G+

and G−, respectively, and the intersection of the two diagrams. Let V be a cell obtained
as the intersection of the resulting diagram with the halfplane {ptx > c′}, such that there
exists a point x0 inside the cell satisfying that the semi-straight line r : {x = x0+λp, λ ≥ 0}
is completely included in the cell V .
Once x0 is chosen, since it is inside a cell of the intersection of the two diagrams, the farthest
point in G+, say a, and the nearest polygon in G−, say S, are known, that is, a ∈ A+ and
S ∈ A−, and these two elements remain active for all the possible solutions in the cell, in
particular for all the possible solutions in r. Then, with a similar reasoning to that done
in the proof of Theorem 3.3, one has that if we move x0 along r, for certain λ′ > 0, the
objective function increases linearly, thus, a new feasible solution (x0 + λ′p, r′+, r′−) with
the same active elements can be found which is strictly better than the original one.
In fact, the larger the value of λ, the better the solution. Therefore, the solution is
unbounded and, in that case, the concentric balls are transformed in two straight lines
{ptx = b} and {ptx = d}, with b > d, and such that the closed halfplane {ptx ≥ b} contains
CH(G+) whereas {ptx ≤ d} contains CH(G−).

4 An algorithm to build the set of optimal solu-

tions

With the necessary optimality conditions studied in the previous section, a finite domi-
nating set of solutions has been obtained. A method to obtain the optimal solution is to
perform a complete enumeration of all the candidate solutions, as will be described below.
We are going to study all the local optimal solutions, and we will compute the value of
the objective value for those points, and the one with the biggest value will be the global
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optimal solution. According to Theorems 3.1, 3.2 and 3.4, there must exist at least one
active element in each set (A+ and A−), there must exist at least two active elements in
the set associated to the biggest ball (that is, if r+ > r−, there will exist at least two active
points in A+, and if r− > r+, there will be at least two active polygons), and one of the
situations described in Theorem 3.4 must be reached. That way, the finite dominating set
of solutions will be formed by points x0 whose configuration of associated active elements
belongs to one of the following options:

1. three active polygons S1, S2, S3 and one active point a (in this case, r− > r+);

2. two active polygons S1, S2 and two active points a1, a2 (no condition on the radii);

3. two active polygons S1, S2, one active point a and x0 is a breakpoint of the bisector
defined by S1 and S2 (in this case, r− > r+);

4. two active polygons S1, S2, one active point a and x0 satisfies that y1, y2 and a are
collinear, with yi such that d(x0, Si) = minx∈Si d(x0, x) = d(x0, yi), i = 1, 2 (in this
case, r− > r+);

5. three active points a1, a2, a3, and one active polygon S (in this case, r+ > r−).

In the algorithm, to describe all the candidates, we will consider all the possible configura-
tions and we will compute the solution x0 as the intersection of the corresponding bisectors
of the sets A+ and A−. Since the bisector of two polygons consists of segments (for two
vertices, the bisector is their mediatrix, and for two edges, the bisector is the bisectrix)
and pieces of parabola (for one vertex and one edge), we will study each vertex and edge
of a polygon as different active elements in the algorithm.

4.1 Case 1: card(A+)=1 and card(A−)=3

Let S1, S2 and S3 be the three active polygons. As has been said before, every vertex
and every edge of a polygon is studied as a possible active element. For a polygon S,
considering a vertex v as the active element will mean that the closest point of S to the
solution x0 is v. Analogously, considering an edge e as the active element will mean that
the point of S which is the closest one to x0 lies on this edge e (not being one of the two
vertices defining e).
Then, x0 will be computed by following a different strategy depending on the number of
active vertices and edges:

• Three vertices: x0 is the circumcenter of the triangle defined by these three points
(equivalently, x0 is the intersection of the mediatrices for each pair of points).

• Two vertices and one edge: x0 is the intersection of the mediatrix of the vertices
and the parabola of one vertex and one edge.

• One vertex and two edges: x0 is the intersection of the bisectrix of the two edges
and the parabola of one vertex and one edge.

• Three edges: x0 is the intersection of two bisectrices.
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Figure 12: Computing a solution as the intersection of a bisectrix and a parabola

Once x0 is computed (in some cases, more than one solution can be obtained), next step is
to check if this solution is feasible, that is, given the three active elements, we must check
if x0 belongs to the intersection of the normal cones of the polygon Si at the vertex vi or
the edge ei respectively, for i = 1, 2, 3.
An example of this situation can be seen in Figures 12 and 13. In Figure 12, there are
two active edges e1 and e2, and one active vertex v (belonging, respectively, to the active
polygons S1, S2 and S3). The bisectrix for the two edges is computed, and as well the
parabola which represents the bisector of the edge e2 and the vertex v. There exist two
points (P1 and P2) as the result of intersecting the bisectrix and the parabola. In Figure
13, we check the feasibility of these two possible solutions, and P1 is accepted as a solution,
because it belongs to the intersection of the normal cones of the three active elements (the
shadowed rectangle in the picture) whereas P2 is outside that rectangle.
If we obtain a solution x0 with this combination of active elements, we define r− as the
distance from x0 to any of these active elements. Observe that we must also check that
the distance from x0 to these active polygons Si, i = 1, 2, 3, coincides with the distance
to the active vertices or edges which have been considered, that is, the closest points from
the polygons to x0 must be the selected active vertices or must lie on the selected active
edges (otherwise, the solution is not feasible).
Afterwards, we compute the distance from x0 to the rest of polygons of G−. If the
minimum of these distances is bigger than or equal to r− (if this minimum was smaller,
the polygons S1, S2 and S3 could not belong to A−), we compute r+ as the maximum
distance from x0 to the points of G+, and the point a whose distance to x0 is r+ will be
the fourth active element.
In this case, r+ must be smaller than r− to have the guarantee of having obtained a
local optimal solution (else, according to Theorem 3.2, a better solution can be found in
a neighbourhood of x0).

4.2 Case 2: card(A+)=2 and card(A−)=2

Let a1 and a2 be the active points. Let S1 and S2 be the active polygons (in this case, we
choose directly from the beginning the four active elements). We compute the mediatrix
of the two active points, and we compute the bisector of the two active elements in the
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Figure 13: Checking the feasibility of the two points

polygons (it will be a mediatrix if we have two active vertices, a bisectrix if there are two
active edges, or a parabola if there are a vertex and an edge). The intersection of the
mediatrix and the bisector is computed and we check the feasibility of this solution as
done in the previous case (that is, we check if the solution x0 belongs to the intersection of
the normal cones of the polygons at the corresponding vertex or edge, and we also check
that each selected vertex or edge is really active, in the sense that it is or it contains the
closest point from the corresponding polygon to x0).
Once a solution x0 is obtained, we compute r+ as the distance from x0 to one of the
active points and r− as the distance to one of the active polygons. Then, we compute the
maximum distance from x0 to the rest of points of G+ (x0 is a candidate if this maximum
distance is smaller than or equal to r+) and the minimum distance from x0 to the rest
of polygons of G− (x0 is candidate to optimal solution if this minimum distance is bigger
than or equal to r−).

4.3 Case 3: card(A+)=2, card(A−)=1 and x0 is a breakpoint

Let S1 and S2 be the two active polygons. In this case, for the first polygon, we can always
consider as active elements in the algorithm only the vertices, since a breakpoint is built
as the intersection of the bisector of two polygons with the boundary of the normal cone
of one of the polygons at some of its vertices (see Figure 7). Then, the option of having
two active edges can be ruled out (otherwise, each breakpoint would be studied twice).
Given one active vertex of S1 and one active element of S2 (a vertex or an edge), we com-
pute the corresponding bisector (a mediatrix or a parabola, respectively) and we compute
the intersection of this bisector with the intersection of the boundaries of the normal cones
of the polygons at their active elements. That way, we obtain one (or several) breakpoint
and we compute r− as the distance from x0 to the active polygons (if the selected vertices
or edges are really active elements for the corresponding polygons).
Then, we compute the distances from x0 to the rest of the polygons, and the minimum
of these distances must be bigger than or equal to r− (otherwise, x0 is not a candidate
optimal solution). We compute r+ as the maximum distance from x0 to the points in G+

(r+ must be smaller than r−, otherwise, we could find a better solution in a neighbourhood
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Figure 14: Case 5. Left: Constructing y1 and y2. Right: Constructing x0

of x0).

4.4 Case 4: card(A+)=2, card(A−)=1 and y1, y2 and a are
collinear

Let a be the active point. Let S1 and S2 be the two active polygons. In this case, we
only consider the edges of the polygons as possible active elements, since the condition we
impose is that a, y1 and y2 are collinear, with yi such that d(x0, Si) = minx∈Si d(x0, x) =
d(x0, yi), i = 1, 2, and yi not being vertices. The case of yi being vertices cannot happen
with data in general position (see Remark 3.3).
Given a and the edges e1 and e2, we study if there can exist two points y1 and y2 lying
on the edges, such that the condition of collinearity is satisfied. If this is possible, we
compute the bisectrix r of the two edges and the orthogonal straight line r′ to the bisectrix
containing the point a (see Figure 14, left). Let y1 and y2 be the intersection of r′ with
e1 and e2, respectively. Then, x0 will be built as the intersection of the bisectrix with the
orthogonal straight line to e1 containing y1 (see Figure 14, right). Symmetrically, we can
do the same with e2.
Once x0 is built, we follow the same reasoning to build the radii as in case 2.

4.5 Case 5: card(A+)=3 and card(A−)=1

Let a1, a2, a3 be the three active points, we compute x0 as their circumcenter (equivalently,
x0 is the intersection of the mediatrices between these points), and r+ = d(x0, ai), for any
i = 1, 2, 3.
Now, we compute the distance from x0 to the rest of points of G+. If the maximum
of these distances is smaller than or equal to r+ (if it is bigger than r+, the points ai,
i = 1, 2, 3, cannot be active), we compute r− as the minimum distance from x0 to the
polygons of G−. The polygon S whose distance to x0 is equal to r− will be the fourth
active element.
Finally, r+ must be bigger than r− to assure that we have a local optimal solution (oth-
erwise, a better solution can be found in a neighbourhood of x0, according to Theorem
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3.2). This implies that the value of the objective function for a candidate solution with
this configuration of active elements will be negative. Hence, if we have already found a
candidate solution with positive value, we do not need to compute any candidate of this
type, since it cannot be a global optimum.
Let us study now the size of the set of candidate points obtained this way. Denote by n
the number of points in G+, by m the number of polygons in G− and by k the number of
vertices of each polygon (in case of having polygons with different number of vertices, k
would be the maximum number of vertices for these polygons).
For the candidate solutions of type 1, we need to study all the possible combinations of
three polygons (and all the possible combinations of vertices and edges, which are different
active elements). This yields a set of O(k3m3) points.
For the candidates of type 2, we need to select two polygons (and every possible combina-
tion of active elements, vertices and edges, of these two polygons) and two vertices. We
have then O(n2k2m2) points.
Two polygons are needed to build each candidate of type 3. We have O(k2m2) such points.
For the candidates of type 4, we need to consider all possible combinations of edges of two
polygons and one point, yielding O(nk2m2). Finally, if we need to compute the candidates
of type 5, we need to study all the combinations of three active points, and we have O(n3)
points.
The overall cardinality is then O((n + km)3 + n2k2m2).

5 Computational experience

The algorithm described in the previous section to compute the optimal solution of our
problem via complete enumeration of all the possible candidates has been implemented
by using Matlab 6.5 on a computer with Pentium IV CPU 3.06 GHz.
Different numerical tests have been performed with artificial databases, built at random.

5.1 Small dataset: Comparing areas for all the candidates

The first example is a small dataset (4 points and 4 squares) to show the different types
of candidate solutions that one can have in a problem. We have generated 4 points for the
group G+ coming from a uniform distribution (in particular, we have taken the distribution
U(−5, 5)), and other 4 points also coming from a uniform distribution, U(−20, 20), as the
center of the squares (all the squares with the same area) which are the polygons for the
group G−. Our aim is to locate a single semi-obnoxious facility in a point x0 ∈ R2, or
equivalently, to compute two concentric balls such that B(x0, r+) contains all the points
and B(x0, r−) does not intersect any squares. Figure 15 (left) shows a picture of the
artificial database.
All the candidate optimal solutions have been computed via the method described in
Section 4, by taking into account all the possible combinations of active elements. Figure
15 (right) shows this set of candidate locations, represented via stars.
In Figure 16, we show the two candidates with a configuration of type 1 (according to the
previous section), that is, there are three active polygons (squares) and one active point.
In the picture, the active squares are the black ones, while the active point is inside a
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Figure 15: Left: Initial scenario. Rigth: Set of candidate optimal solutions

Figure 16: Candidates type 1. Area of the annulus: 183.27 and 132.32, respectively

small circle. These active elements (points and squares) lie on the boundary of the balls
B(x0, r+) and B(x0, r−), respectively, where x0 is represented via an star. Maximizing
the objective function is equivalent to maximizing the area of the annulus defined by the
boundaries of the two balls.
In Figure 17, the three candidate solutions have two active points and two squares. In
Figure 18, we show five candidates with two active squares and one active element, and x0,
the location of the facility, is a breakpoint of the bisector defined by the two active squares.
Observe that, although the active elements are the same for the three first pictures with
this configuration, the solutions are different because the centers of the balls are different
breakpoints of the same bisector. Due to the definition of breakpoint, one of the active
squares in this kind of solutions has a vertex as the active element, but the adjacent edge
touches tangently the ball B(x0, r−). Hence, one can say that the two elements (the vertex
and the edge) can be considered as active.
In this case, there are no candidate solutions with a configuration of type 4 or 5.
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Figure 17: Candidates type 2. Area of the annulus: 182.32, 171.45 and 160.97,
respectively

Figure 18: Candidates type 3. Area of the annulus: 35.648, 101.54, 138.16, 21.53
and 33.932, respectively
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Figure 19: Initial scenario (50 points and 20 squares)

If we compare the ten areas (that is, the values of the objective function), we obtain that
the first picture in Figure 16 is the optimal solution of our problem.

5.2 Other random datasets

Other larger databases have been generated to run the algorithm. In the next one, we
have generated at random 50 points for the group G+ and 20 points as the centers of
the squares of G− (the area for every square is the same), coming from two uniform
distributions. Figure 19 shows a picture of the dataset.
By means of the method described in Section 4, all the candidate optimal solutions have
been studied. Figure 20 shows two pictures, with different zoom levels, of all the candidate
locations we have obtained, represented via stars. The stars which are far from the set of
squares and points represent local optima with a negative value of the objective function.
These solutions have at least two active points associated (configurations of type 2 and 5).
In practice, if the dataset is spherically separable (in the sense that there exists a sphere
separating the two sets of elements), the global optimum will not have a negative value of
the objective function, but the formulation of our problem allows this kind of solutions as
local optima.
Figure 21 shows the optimal solution for this dataset. The solution x0, represented via an
star, has two active points associated (those with a small circle around) and two active
squares (in both of them, the point lying on the boundary of the ball is a vertex). The
value of the objective function in this case (the area of the annulus) is 481.29.
Finally, we show a bigger random database, with 100 points generated via a uniform
distribution and 50 squares (with a smaller area than in the previous cases). The initial
scenario can be observed in Figure 22.
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Figure 20: Candidates to optimal solution

Figure 21: Optimal solution
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Figure 22: Initial scenario (100 points and 40 squares)

In Figure 23, one can observe the set of candidate optimal solutions (two different zoom
levels). In this case, we have a lot of solutions with negative value of the objective function.
However, the database is spherically separable, hence, we have some solutions with a
positive value of the objective function. All these candidates with positive value are
depicted in Figure 24. Finally, the optimal location of the facility is depicted in Figure 25.
The two balls also appear in the picture. The solution has four active elements associated,
two active points and two active polygons. The ball of radius r− touches these two squares
on one vertex of each square.

6 Conclusions and extensions

In this work, the location of a single semi-obnoxious facility in the Euclidean plane with
repelling areas has been solved. The idea of maximizing a margin, as done in techniques
coming from the field of Data Mining, such as Support Vector Machines, has been intro-
duced to define the concept of solution.
The problem has been formulated via a nonlinear continuous optimization problem and
necessary conditions for optimality have been deduced. These conditions state that every
candidate solution must have at least four active elements (except for some especial cases),
two of them belonging to the group whose associated ball is bigger and one of them
belonging to the other group. Likewise, other conditions have been obtained by studying
the intersection of the convex hulls of the sets of active elements and the sets of groups,
respectively.
With these necessary conditions, it is proved that a finite dominating set of solutions can
be built in order to obtain the optimal solution. This dominating set of solutions has been
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Figure 23: Candidates to be optimal solution

Figure 24: Candidates with positive value of the objective function
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Figure 25: Optimal solution

constructed algorithmically, and this algorithm has been implemented and some numerical
results have been given.
The concept of solution for this problem can be extended by considering other types of
balls (such as ellipsoids, for example) and the problem can also be extended to higher
dimensions.
For higher dimensions, heuristics techniques must be used to obtain a solution, and as well
for large databases, if we want to decrease the CPU running time for obtaining a solution.
A possibility, now under study, would be to use metaheuristics, such as VNS, [8, 9], for
which a neighbourhood structure can be easily defined.
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