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Abstract

We provide and analyze a based average for two convex functions, based on a kernel function.
It covers several known averages such as the arithmetic average, epigraphical average, and the
proximal average. When applied to the Fitzpatrick function and the conjugate of Fitzpatrick
function associated with a monotone operator, our average produces an autoconjugate (also
known as selfdual Lagrangian) which can be used for finding an explicit maximal monotone
extension of the given monotone operator. This completely settles one of the open problems
posed by Fitzpatrick in the setting of reflexive Banach spaces.
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1 Introduction

In the first part of this paper, we use X for R
n with a given norm ‖·‖ (not necessarily the Euclidean

norm), and X∗ for the dual of X. The class of proper lower semi-continuous convex functions on X
is denoted by Γ(X). We follow standard convex-analytical notation as in e.g., [18, 24]. Thus, for a
convex function h : X → ]−∞,+∞], the (effective) domain is dom h := {x ∈ X : h(x) < ∞}, and
we use ri dom h for the relative interior of the domain. The Fenchel conjugate h∗ of h is the function
defined on X∗ by h∗(x∗) := sup{〈x∗, x〉 − h(x) : x ∈ X}. For x ∈ dom h, the set of subgradients
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of h at x is ∂h(x) := {x∗ ∈ X∗ : h(y) − h(x) ≥ 〈x∗, y − x〉 ∀y ∈ X}, whereas ∂h(x) := ∅ if
x 6∈ domh. By cl h we mean the lower semi-continuous hull of h. If S ⊂ X, then ιS stands for the
corresponding indicator function, i.e., ιS(x) = 0 for x ∈ S and +∞ for x 6∈ S.

Definition 1.1 (kernel average) Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0. Define
P (λ1, f1, λ2, f2, g) : X → [−∞,+∞] at x ∈ X by

P (λ1, f1, λ2, f2, g)(x) := inf
λ1y1+λ2y2=x

{λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2)} (1)

= inf
x=z1+z2

{

λ1f1

(

z1

λ1

)

+ λ2f

(

z2

λ2

)

+ λ1λ2g

(

z1

λ1
−

z2

λ2

)}

.

We call this the average of f1 and f2 with respect to the kernel g or the g-average of f1 and f2.

The main objective of this paper is to study the kernel average and to provide its basic properties.
The kernel average, which can be interpreted as an epigraphical average modified by the kernel g,
is quite flexible as the following examples show.

Example 1.2 (arithmetic average) Let g = ι0 and set h = P (λ1, f1, λ2, f2, g). Then

h(x) = inf
λ1y1+λ2y2=x

y1=y2

{λ1f1(y1) + λ2f2(y2)} = λ1f1(x) + λ2f2(x)

is the arithmetic average.

In the following, λ ⋆ f denotes the epi-product λf(·/λ) if λ > 0 and f ∈ Γ(X) (see [19]).

Example 1.3 (epigraphical average) Let g = ιX and set h = P (λ1, f1, λ2, f2, g). Then

h(x) = inf
λ1y1+λ2y2=x

{λ1f1(y1) + λ2f2(y2)} = inf
x=z1+z2

{

λ1f1

( z1

λ1

)

+ λ2f2

( z2

λ2

)

}

=
(

(λ1 ⋆ f1)�(λ2 ⋆ f2)
)

(x),

is the epigraphical average. Using 1
λ1

⋆ f1 and 1
λ2

⋆ f2 instead of f1 and f2 respectively, we obtain

P
(

λ1,
1
λ1

⋆ f1, λ2,
1
λ2

⋆ f2, ιX
)

= f1�f2,

the usual infimal convolution.

Example 1.4 (proximal average) Let g = 1
2‖ · ‖2, where ‖ · ‖ is the Euclidean norm, and set

h = P (λ1, f1, λ2, f2, g). Then

h(x) = inf
λ1y1+λ2y2=x

{

λ1f1(y1) + λ2f2(y2) + 1
2λ1λ2‖y1 − y2‖

2
}

= inf
λ1y1+λ2y2=x

{

λ1f1(y1) + λ2f2(y2) + 1
2λ1‖y1‖

2 + 1
2λ2‖y2‖

2 − 1
2‖x‖

2
}

is the proximal average; see [4, Proposition 4.3] and also [5].
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As another illustration, let us note that several envelopes can be interpreted as kernel averages.

Example 1.5 (Attouch-Wets envelope) Let f2 = 0, let λ1, λ2 > 0, and let g = λp−1
2

1
µ

1
p
‖ · ‖p

with µ > 0 and p ≥ 1. We have

f1�
1

µ

1

p
‖ · ‖p =

1

λ1
P

(

λ1, f1, λ2, 0, λ
p−1
2

1

µ

1

p
‖ · ‖p

)

.

Indeed, if x = λ1y1 + λ2y2, then y1 − y2 = (y1 − x)/λ2 and hence

P

(

λ1, f1, λ2, 0, λ
p−1
2

1

µ

1

p
‖ · ‖p

)

(x)

= inf
x=λ1y1+λ2y2

(

λ1f1(y1) + λ20 + λ1λ2λ
p−1
2

1

µ

1

p
‖y1 − y2‖

p

)

= inf
y1

(

λ1f1(y1) + λ1λ
p
2

1

µ

1

p
‖
y1 − x

λ2
‖p

)

= inf
y1

(

λ1f1(y1) + λ1
1

µ

1

p
‖y1 − x‖p

)

= λ1 inf
y1

(

f1(y1) +
1

µ

1

p
‖x − y1‖

p

)

.

While p = 2 gives the Moreau envelope, the assignment p = 1 leads to the Pasch-Hausdorff envelope.
See also [19, page 296] for some history of these envelopes and further references.

It is interesting to ask what kind of nice properties does the kernel average given by (1) have.
The purpose of this paper is to study our kernel average from three perspectives: conjugacy,
subdifferentiability, and applications in optimization and monotone operator theory.

The paper is organized as follows. In Section 2 we study conjugacy and subdifferentiability
properties of g-averages. It turns out that if g has full domain, then the Fenchel conjugate of the
g-average is essentially (up to a minus sign) the g∗-average of f∗

1 and f∗
2 and the domain of g-average

is the convex combination (in the sense of Minkowski sums) of dom f1 and dom f2. Moreover, if
g is differentiable, the g-average is Legendre type if f1 or f2 is. The relationship between the
minimizers of g-average and the minimizers of f1 and f2 is analyzed in Section 3. Section 4
introduces a corresponding g-proximal mapping of the g-average and provides an expression in
terms of the g-proximal mappings of f1 and f2. Finally, in Section 5, we supply a kernel average
in reflexive Banach spaces. We utilize it to construct autoconjugates, which can be used to find an
explicit maximal extension of a monotone operator with an attractive duality property. Theorem 5.7
provides a complete solution to one of Fitzpatrick’s open problems [10] in the reflexive setting.

2 Main Results

It is well known that the conjugate of the epigraphical average of f1 and f2 is the arithmetic
average of conjugates f∗

1 and f∗
2 (see also Corollary 2.4). Our goal is to calculate the conjugate
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of the kernel average of f1 and f2. It turns out that this is essentially the kernel average of the
conjugate functions with respect to the conjugate of the original kernel. We start with a simple
result which plays an important role in the proof of our main theorem. Before we state and prove
this auxiliary result, we introduce the difference operator D : X × X → X, defined by

D(x, y) := x − y, (2)

and its adjoint D∗ : X∗ → X∗ × X∗, which satisfies

D∗z = (z,−z).

Lemma 2.1 Let f : X × X → ]−∞,+∞] be given by f(x, y) = g(x − y), where g ∈ Γ(X). Then

f∗(x∗, y∗) =

{

g∗(x∗), if x∗ + y∗ = 0;

+∞, otherwise.
(3)

Consequently, if λ > 0, then

(λf)∗(x∗, y∗) = λg∗(x∗/λ) + ι{0}(x
∗ + y∗) =

{

λg∗(x∗/λ), if x∗ + y∗ = 0;

+∞, otherwise.
(4)

Proof. Since f = g ◦ D, [24, Theorem 2.3.1(ix)] implies that

f∗ = (g ◦ D)∗ = (D∗g∗)∗∗ = cl(D∗g∗) on X∗ × X∗.

For each (x∗, y∗), we have

(

D∗g∗
)

(x∗, y∗) = inf
{

g∗(z) : D∗z = (x∗, y∗)
}

= inf
{

g∗(z) : (z,−z) = (x∗, y∗)
}

=

{

g∗(x∗), if x∗ + y∗ = 0;

+∞, otherwise

= g∗(x∗) + ι{0}(x
∗ + y∗).

Hence D∗g∗ is lower semicontinuous and thus cl(D∗g∗) = D∗g∗. Therefore, f∗ = D∗g∗ and (3)
holds. Now (4) follows from (3) by [24, Theorem 2.3.1(v)]. �

For convenience, we denote the g-average of f1 and f2 by h, and we recall (see Definition 1.1)
that

h(x) = inf
{

λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2) : λ1y1 + λ2y2 = x
}

. (5)

Define A : X × X → X by
A(y1, y2) = λ1y1 + λ2y2. (6)

Then A∗ : X∗ → X∗ × X∗ is given by

A∗x∗ = (λ1x
∗, λ2x

∗). (7)
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Define F : X × X → ]−∞,+∞] by

F (y1, y2) = λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2). (8)

Then (5) becomes
h = AF. (9)

We are now in a position to determine the conjugate of the kernel average. To formulate the result,
we define, for a given function f ∈ Γ(X), the function f∨ ∈ Γ(X) by f∨(x) = f(−x).

Theorem 2.2 (Fenchel conjugate) Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0. Then for
every x∗ ∈ X,

(

P (λ1, f1, λ2, f2, g)
)∗

(x∗) = (cl ϕ)(λ1x
∗, λ2x

∗), (10)

where

ϕ(u, v) = inf
u+v=λ1z1+λ2z2

{

λ1f
∗
1 (z1) + λ2f

∗
2 (z2) +

λ1λ2

2

(

g∗
( u

λ1λ2
−

z1

λ2

)

+ g∗
( −v

λ1λ2
+

z2

λ1

)

)}

.

If
(ri dom f1 − ri dom f2) ∩ ri dom g 6= ∅, (11)

then the closure operation in (10) can be omitted so that not only

(

P
(

λ1, f1, λ2, f2, g
)

)∗
= P

(

λ1, f
∗
1 , λ2, f

∗
2 , g∗∨

)

, (12)

but also the infimum in the definition of the kernel average is attained, i.e.,

P (λ1, f
∗
1 , λ2, f

∗
2 , g∗∨)(x∗) = min

x∗=λ1z1+λ2z2

{λ1f
∗
1 (z1) + λ2f

∗
2 (z2) + λ1λ2g

∗(z2 − z1)}. (13)

Proof. Using (9) and [18, Theorem 16.3], we have

h∗ = (AF )∗ = F ∗ ◦ A∗ on X∗. (14)

Since
F = g1 + g2,

where
g1(y1, y2) = λ1f1(y1) + λ2f2(y2), g2(y1, y2) = λ1λ2g(y1 − y2),

it follows from [18, Theorem 16.4] that

F ∗ = (g1 + g2)
∗ = cl(g∗1�g∗2). (15)
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Using Lemma 2.1, we see that for every (u, v) ∈ X∗ × X∗,
(

g∗1�g∗2
)

(u, v)

= inf
y1,y2

{

λ1f
∗
1

(

y1

λ1

)

+ λ2f
∗
2

(

y2

λ2

)

+ g∗2(u − y1, v − y2)

}

= inf
u−y1+v−y2=0

{

λ1f
∗
1

(

y1

λ1

)

+ λ2f
∗
2

(

y2

λ2

)

+ λ1λ2g
∗

(

u − y1

λ1λ2

)}

= inf
u+v=y1+y2

{

λ1f
∗
1

(

y1

λ1

)

+ λ2f
∗
2

(

y2

λ2

)

+ λ1λ2g
∗

(

u

λ1λ2
−

y1

λ1λ2

)}

(16)

= inf
u+v=λ1z1+λ2z2

{

λ1f
∗
1 (z1) + λ2f

∗
2 (z2) +

λ1λ2

2

[

g∗
(

u

λ1λ2
−

z1

λ2

)

+ g∗
(

−v

λ1λ2
+

z2

λ1

)]}

.

Hence (10) holds.

Now assume that
ri dom g1 ∩ ri dom g2 6= ∅. (17)

Then, by [18, Theorem 16.4], the closure in (15) is superfluous so that

F ∗ = g∗1�g∗2 (18)

and the infimum in the definition of the last infimal convolution is attained. Since g2 = λ1λ2(g ◦D)
and ri dom g 6= ∅, [18, Theorem 6.7] implies that

ri dom(g ◦ D) = ri(D−1 dom g) = D−1 ri dom g.

Hence
ri dom g1 = ri(dom f1 × dom f2) = ri dom f1 × ri dom f2

and
ri dom g2 = D−1 ri dom g = {(y1, y2) : y1 − y2 ∈ ri dom g}.

Therefore, (17) is equivalent to

(ri dom f1 − ri dom f2) ∩ ri dom g 6= ∅,

i.e., to (11). Using (14), (18), (16), and the equivalence

x∗

λ2
=

λ1z1

λ2
+ z2 ⇔

x∗

λ2
−

z1

λ2
= z2 − z1,

we obtain

h∗(x∗) =
(

g∗1�g∗2
)

(λ1x
∗, λ2x

∗)

= inf
x∗=y1+y2

{λ1f
∗
1 (

y1

λ1
) + λ2f

∗
2 (

y2

λ2
) + λ1λ2g(

x∗

λ2
−

y1

λ1λ2
)}

= inf
x∗=λ1z1+λ2z2

{λ1f
∗
1 (z1) + λ2f

∗
2 (z2) + λ1λ2g

∗(
x∗

λ2
−

z1

λ2
)}

= inf
x∗=λ1z1+λ2z2

{λ1f
∗
1 (z1) + λ2f

∗
2 (z2) + λ1λ2g

∗(z2 − z1)}.
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Therefore,
(

P (λ1, f1, λ2, f2, g)
)∗

= P
(

λ1, f
∗
1 , λ2, f

∗
2 , g∗∨

)

,

i.e., (12) holds. The exactness of (13) follows from the exactness of (18), which in turn is guaranteed
by (11). �

Corollary 2.3 Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0. Assume that both g and
g∗ have full domain. Then both P (λ1, f1, λ2, f2, g) and P (λ1, f

∗
1 , λ2, f

∗
2 , g∗∨) are convex, lower

semicontinuous, proper, and

(

P (λ1, f1, λ2, f2, g)
)∗

= P
(

λ1, f
∗
1 , λ2, f

∗
2 , g∗∨

)

.

In particular, for g = 1
p
‖ · ‖p with p > 1, we have

(

P
(

λ1, f1, λ2, f2,
1
p
‖ · ‖p

)

)∗
= P

(

λ1, f
∗
1 , λ2, f

∗
2 , 1

q
‖ · ‖q

)

,

where 1
p

+ 1
q

= 1.

Corollary 2.4 (epi-average vs arithmetic average) Let f1, f2 ∈ Γ(X), λ1 + λ2 = 1, with
λ1, λ2 > 0. The epigraphical average of f1, f2, which at x ∈ X is defined by

h(x) := inf

{

λ1f1

(x1

λ1

)

+ λ2f2

(x2

λ2

)

: x1 + x2 = x

}

, (19)

has the conjugate
h∗ = λ1f

∗
1 + λ2f

∗
2 . (20)

That is, the conjugate of the epi-average is the arithmetic average of the conjugates. If f2 = f∗
1 and

λ1 = λ2 = 1
2 , then

h ≤ 1
2f1 + 1

2f∗
1 = h∗.

Proof. The conjugation formula (20) follows from Theorem 2.2 with g = 0. Putting xi = λix for
i ∈ {1, 2} in (19), we see that

h ≤ λ1f1 + λ2f2.

In turn, if f2 = f∗
1 and λ1 = λ2 = 1

2 , the result follows. �

The following result places the kernel average between the convex hull and the arithmetic average.

Proposition 2.5 Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0. Assume that g ≥ 0 and
g(0) = 0, and set

h = P (λ1, f1, λ2, f2, g).

Then
conv{f1, f2} ≤ (λ1 ⋆ f1)�(λ2 ⋆ f2) ≤ h ≤ λ1f1 + λ2f2 ≤ max{f1, f2}.
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Proof. Fix x ∈ X. On the one hand,

h(x) ≤ λ1f1(x) + λ2f2(x) + λ1λ2g(x − x) = λ1f1(x) + λ2f2(x) ≤
(

max{f1, f2}
)

(x).

On the other hand, using [18, Theorem 5.6], we estimate

h(x) = inf
x=λ1y1+λ2y2

{λ1f1(y1) + λ2f2(y2) + g(y1 − y2)}

≥ inf
x=λ1y1+λ2y2

{λ1f1(y1) + λ2f2(y2)}

= inf
x=x1+x2

{λ1f1(x1/λ1) + λ2f2(x2/λ2)}

=
(

(λ1 ⋆ f1)�(λ2 ⋆ f2)
)

(x)

≥ inf
x=µ1y1+µ2y2

µ1+µ2=1,µ1,µ2≥0

{µ1f1(y1) + µ2f2(y2)}

=
(

conv{f1, f2}
)

(x).

Altogether, the proof is complete. �

The next result localizes the domain of the kernel average. It shall be convenient to denote the
diagonal in X × X by

∆ := {(x, x) : x ∈ X}.

Theorem 2.6 (domain) Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0, and set

h = P (λ1, f1, λ2, f2, g).

Then dom h = Adom F = A[
(

((dom g) × {0}) + ∆
)

∩ (dom f1 × dom f2)] and

inf h = inf AF = inf F = inf
y1,y2∈X

{λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2)},

where A and F are as in (6) and (8), respectively. If dom g = X, then

dom h = λ1 dom f1 + λ2 dom f2.

Proof. The (set-valued) inverse of the difference operator D defined in (2) is

D−1z = (z, 0) + ∆ for z ∈ X.

Let g1 and g2 be as in the proof of Theorem 2.2. Then F = g1 + g2, dom F = dom g1 ∩ dom g2,
dom g1 = dom f1 × dom f2, and dom g2 = D−1 dom g =

(

(dom g) × {0}
)

+ ∆. The conclusion now
follows from [24, Theorem 2.1.3(viii)]. If dom g = X, then

(

(dom g) × {0}
)

+ ∆ = X × X. �

To study subdifferentiability properties of the kernel average, we need the following result.

Lemma 2.7 Let g ∈ Γ(X), (x, y) ∈ X × X, and (x∗, y∗) ∈ X∗ × X∗. Then

(x∗, y∗) ∈ ∂(g ◦ D)(x, y) ⇔ x∗ = −y∗, x∗ ∈ ∂g(x − y).
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Proof. “⇒”: Since (g ◦ D)(x, y) = g(x − y), we have

g(x + u − (y + v)) ≥ g(x − y) + 〈x∗, u〉 + 〈y∗, v〉 ∀(u, v) ∈ X × X. (21)

Setting v = u in (21), we obtain

g(x − y) ≥ g(x − y) + 〈x∗ + y∗, u〉 ∀u ∈ X,

and hence x∗ = −y∗. Thus (21) becomes

g(x + u − (y + v)) ≥ g(x − y) + 〈x∗, u〉 + 〈−x∗, v〉, i.e.,

g(x − y + u − v) ≥ g(x − y) + 〈x∗, u − v〉 ∀u, v ∈ X.

Therefore, x∗ ∈ ∂g(x − y). “⇐”: Reverse the above arguments. �

Theorem 2.8 (subdifferential) Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0. Define

f := P (λ1, f1, λ2, f2, g), (22)

assume that
(ri dom f1 − ri dom f2) ∩ ri dom g 6= ∅, (23)

and that x, y1, y2 ∈ X satisfy x = λ1y1 + λ2y2.

(i) If
f(x) = λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2), (24)

then
∂f(x) =

{

(∂f1(y1) + λ2y
∗) ∩ (∂f2(y2) − λ1y

∗) : y∗ ∈ ∂g(y1 − y2)
}

. (25)

(ii) Conversely, if there exists y∗ ∈ ∂g(y1 − y2) such that

(∂f1(y1) + λ2y
∗) ∩ (∂f2(y2) − λ1y

∗) 6= ∅, (26)

then
f(x) = λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2) (27)

and hence the infimal convolution implicit in the definition of f is exact at x.

Proof. Using (9), we recall that f = AF where A and F are given by (6) and (8), respectively.
Now assume (24). By [24, Corollary 2.4.6],

∂f(x) = ∂(AF )(x) = (A∗)−1∂F (y),

where Ay = x and y = (y1, y2) ∈ X × X. Using (7), we obtain

x∗ ∈ ∂f(x) ⇔ (λ1x
∗, λ2x

∗) ∈ ∂F (y1, y2).

9



Since (23) holds, the sum rule [18, Theorem 23.8] and Lemma 2.7 imply

∂F (y1, y2) =
(

λ1∂f1(y1) × λ2∂f2(y2)
)

+ λ1λ2∂(g ◦ D)(y1, y2)

=
(

λ1∂f1(y1) × λ2∂f2(y2)
)

+ λ1λ2

{

(y∗,−y∗) : y∗ ∈ ∂g(y1 − y2)
}

.

Consequently, x∗ ∈ ∂f(x) if and only if

(λ1x
∗, λ2x

∗) ∈ (λ1∂f1(y1) + λ1λ2y
∗) × (λ2∂f2(y2) − λ1λ2y

∗),

for some y∗ ∈ ∂g(y1 − y2). This is equivalent to the existence of y∗ ∈ ∂g(y1 − y2) such that

x∗ ∈ ∂f1(y1) + λ2y
∗, x∗ ∈ ∂f2(y2) − λ1y

∗,

i.e.,
x∗ ∈ (∂f1(y1) + λ2y

∗) ∩ (∂f2(y2) − λ1y
∗).

Hence (25) holds and (i) is verified.

Now assume that y∗ ∈ ∂g(y1 − y2) satisfies (26) so that

x∗ − λ2y
∗ ∈ ∂f1(y1), x∗ + λ1y

∗ ∈ ∂f2(y2),

for some x∗ ∈ X. Let z1, z2 ∈ X be arbitrary. Then

f1(z1) ≥ f1(y1) + 〈x∗ − λ2y
∗, z1 − y1〉, (28)

f2(z2) ≥ f2(y2) + 〈x∗ + λ1y
∗, z2 − y2〉. (29)

Multiplying (28) by λ1 and (29) by λ2 yields

λ1f1(z1) ≥ λ1f1(y1) + 〈x∗, λ1(z1 − y1)〉 − λ1λ2〈y
∗, z1 − y1〉,

λ2f2(z2) ≥ λ2f2(y2) + 〈x∗, λ2(z2 − y2)〉 + λ1λ2〈y
∗, z2 − y2〉.

Adding these two inequalities, followed by adding λ1λ2g(z1 − z2) to both sides, we obtain

λ1f1(z1) + λ2f2(z2) + λ1λ2g(z1 − z2) ≥ λ1f1(y1) + λ2f2(y2) + λ1λ2g(z1 − z2)

− λ1λ2〈y
∗, (z1 − z2) − (y1 − y2)〉

+ 〈x∗, λ1(z1 − y1) + λ2(z2 − y2)〉.

Since y∗ ∈ ∂g(y1 − y2), it follows that

λ1f1(z1) + λ2f2(z2) + λ1λ2g(z1 − z2) ≥ λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2)

+ 〈x∗, (λ1z1 + λ2z2) − (λ1y1 + λ2y2)〉.

Taking the infimum on both sides of the last inequality over all (z1, z2) ∈ X×X such that λ1z1+λ2z2

is equal to some fixed but arbitrary z ∈ X, we deduce that

f(z) ≥ λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2) + 〈x∗, z − x〉;

10



the choice z = x yields

f(x) ≥ λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2).

On the other hand, by definition of f ,

f(x) ≤ λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2).

Altogether, f(x) = λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2), i.e., (27) holds and (ii) is verified. �

Corollary 2.9 Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0, and set f = P (λ1, f1, λ2, f2, g).
Assume that g is differentiable everywhere and that g∗ has full domain. Then for every x ∈ dom f ,
there exist y1, y2 ∈ X such that

x = λ1y1 + λ2y2, f(x) = λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2), (30)

and
∂f(x) =

(

∂f1(y1) + λ2∇g(y1 − y2)
)

∩
(

∂f2(y2) − λ1∇g(y1 − y2)
)

. (31)

In particular, this result holds when g = 1
p
‖ · ‖p with p > 1.

Proof. Since dom g∗∨ = X and g∗∨∗∨ = g, Theorem 2.2 implies that

(

P (λ1, f
∗
1 , λ2, f

∗
2 , g∗∨)

)∗
= P (λ1, f1, λ2, f2, g),

and is exact. This gives (30). Now (31) follows from (30) and Theorem 2.8(i). �

The notions of essentially smooth, essentially strictly convex, and Legendre type are carefully
studied in [18, Section 26].

Corollary 2.10 (Legendre functions) Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0, and
set f = P (λ1, f1, λ2, f2, g). Assume that both g and g∗ are differentiable everywhere.

(i) If f1 or f2 is essentially smooth, then f is essentially smooth.

(ii) If f1 or f2 is essentially strictly convex, then f is essentially strictly convex.

(iii) If f1 or f2 is essentially strictly convex, and f1 or f2 is essentially smooth, then f is both
essentially strictly convex and essentially smooth, i.e., Legendre type.

Proof. (i): Recall that a function in Γ(X) is essentially smooth if and only if its subdifferential
operator is at most single-valued; see [18, Theorem 26.1]. Assume that f1 is essentially smooth, so
that ∂f1 is at most single-valued. By Corollary 2.9, ∂f is at most single-valued. Therefore, f is
essentially smooth. (ii): Recall that a function in Γ(X) is essentially strictly convex if and only if
its conjugate is essentially smooth; see [18, Theorem 26.3]. Assume that f1 is essentially strictly
convex. Then f∗

1 is essentially smooth and so is P (λ1, f
∗
1 , λ2, f

∗
2 , g∗∨) by (i). The conjugate of the

last function is not only essentially strictly convex but also equal to f by Theorem 2.2. (iii): By

11



definition, a function in Γ(X) is of Legendre type if it is both essentially smooth and essentially
strictly convex. Hence the result follows by combining (i) and (ii). �

Our next result concerns antiderivatives of cyclically monotone operators; see, e.g., [18, Sec-
tion 24] and [20] for background material.

Corollary 2.11 Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0, and set f = P (λ1, f1, λ2, f2, g).
Assume that g has full domain, g ≥ 0, and g(0) = 0. Let x ∈ X. Then

∂f1(x) ∩ ∂f2(x) ⊂ ∂f(x). (32)

Proof. If ∂f1(x) ∩ ∂f2(x) = ∅, then (32) clearly holds. Thus assume that ∂f1(x) ∩ ∂f2(x) 6= ∅

and set y1 := y2 := x and y∗ := 0 ∈ ∂g(0) = g(y1 − y2). Then (26) is true and so Theorem 2.8(ii)
yields f(x) = λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2). In turn, Theorem 2.8(i) implies that ∂f(x) ⊃
(

∂f1(y1) + λ2y
∗
)

∩
(

∂f2(y2) − λ1y
∗
)

= ∂f1(x) ∩ ∂f2(x). �

Remark 2.12 Consider the setting of Corollary 2.11 and assume that A : X ⇉ X∗ is cycli-
cally monotone and A(x) ⊂ ∂f1(x) ∩ ∂f2(x), ∀x ∈ X. Then Corollary 2.11 guarantees that
f = P (λ1, f1, λ2, f2, g) is an antiderivative of A and hence Theorem 2.2 implies that f∗ =
P (λ1, f

∗
1 , λ2, f

∗
2 , g∗∨) is an antiderivative of A−1. Primal-dual symmetric methods for generating

antiderivatives were recently investigated in [5].

3 Indicator Functions and Minimizers

We now turn to the kernel average of two indicator functions. When g = 1
2‖ · ‖2 and ‖ · ‖ is the

Euclidean norm, then the following result becomes [6, formula (32)].

Example 3.1 (indicator functions) Let C1 and C2 be two nonempty closed convex subsets of
X, let g ∈ Γ(X), and set f = P (λ1, ιC1

, λ2, ιC2
, g). Then

f(x) = λ1λ2 inf
y1∈C1,y2∈C2

g(y1 − y2) = λ1λ2 inf
y∈λ1(x−C1)∩λ2(C2−x)

g
(

−
y

λ1λ2

)

. (33)

If g = 1
p
‖ · ‖p and p > 1, then dom f = λ1C1 + λ2C2 and

f(x) =
1

(λ1λ2)p−1
inf

y∈λ1(x−C1)∩λ2(C2−x)

1

p
‖0 − y‖p =

1

(λ1λ2)p−1

1

p
dp

λ1(x−C1)∩λ2(C2−x)(0). (34)

Proof. Fix x ∈ X. By definition of the kernel average, we have

f(x) = inf
x=λ1y1+λ2y2

y1∈C1,y2∈C2

λ1λ2g(y1 − y2).

12



If x = λ1y1 + λ2y2, then y2 − y1 = (λ1x − λ1y1)/(λ1λ2), and (y1, y2) ∈ C1 × C2 if and only if
λ1y1 ∈ λ1C1 ∩ (x − λ2C2). Hence

f(x) = inf
λ1y1∈λ1C1∩(x−λ2C2)

λ1λ2g
(

−
λ1x − λ1y1

λ1λ2

)

= λ1λ2 inf
z∈λ1C1∩(x−λ2C2)

g
(

−
λ1x − z

λ1λ2

)

.

Changing variables to y = λ1x − z in the last infimum and observing that z ∈ λ1C1 ∩ (x − λ2C2)
if and only if y ∈ λ1(x − C1) ∩ λ2(C2 − x), we obtain the more symmetric formula

f(x) = λ1λ2 inf
y∈λ1(x−C1)∩λ2(C2−x)

g
(

−
y

λ1λ2

)

,

i.e., (33). Now suppose that g = 1
p
‖ · ‖p, where p > 1. Then dom g = X and Theorem 2.6 yields

that dom f = λ1 dom ιC1
+ λ2 dom ιC2

= λ1C1 + λ2C2. Finally, (34) is an immediate consequence
of (33). �

Let f ∈ Γ(X). Recall that inf f = inf f(X), that argmin f = {x ∈ X : f(x) = inf f}, and that
min f = inf f provided that argmin f 6= ∅.

Proposition 3.2 (minimizers) Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1, λ1, λ2 > 0, and set f =
P (λ1, f1, λ2, f2, g). Assume that g ≥ 0. Then the following hold.

(i) inf f ≥ λ1 inf1 +λ2 inf f2.

(ii) If g(0) = 0 and argmin f1 ∩ argmin f2 6= ∅, then argmin f1 ∩ argmin f2 ⊂ argmin f and
min f = λ1 min f1 + λ2 min f2.

(iii) If g∗ has full domain, {x ∈ X : g(x) = 0} = {0}, and min f = λ1 min f1 + λ2 min f2, then
argmin f ⊂ argmin f1 ∩ argmin f2.

Proof. (i): Indeed, for every z ∈ X, we have

f(z) ≥ inf
z=λ1y1+λ2y2

(λ1 inf f1 + λ2 inf f2 + g(y1 − y2) ≥ λ1 inf f1 + λ2 inf f2.

The desired inequality now follows by infimizing over z ∈ X. (ii): Take x ∈ argmin f1 ∩ argmin f2.
Then

f(x) ≤ λ1f1(x) + λ2f2(x) + λ1λ2g(x − x) = λ1 min f1 + λ2 min f2.

On the other hand, (i) implies that f(x) ≥ inf f ≥ λ1 min f1 + λ2 min f2. Altogether, we obtain
f(x) = min f = λ1 min f1 + λ2 min f2. (iii): Take x ∈ argmin f . On the one hand,

f(x) = λ1 min f1 + λ2 min f2. (35)

On the other hand, Theorem 2.2 (applied to f∗
1 , f∗

2 , g∗∨) shows that there exist y1, y2 ∈ X such that

x = λ1y1 + λ2y2 and f(x) = λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2). (36)

Combining (35) and (36), we deduce that f1(y1) = min f1, f2(y2) = min f2(y2) and g(y1 − y2) = 0.
Hence y1 − y2 = 0. Thus y1 = y2 = x, f1(x) = min f1 and f2(x) = min f2. �
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Corollary 3.3 Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1, λ1, λ2 > 0, and set f = P (λ1, f1, λ2, f2, g).
Assume that g ≥ 0, {x ∈ X : g(x) = 0} = {0}, and that g∗ has full domain. Then

min f = λ1 min f1 + λ2 min f2 ⇔ argmin f1 ∩ argmin f2 6= ∅,

in which case argmin f = argmin f1 ∩ argmin f2. Consequently, if f, f1, f2 all have minimizers but
argmin f1 ∩ argmin f2 = ∅, then min f > λ1 min f1 + λ2 min f2.

4 Proximal Mappings

In this section, we assume that the kernel function g ∈ Γ(X) is differentiable everywhere,
that g is uniformly convex on bounded convex subsets of X, and that g is supercoercive, i.e.,
lim‖x‖→+∞ g(x)/‖x‖ = +∞. See [24] for further information on these notions. Since X is finite-
dimensional, [24, Proposition 3.6.6(i) and Lemma 3.6.1] imply the following equivalent requirement:

g ∈ Γ(X) is differentiable and strictly convex everywhere, and g∗ has full domain.

Definition 4.1 (proximal mapping) Let f ∈ Γ(X). The g-proximal mapping of f is

Pgf = (∂f + ∇g)−1 : X∗
⇉ X.

Lemma 4.2 Let f ∈ Γ(X). Then dom Pgf = ran(∂f + ∇g) = X∗, Pgf is single-valued, and
x∗ ∈ ∂f(x) if and only if x = Pgf(x∗ + ∇g(x)).

Proof. On the one hand, f + g is uniformly convex on bounded convex subsets of X. On the
other hand, since f possesses a continuous affine minorant, f + g is supercoercive. Altogether,
[24, Corollary 3.5.9] implies that ran(∂(f + g)) = X∗. It follows that domPgf = ran(∂f + ∇g) =
ran ∂(f + g) = X∗. Now fix x∗ ∈ X∗ and take x1, x2 ∈ Pgf(x∗). Then each xi ∈ (∂f + ∇g)−1(x∗)
⇔ x∗ ∈ (∂f + ∇g)(xi) ⇒ x∗ −∇g(xi) ∈ ∂f(xi). Since ∂f is monotone, we get

〈x∗ −∇g(x1) − (x∗ −∇g(x2)), x1 − x2〉 ≥ 0,

i.e., 〈∇g(x1)−∇g(x2), x1 −x2〉 ≤ 0. Since g is strictly convex, the gradient operator ∇g : X → X∗

is strictly monotone (see [24, Theorem 2.4.4(ii)]), and we thus conclude that x1 = x2. Hence
Pgf is single-valued. Therefore, x∗ ∈ ∂f(x) ⇔ x∗ + ∇g(x) ∈ ∂f(x) + ∇g(x) = (∂f + ∇g)(x) ⇔
x = (∂f + ∇g)−1(x∗ + ∇g(x)) = Pgf(x∗ + ∇g(x)). �

The following result relates the proximal mapping Pgf to Pgf1 and Pgf2.

Theorem 4.3 Let f1, f2 ∈ Γ(X), λ1+λ2 = 1 with λ1, λ2 > 0, and set f = P (λ1, f1, λ2, f2, g). Then
for every x ∈ dom ∂f , there exist y1 ∈ dom∂f1 and y2 ∈ dom∂f2 such that for every x∗ ∈ ∂f(x),
we have

x = Pgf
(

x∗ + ∇g(x)
)

(37)

= λ1Pgf1

(

x∗ − λ2∇g(y1 − y2) + ∇g(y1)
)

+ λ2Pgf2

(

x∗ + λ1∇g(y1 − y2) + ∇g(y2)
)

. (38)
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Moreover, for every z∗ ∈ X∗, there exist y1 ∈ dom ∂f1 and y2 ∈ dom∂f2 such that

Pgf(z∗) = λ1Pgf1

(

z∗−∇g(x)−λ2∇g(y)+∇g(y1)
)

+λ2Pgf2

(

z∗−∇g(x)+λ1∇g(y)+∇g(y2)
)

, (39)

where x := λ1y1 + λ2y2 = Pgf(z∗) and y := y1 − y2.

Proof. Take x ∈ dom ∂f . By Corollary 2.9, there exist y1 ∈ dom f1 and y2 ∈ dom f2 such that

x = λ1y1 + λ2y2, (40)

and
∂f(x) = (∂f1(y1) + λ2∇g(y)) ∩ (∂f2(y2) − λ1∇g(y)),

where y := y1−y2. Now take x∗ ∈ ∂f(x). Then x∗−λ2∇g(y) ∈ ∂f1(y1) and x∗+λ1∇g(y) ∈ ∂f2(y2).
Hence y1 ∈ dom ∂f and y2 ∈ dom ∂f2. By Lemma 4.2,

y1 = Pgf1(x
∗ − λ2∇g(y) + ∇g(y1)) and y2 = Pgf2(x

∗ + λ1∇g(y) + ∇g(y2)). (41)

On the other hand, Lemma 4.2 also implies that

x = Pgf(x∗ + ∇g(x)). (42)

Altogether, we obtain (37)–(38) by combining (42), (40), and (41). Now take z∗ ∈ X∗. Since
ran(∂f + ∇g) = X∗ by Lemma 4.2, there exists x ∈ X such that z∗ ∈ ∂f(x) + ∇g(x), i.e.,
z∗ −∇g(x) ∈ ∂f(x). Lemma 4.2 yields x = Pgf(z∗). Therefore, (39) follows from (37)–(38). �

We are now able to recover a known result about the proximal average; see [6, Theorem 6.1].

Corollary 4.4 Let f1, f2 ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0, and set f = P (λ1, f1, λ2, f2, g),
where g = 1

2‖ · ‖
2 and ‖ · ‖ is the Euclidean norm. Then

Pgf = λ1Pgf1 + λ2Pgf2. (43)

Proof. Take z∗ ∈ X∗ = X and let y1, y2, x, y be as in Theorem 4.3. Since ∇g = Id, we obtain

z∗ −∇g(x) − λ2∇g(y) + ∇g(y1) = z∗ − (λ1y1 + λ2y2) − λ2(y1 − y2) + y1 = z∗

and
z∗ −∇g(x) + λ1∇g(y) + ∇g(y2) = z∗ − (λ1y1 + λ2y2) + λ1(y1 − y2) + y2 = z∗.

Hence (39) transpires to Pgf(z∗) = λ1Pgf1(z
∗) + λ2Pgf2(z

∗). �
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5 Application to Monotone Operators

From now on, we assume that

X is a reflexive real Banach space, with norm ‖ · ‖, dual space X∗, and dual norm ‖ · ‖∗.

We shall study the kernel average — defined as in Definition 1.1 — in this setting and then apply
it in the product space X × X∗ to explicitly describe a maximal monotone extension of any given
monotone operator. The kernel average can also be used to represent maximal monotone operators.
Representations with attractive duality properties were studied previously by Svaiter (see [23]),
by Penot (see [14, 15]), by Penot and Zălinescu (“autoconjugates”, see [16]), and by Ghoussoub
(“selfdual Lagrangians”, see [11]). The works by Svaiter, by Penot, and by Ghoussoub were not
explicit in the sense that either Zorn’s Lemma or transfinite induction was utilized. Ghoussoub
also imposed separability on the underlying space. Although explicit, the construction by Penot
and Zălinescu required a constraint qualification. In this section, we shall provide an explicit
construction without any constraint qualification, in the present setting of reflexive real Banach
spaces.

We start with a variant of Theorem 2.2 adapted to the present setting. The proof, while similar
to the one of Theorem 2.2, is included for completeness and for the reader’s convenience. Given
f ∈ Γ(X), we denote by cont f the set of points at which f is finite and continuous.

Theorem 5.1 Let f1, f2, g ∈ Γ(X), λ1 + λ2 = 1 with λ1, λ2 > 0. Then the following hold.

(i) If (dom f1 − dom f2) ∩ cont g 6= ∅, then

(

P (λ1, f1, λ2, f2, g)
)∗

= P (λ1, f
∗
1 , λ2, f

∗
2 , g∗∨) (44)

belongs to Γ(X∗) and the infimum in the definition of P (λ1, f
∗
1 , λ2, f

∗
2 , g∗∨) is attained.

(ii) If (dom f∗
1 − dom f∗

2 ) ∩ cont g∗∨ 6= ∅, then

(

P (λ1, f
∗
1 , λ2, f

∗
2 , g∗∨)

)∗
= P (λ1, f1, λ2, f2, g) (45)

belongs to Γ(X) and the infimum in the definition of P (λ1, f1, λ2, f2, g) is attained.

Proof. (i): As in Section 2, we define A : X × X → X : (x1, x2) 7→ x1 − x2, F : X × X →
]−∞,+∞] : (x1, x2) 7→ λ1f1(x1) + λ2f2(x2) + λ1λ2g(x1 − x2) so that A∗ : X∗ → X∗ × X∗ : x∗ 7→
(λ1x

∗, λ2x
∗) and

P (λ1, f1, λ2, f2, g) = AF. (46)

Furthermore,
F = g1 + g2,

where we define g1 and g2 on X × X by

g1(x1, x2) = λ1f1(x1) + λ2f2(x2), g2(x1, x2) = λ1λ2g(x1 − x2).
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Assume that (dom f1 − dom f2) ∩ cont g 6= ∅, which implies that dom g1 ∩ cont g2 6= ∅. Using [24,
Theorem 2.8.7(iii)], we see that for every (x∗

1, x
∗
2) ∈ X∗ × X∗,

F ∗(x∗
1, x

∗
2) = min

(y∗
1
,y∗

2
)∈X∗×X∗

g∗1(y
∗
1 , y

∗
2) + g∗2(x

∗
1 − y∗1, x

∗
2 − y∗2). (47)

Now for every (x∗
1, x

∗
2) ∈ X∗×X∗, we clearly have g∗1(x∗

1, x
∗
2) = λ1f

∗
1 (x∗

1/λ1)+λ2f
∗
2 (x∗

2/λ2), and also
g∗2(x

∗
1, x

∗
2) = λ1λ2g

∗(x∗
1/(λ1λ2)) + ι{0}(x

∗
1 + x∗

2) by Lemma 2.1. Using (46), [24, Theorem 2.3.1(ix)],
and (47), we thus obtain for every x∗ ∈ X∗,

(

P (λ1, f1, λ2, f2, g)
)∗

(x∗) = (AF )∗(x∗)

= F ∗(A∗x∗)

= min
y∗
1
,y∗

2

g∗1(y
∗
1 , y

∗
2) + g∗2(λ1x

∗ − y∗1 , λ2x
∗ − y∗2)

= min
y∗
1
+y∗

2
=x∗

λ1f
∗
1 (y∗1/λ1) + λ2f

∗
2 (y∗2/λ2) + λ1λ2g

∗
(λ1x

∗ − y∗1
λ1λ2

)

= min
λ1z∗

1
+λ2z∗

2
=x∗

λ1f
∗
1 (z∗1) + λ2f

∗
2 (z∗2) + λ1λ2g

∗
(x∗ − z∗1

λ2

)

= min
λ1z∗

1
+λ2z∗

2
=x∗

λ1f
∗
1 (z∗1) + λ2f

∗
2 (z∗2) + λ1λ2g

∗∨(z∗1 − z∗2)

= P (λ1, f
∗
1 , λ2, f

∗
2 , g∗∨)(x∗).

(ii): Apply (i) to f∗
1 , f∗

2 , g∗∨. �

We now record a special case of Theorem 5.1 in the product space X ×X∗, the dual of which is
X∗ × X.

Corollary 5.2 Let f1, f2, g ∈ Γ(X ×X∗), λ1 +λ2 = 1 with λ1, λ2 > 0, and assume that both g and
g∗ have full domain. Then P (λ1, f1, λ2, f2, g) ∈ Γ(X × X∗), P (λ1, f

∗
1 , λ2, f

∗
2 , g∗∨) ∈ Γ(X∗ × X),

and
(

P (λ1, f1, λ2, f2, g)
)∗

= P (λ1, f
∗
1 , λ2, f

∗
2 , g∗∨).

In particular, if p, q > 1 with 1
p

+ 1
q

= 1, then

(

P
(

λ1, f1, λ2, f2,
1
p
‖ · ‖p ⊕ 1

q
‖ · ‖q

∗

))∗
= P

(

λ1, f
∗
1 , λ2, f

∗
2 , 1

q
‖ · ‖q

∗ ⊕
1
p
‖ · ‖p

)

.

From now on, we assume that

A : X ⇉ X∗ is a monotone operator,

i.e., for all (x, x∗), (y, y∗) ∈ graA := {(z, z∗) ∈ X × X∗ : z∗ ∈ Az}, we have 〈x∗ − y∗, x − y〉 ≥ 0,
and that gra A 6= ∅. The operator A is said to be maximal monotone, if it is not possible to
enlarge A without destroying monotonicity. Monotone operators play an important role in modern
optimization and analysis; see, e.g., [19, 20]. The Fitzpatrick function [10] associated with A has
recently turned out to be a very effective tool for analyzing A; see, e.g., [1, 2, 3, 4, 5, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 21, 22, 23].
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Definition 5.3 The Fitzpatrick function associated with A is the function FA ∈ Γ(X×X∗) defined
at (x, x∗) ∈ X × X∗ by

FA(x, x∗) := sup
(a,a∗)∈gra A

(

〈a∗, x〉 + 〈x∗, a〉 − 〈a∗, a〉
)

. (48)

Given f ∈ Γ(X∗ × X), it will be convenient to define its “transpose” function f⊺ ∈ Γ(X,X∗) by

f⊺(x, x∗) = f(x∗, x),

and similarly for f ∈ Γ(X×X∗). We can now simply express the Fitzpatrick function of the inverse
of A by

FA−1 = F⊺

A. (49)

As in [14, 15, 16], we say that

f is autoconjugate ⇔ f⊺ = f∗;

in [11], f is then called a “selfdual Lagrangian”.

Fact 5.4 Let (x, x∗) ∈ X × X∗. Then the following hold.

(i) FA ≤ F ∗⊺
A .

(ii) If (x, x∗) ∈ graA, then FA(x, x∗) = F ∗
A(x∗, x) = 〈x∗, x〉 and (x∗, x) ∈ ∂FA(x, x∗).

(iii) If A is maximal monotone and (x, x∗) /∈ gra A, then FA(x, x∗) > 〈x∗, x〉.

Proof. (i): See [10, Proposition 4.2]. (ii): See [10, Theorem 3.4 and Proposition 4.2]. (iii): See [10,
Theorem 3.8]. �

If A is maximal monotone, then (by Fact 5.4(ii)–(iii)) it is possible to represent A by FA in the
sense that gra A = {(x, x∗) ∈ X ×X∗ : FA(x, x∗) = 〈x∗, x〉}. We now show how the kernel average
can be utilized to construct extensions and autoconjugate representations. To this end, we let the
kernel function in Γ(X × X∗) be given by

gp(x, x∗) := 1
p
‖x‖p + 1

q
‖x∗‖q

∗,

where p, q > 1 and 1
p

+ 1
q

= 1. Observe that gp(x, x∗) = gq(x
∗, x), when gq ∈ Γ(X∗ × X). Our

analysis will carry through with more general kernels, but this particular choice of the kernel is
sufficient for the construction of autoconjugate representations. Note that

g∗∨p = g∗p = g⊺

p , (50)

which itself is autoconjugate and which yields the following recipe for constructing autoconjugates.

18



Lemma 5.5 Let f ∈ Γ(X × X∗). Then
(

P
(

1
2 , f, 1

2 , f∗⊺, gp

)

)∗
= P

(

1
2 , f∗, 1

2 , f⊺, g⊺

p

)

and P
(

1
2 , f, 1

2 , f∗⊺, gp

)

is autoconjugate.

Proof. Using Corollary 5.2 and (50), we have
(

P (1
2 , f, 1

2 , f∗⊺, gp)
)∗

= P (1
2 , f∗, 1

2 , f∗⊺∗, g∗∨p ) = P (1
2 , f∗, 1

2 , f⊺, g⊺

p )

= P (1
2 , f⊺, 1

2 , f∗, g⊺

p ) = P (1
2 , f⊺, 1

2 , f∗⊺⊺, g⊺

p )

=
(

P (1
2 , f, 1

2 , f∗⊺, gp)
)

⊺
.

The proof is complete. �

Let f ∈ Γ(X × X∗). Define G(f) : X ⇉ X∗ by

x∗ ∈ G(f)x if and only if (x∗, x) ∈ ∂f(x, x∗). (51)

This operator was first considered by Fitzpatrick [10, Section 2]. The following result shows that
G(f) has very nice properties if f is autoconjugate.

Fact 5.6 Let f ∈ Γ(X ×X∗) be autoconjugate. Then G(f) is maximal monotone, and x∗ ∈ G(f)x
if and only if f(x, x∗) = 〈x∗, x〉.

Proof. (See [11, 16].) Let (x, x∗) ∈ X × X∗. Since f is autoconjugate, we have the equivalences
x∗ ∈ G(f)x ⇔ (x∗, x) ∈ ∂f(x, x∗) ⇔ f(x, x∗) + f∗(x∗, x) = 〈(x∗, x), (x, x∗)〉 ⇔ f(x, x∗) = 〈x∗, x〉.
The Fenchel-Young inequality implies f(x, x∗) + f∗(x∗, x) ≥ 2〈x∗, x〉; hence, using again that f∗ =
f⊺, we see that f(x, x∗) = f∗(x∗, x) ≥ 〈x∗, x〉. Now apply [16, Proposition 2.3], [22, Theorem 1.4],
or [11, Proposition 2.2.1]. �

Using Theorem 5.1 and Corollary 5.2, we now define RA ∈ Γ(X × X∗) by

RA(x, x∗) := P
(

1
2 , FA, 1

2 , F ∗⊺
A , gp

)

(x, x∗) (52)

= min
(x,x∗)= 1

2
(x1,x∗

1
)+ 1

2
(x2,x∗

2
)

1
2FA(x1, x

∗
1) + 1

2F ∗
A(x∗

2, x2) + 1
4gp(x1 − x2, x

∗
1 − x∗

2). (53)

We shall also write RA,p for RA if we want to emphasize the dependence on p.

Theorem 5.7 (extension and representation) The function RA is autoconjugate,

FA ≤ RA ≤ F ∗⊺
A , (54)

and G(RA) is a maximal monotone extension of A. Moreover, this construction is primal-dual
symmetric in the sense that

RA−1,q = R∗
A,p = R⊺

A,p (55)

and
(G(RA,p))

−1 = G(R∗
A,p) = G(R⊺

A,p) = G(RA−1,q). (56)

Consequently, if A is maximal monotone, then A = G(RA) and A−1 = G(R⊺

A) = G(R∗
A).
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Proof. Lemma 5.5 implies that RA is autoconjugate. Proposition 2.5 and Fact 5.4(i) imply that
RA ≤ max{FA, F ∗⊺

A } = F ∗⊺
A . Taking the Fenchel conjugate now yields R⊺

A = R∗
A ≥ F ∗⊺∗

A = F⊺

A.
Altogether, this implies (54). By Fact 5.6, the operator G(RA) is maximal monotone. Take
(a, a∗) ∈ gra A. By Fact 5.4(ii), FA(a, a∗) = F ∗⊺

A (a, a∗) = 〈a∗, a〉. Thus, by (54), RA(a, a∗) = 〈a∗, a〉.
Now Fact 5.6 yields a∗ ∈ G(RA)a, i.e., (a, a∗) ∈ gra G(RA). Hence G(RA) extends A. Since RA is
autoconjugate, we have R∗

A = R⊺

A and hence

G(R∗
A) = G(R⊺

A). (57)

Since FA−1 = F⊺

A (see (49)), it follows that RA−1,q = R⊺

A,p. Thus (55) holds and we see that

G(RA−1,q) = G(R⊺

A,p). (58)

Let (x, x∗) ∈ X × X∗. Using Fact 5.6 and once again that R∗
A = R⊺

A, we obtain the equivalences
x ∈ (G(RA))−1x∗ ⇔ x∗ ∈ G(RA)x ⇔ RA(x, x∗) = 〈x∗, x〉 ⇔ R∗

A(x∗, x) = 〈x, x∗〉 ⇔ x ∈ G(R∗
A)x∗.

Hence
(G(RA))−1 = G(R∗

A). (59)

Therefore, (56) follows by combining (57), (58), and (59). �

Remark 5.8 A closer look at the proof of Theorem 5.7 reveals that its conclusion remains valid
if RA is replaced by P (1

2 , f, 1
2 , f∗⊺, gp) provided that f ∈ Γ(X × X∗) satisfies FA ≤ f ≤ F ∗⊺

A .

Remark 5.9 Fitzpatrick’s [10, Problem 5.5] asks to find an autoconjugate function f such that
G(f) extends A. Theorem 5.7 completely settles this question in the present reflexive Banach
space setting: simply take f = RA,p. In fact, when p = 2 the result is particularly appealing since
G(RA,2) is a maximal monotone extension of A with (G(RA,2))

−1 = G(RA−1,2). A comparison to
previous works is in order. The works by Penot, Svaiter, and Ghoussoub (see [14, 23, 15, 11]) are
nonconstructive. Ghoussoub also requires that X be separable. Penot and Zălinescu [16] provide
a constructive representation, but not for arbitrary monotone operators (A is assumed to satisfy a
constraint qualification). To the best of our knowledge, the nonreflexive case remains open.

We conclude with a concrete example.

Example 5.10 Suppose that X is a Hilbert space and that graA ⊂ {(x, x) : x ∈ X}. Then
RA,2 : X × X → R : (x, x∗) 7→ 1

2‖x‖
2 + 1

2‖x
∗‖2 and G(RA,2) = Id.

Proof. Since A = A−1, we deduce from (55) that RA,2 = RA−1,2 = R∗
A,2. However, the only function

equal to its conjugate on the Hilbert space X × X is (x, x∗) 7→ 1
2‖x‖

2 + 1
2‖x

∗‖2. Hence RA,2 is as
claimed. Since ∇RA,2 = Id, it follows that G(RA,2) = Id. �
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