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Abstract.  

This paper considers packing problems with balancing conditions and items 

consisting of clusters of parallelepipeds (mutually orthogonal, i.e. tetris-like 

items). This issue is quite frequent in space engineering and a real-world 

application deals with the Automated Transfer Vehicle project (funded by the 

European Space Agency), at present under development.  

A Mixed Integer Programming (MIP) approach is proposed. The three-

dimensional single bin packing problem is considered. It consists of orthogonally 

placing, with possibility of rotation, the maximum number of parallelepipeds into 

a given parallelepiped. A MIP formulation of the problem is reported together 

with a MIP-based heuristic approach.    Balancing conditions are furthermore 

examined, as well as the orthogonal placement (with rotation) of tetris-like items 

into a rectangular domain.  
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1. Introduction 

The literature concerning the optimization of multidimensional packing problems 

is widespread and advanced methods are available to look into efficient solutions 

of difficult instances (Coffman et al. 1997; Dyckhoff et al. 1997; Martello et al. 

2000). Most of the work focuses on the orthogonal placement of rectangular items 

into rectangular domains (with no additional conditions). Non-standard packing 

issues, involving specific additional conditions, however, sometimes arise in 

practice. This occurs for instance in space engineering, when dealing with payload 

or cargo accommodation within satellites, space modules and space vehicles: an 

efficient exploitation of the available volume is necessary, in compliance with 

tight requirements on modularity, accessibility, operability, logistic, functional 

and operational conditions (Fasano 2003). 

The work presented in this paper originates from the activity performed by 

Alenia Spazio S.p.A., within the context of the Automated Transfer Vehicle 

(ATV) project. The ATV is the European transportation system supporting the 

International Space Station. On the basis of the Cargo Manifest plan (NASA), 

defining the mass types and quantities to be transported to and from the Space 

Station, a detailed cargo accommodation analysis has to be performed, for each 

launch and for each carrier. From the cargo accommodation point of view, the 

ATV consists of an unpressurized module (i.e the external module) and a 

pressurized module (see Figure 1). Accommodation rules and constraints are 



  

given for the unpressurized, pressurized and overall cargo. The unpressurized 

cargo consists of fluids and the pressurized one of items. Complex geometrical 

and functional conditions have to be considered (Fasano et al. 2003). The ATV 

case presents several packing issues at different levels. Small items have to be 

accommodated into containers (bags); containers or 'large items' into racks and 

racks into locations inside the ATV Cargo Carrier, taking into account mass and 

volume capacity limitations (at container, rack and cargo carrier level), specific 

positioning rules, static and dynamic balancing conditions. Small items, drawers 

and bags are assumed to be parallelepipeds; 'large items' are assumed to be 

clusters of parallelepipeds; racks are convex domains subdivided into sectors by 

parallel planes.  

 

 
Figure 1 The Automated Transfer Vehicle 

 

In this context, but not only, several two-dimensional or three-dimensional 

packing issues arise, consisting of accommodating items into both rectangular and 

non-rectangular domains, in the presence of additional conditions such as, for 

instance, those deriving from the static or dynamic balancing, as well as from 

specific accommodation requirements. Some items may have an assigned position 

or orientation and the domain may be partitioned into sectors, contain separation 

planes (with no prefixed position) or forbidden regions. In general, items are 

parallelepipeds of homogeneous density and orthogonal rotations are admitted. In 

some specific applications, however, items cannot be adequately represented by 

single parallelepipeds (for reasons of shape and dimension). Clusters of 

parallelepipeds have then to be considered giving rise to (two-dimensional or 

three-dimensional) tetris-like problems.  

Specific non-standard packing problems are frequently tackled by 

dedicated approaches based on heuristics or meta-heuristics (Colaneri et al. 2003; 

Daughtrey et al. 1991). Mixed Integer Programming (MIP, see Nemhauser and 

Wolsey 1988) in some cases represents a valuable alternative (Fasano 1999; 

Mathur 1998; Padberg 1999). This approach seems quite suitable to solve some 

classes of non-standard packing problems with additional conditions (e.g. 

separation planes, fixed position or orientation of specific items, static balancing, 

non-rectangular domains) and tetris-like items (Fasano 2003).  

This paper considers the three-dimensional single bin packing problem 

first. It consists of placing (orthogonally and with possibility of rotation) the 

maximum number of parallelepipeds (from a given set) into a parallelepiped. A 

MIP formulation of this problem is reported in this work and a heuristic approach 

to find satisfactory (sub-optimal) solutions for the MIP model is described.  The 

paper points out the susceptibility of the adopted approach to straightforward 

extensions. Static balancing conditions are examined, as well as the orthogonal 

placement (with rotation) of tetris-like items into a rectangular domain. We show 

how to extend the MIP formulation to accommodate balancing constraints that are 



  

frequently encountered in practice. We also show how to deal with objects that are 

clusters of parallelepipeds, i.e. Tetris-like parallelepipeds. These extensions were  

motivated by the ATV project.   

2. The basic problem  

2.1 Problem definition 

Given a set of  n parallelepipeds and a parallelepiped D (domain), place the 

maximum number of items into D  with the following positioning rules: 

• each (picked) parallelepiped side has to be parallel to a side of the domain 

(orthogonality   conditions); 

• all (picked) parallelepipeds have to be contained within D (domain 

conditions); 

• the (picked) parallelepipeds cannot overlap (non-intersection conditions). 
Different optimization criteria, such as volume or mass maximization, could be 

considered. 

2.2 MIP model (basic formulation) 

A possible MIP formulation of the basic problem is reported below.  

For each parallelepiped i denote by L1i,L2i,L3i, with L1i ≤ L2i ≤ L3i, its sides and by 

w1i,w2i,w3i the coordinates of its center with respect to a predefined orthonormal 

reference frame (with origin O and axes w1,w2,w3). The domain D is a 

parallelepiped with sides D1,D2,D3, parallel to the w1,w2,w3 reference frame axes 

respectively. A vertex of D is, moreover, supposed to be coincident with the 

reference frame origin O and D lies within the positive quadrant of the reference 

frame (see Figure 2). 
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Figure 2 Orthogonal three-dimensional packing 

 

By setting α∈{1,2,3}, β∈{1,2,3}, i∈{1,…,n}, the binary variables   χi ,δαβi  ∈ {0,1} 

are introduced with the following meaning: 

χi  = 1 if item i  is  picked, χi  =  0 otherwise; 

δαβi  = 1 if  Lαi  is parallel to the wβ  axis, δαβi  =  0 otherwise. 
The orthogonality conditions are expressed by the following constraints: 
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Equations 1-2 state that for each picked parallelepiped, each side must be parallel 

to one and only one reference frame axis. (For non-picked parallelepipeds, all δ 
variables are set to zero.)  

The domain conditions are expressed by the following constraints: 
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Inequalities (3) state that all vertexes of each picked parallelepiped must stay 

within the domain for each orthogonal orientation. (For non-picked 

parallelepipeds all w coordinates are set to zero). 

The non-intersection conditions for each pair (i,j) of picked parallelepipeds are 

equivalent to the logical conditions below: 
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Conditions (4) state that for each pair of picked parallelepipeds, for each 

orthogonal orientation, their side projections must not overlap along at least one 

axis of the reference frame. The logical conditions 4 can be expressed in terms of 

MIP constraints. A straightforward formulation is attained by introducing, for 

each β and for each (i,j), with  i< j, the set of binary variables σ+
βij ,σ 

-
βij ∈ {0,1} 

and the following constraints: 
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+
ijβσ = 1 implies that the side’s projections of i and j don’t overlap along the wβ 

axis and j precedes i. 
+
ijβσ = 0 makes the corresponding non-intersection constraint 

redundant. Analogous considerations hold for σ -βij. Equation (7) guarantees that if 
both i and j are picked at least one of the non- intersection constraints holds. It can 

be easily proved that for each (i,j) Dβ is the minimum value that guarantees the 

compatibility between the disjunctive constrains 5-6, for any position of i and j 

within D. 

The following target function is introduced:  
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(When the total volume or mass has to be maximized, the target function has the 

form: i

n

i

iK χ∑
=1

max , where Ki are constants.) 

A 3-dimensional model relative to n items contains: 

3n(n-1) σ  variables (0-1) 
9n δ  variables (0-1) 
n χ variables (0-1) 
6n orthogonality constraints 

3n domain constraints 

3n(n-1)+n(n-1)/2  non-intersection constraints. 

2.2 Auxiliary constraints 

The mathematical model reported in section 2.1 may be refined by considering 

some necessary conditions that are implicit in the basic formulation. It is well 

known, in fact, that a MIP model is generally made easier to solve by expanding 

the number of (valid) constraints. Some examples of auxiliary constraints are 

reported in this section. 

 

Pairs of items 

The pair of items (i,j), i < j is considered together with some possible 

implications. 

The following one is quite evident (notice that for each item i, L1i ≤ L2i ≤ L3i): 

if L1i+L1j ≥  Dβ ,  then items i and j cannot be aligned along  the wβ  axis.  

This implication is expressed by: 

β1j1i DLL j stij,i,β, ≥+<∀∀∀
 

0== −+
ijij ββ σσ .  (9) 

A set of implications correlating alignment and orientations conditions could be 

considered. (They have been introduced by S. Gliozzi, IBM). An example of this 

kind of implication follows:  

if L1i+L2j ≥  Dβ , then items i and j cannot be aligned along  the wβ  axis, with L2j   

parallel to the wβ  axis.  

This is expressed by: 
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Triplets of items  

The triplet of items (i,j,k), i < j < k is considered together with some possible 

implications. A first one is quite obvious: 

 if i precedes j and j precedes k along the wβ  axis, then i precedes k along the 

same axis. This implication is expressed by: 

kjikji <<∀∀∀∀ ,,,,β
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and all possible permutations of (i,j,k) give rise to analogous auxiliary constraints 

(with the appropriate selection for the variables σ+
,σ -).  

A further implication for triplets holds:  



  

 if L1i+L1j+L1k  ≥ Dβ, then the whole triplet cannot be aligned along  the wβ            

axis. It is expressed by the following constraints: 

ββ DLLLkjikji kji ≥++<<∀∀∀∀ 111/,,,,
 

2≤+++++ −+−+−+
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The proof is quite immediate: notice that not more than 2 items may be aligned 

and that for each pair of items at least one of the corresponding variables σ+
,σ - 

must be null.  

The implications correlating alignment and orientations conditions are not limited 

to pairs of items (they could involve triplets and so on). Analogous considerations 

hold for the implications relative to the triplets and further implications could be 

investigated to obtain new auxiliary constraints. (The scale of the resulting MIP 

model could however be very large and a Branch and Cut approach could be quite 

suitable, see Padberg 1999).  

3. MIP-based heuristic approach 

The MIP model described in section 2 is hard to solve using standard techniques.   

Difficulties are determined in particular by the presence of the non-intersection 

conditions, such that the search for optimal solutions by means of standard MIP 

algorithms is often a very difficult task. Since sub-optimal solutions are sufficient 

in most real-world cases, some MIP-based heuristics have been implemented to 

look into quick satisfactory (sub-optimal) solutions (Fasano 1999, 2003). 

 

 
Figure 3 A case study (20 objects, occupied volume > 80%) 

 

[…] 

4. Extensions 

When dealing with standard packing problems, the modeling (non-algorithmic) 

approach proposed in this paper is generally less efficient than other methods, 

present in the literature. It seems, however, quite suitable to tackle some practical 

non-standard instances with additional conditions (e.g. fixed positions or 

orientations for some items, separation planes, non-rectangular domains, 

forbidden regions within the domain, see Fasano 1999, 2003).  The cases of 

balancing conditions and tetris-like items are examined in this section. The MIP-

based heuristic approach described in section 3 is directly applicable to the 

extensions.   



  

4.1 Balancing conditions 

In some practical cases, balancing conditions have to be considered. An extension 

of the basic problem (section 2) to include balancing conditions is reported here 

below.   

Each item i is assumed to have mass Mi and its center of gravity coincident with 

its geometrical center (this assumption could be dropped quite easily). An overall 

center of gravity is then associated to each subset of picked parallelepipeds. 

Consider the following balancing rule: 

the overall center of gravity must stay within a given convex domain C (contained 

in D). Denoting by V1(V11,V21,V31),…,Vr (V1r,V2r,V3r)  the  r vertices of C, a point  

P(p1,p2,p3) is inside C if and only if the following (convexity) conditions hold (see 

e.g. Williams 1993): 
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where ∀γ, ψγ ≥0. 
The conditions below are introduced together with (15) to state that the overall 

center of gravity stay within the convex domain C:  
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It is supposed m > 0 and, by conditions 3, for each non-picked item i, all wβi 

variables are null. 

The (15) and (16) are equivalent to the following  linear conditions:
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where ∀γ, γγ ψψ m=* . 

Notice that the nonlinear equations ∀γ, γγ ψψ m=*  don't need to be included in 

the model.   

The balancing conditions are simplified when C is rectangular. In this case they 

have the form: β∀  mCwMmC U

n

i

iiL βββ ∑
=

≤≤
1

, where for each β, [ βLC , βUC ] are 

the admitted intervals for the overall center of gravity. 

4.2 Tetris-like items (cluster of parallelepipeds) 

With the approach proposed in this paper, fixing items position and orientation is 

immediate. This characteristic can be profitably exploited to cope with items 

consisting of clusters of parallelepipeds (mutually orthogonal) i.e. tetris-like 

items.  
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Figure 4 Tetris-like item (bidimensional representation) 

 

Given the tetris-like item i, introduce a local (orthogonal) reference frame 

(w'1,w'2,w'3)i with origin O'i (see  Figure 4). The set of components  

(parallelepipeds) Ci is associated to each item i. 

Prefixed orientations are considered first and an extension to the case of 

orthogonal rotations is reported next. The balancing conditions of section 4.1 are 

directly applicable to the case of tetris-like items.   

Prefixed orientation 

It is supposed that each w'β axis (of the local reference frame) is parallel to the 

corresponding wβ axis (of the global reference frame).   

It is set: 

iCh i ∀∈∀∀ ,,β    
hiihi Wow βββ '' += ,    (19)  

where, for each item i, wβhi  and o'βi are the coordinates of  the center  of 

component h  and the coordinates of o'i with respect to the overall reference frame 

(w1,w2,w3), W'βhi  (constants) are the coordinates of the center of component h with 

respect to the local reference  frame (w'1,w'2,w'3)i. 

The extension of the domain constraints of section 2.2 is quite immediate and it is 

not reported: inequalities (3) can be applied to each single component or to the 

smallest parallelepipeds enveloping each tetris-like item. 

The non-intersection constraints (5), (6), (7) are generalized as follows, for 

components h, l of items i and j respectively: 
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where  Lβhi, Lβlj are the sides of components h and l, respectively, parallel to the wβ  

axis (of the overall reference frame).  



  

Orthogonal rotations 

When orthogonal rotations are admitted (19), (20), (21) can be further 

generalized. For this purpose to each item i, for each possible orientation ω∈{1, 

…s},the binary variable θωi ∈ {0,1} is introduced, with the following meaning: 

θωi  = 1 if item i has the orientation ω, θωi  = 0 otherwise. 

(In the bi-dimensional case there are 4 possible orientations, 24 in the three-

dimensional one). 

The following equation is introduced: 
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It states that each item i has one (and only one) orientation. 
Equation (19) is substituted by the following: 
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where hiW ωβ'  is the distance between the coordinates of the center of component h 

and the origin of the local reference frame, along the wβ  axis (of the overall 

reference frame), corresponding to the orientation ω. Inequalities (20) and (21) are 
substituted by the following: 
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where Lωβhi, Lωβlj  are the sides of components h and l respectively, parallel to the 

wβ axis, corresponding to the orientation ω (for items i and j). 
4.3 Applications 
The presence of balancing conditions generally makes the solution procedure 

lengthier. On the basis of the experimental analysis performed up to now, the 

computational time can increase by up to 25-30%. The presence of tetris-like 

items also makes the problem more difficult to solve. A rough evaluation of the 

effect due to the presence of tetris-like item can be obtained by considering the 

total number of single parallelepipeds and tetris-like items components. Balancing 

conditions have been considered for the ATV project to accommodate bags and 

large items into racks (Fasano et al. 2003). Tetris-like items have to be positioned 

on the rack front (rectangular) surface, so that bi-dimensional tetris-like issues 

have to be considered. This application is at present under development. 

5. Conclusions 

This paper originates from the activity performed to tackle the cargo 

accommodation problem for the European Automated Transfer Vehicle (ATV). In 

this context, difficult non-standard packing issues, involving additional 

conditions, have to be considered. In particular, in some cases, static balancing 

conditions are given and items, for shape and dimensions reasons, cannot be 

adequately represented by single parallelepipeds.    



  

This paper focuses on packing problems characterized by the presence of 

balancing conditions and tetris-like items. 

A Mixed Integer Programming approach to solve the basic problem (single 

bin packing), consisting of placing (orthogonally, with possibility of rotation) the 

maximum number of parallelepipeds into a given parallelepiped, is presented. 

Even if advanced algorithms available in literature are generally more efficient to 

solve the basic problem, the MIP approach proposed seems quite suitable to tackle 

some non-standard packing issues, with additional conditions, that occur quite 

frequently in practice.   

A MIP-based heuristic approach has been implemented and is described in this 

paper. A clear advantage of the MIP-based approach proposed in this paper is the 

capability to deal with several additional conditions, frequently encountered in the 

applications.   

It has been adopted to solve successfully some practical packing issues originated 

from the ATV project, involving static balancing conditions and tetris-like items. 

Quite difficult balancing conditions occurs indeed when accommodating large 

items and bags into racks, since the rack center of gravity must stay within a given 

convex (non-rectagular) domain. Bi-dimensional tetris-like issues moreover arise 

when dealing with the external configuration of the racks, since tetris-like items 

have often to be accommodated on the front surface of the racks. This  application 

is at present under development.     

    

Future research could be done to improve the heuristic procedure, to look into 

advanced branching strategies (to solve the MIP model), as well as to investigate a 

dedicated Branch and Cut approach. 
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