
MINIMUM WEIGHT t-COMPOSITION OF AN INTEGER

DOMINGOS M. CARDOSO(1) AND J. ORESTES CERDEIRA(2),
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Abstract. If p ≥ t are positive integers, a t-composition of p is an ordered t-

tuple of positive integers summing p. If T = (s1, s2, . . . , st) is a t-composition

of p and W is a p−(t−1)×t matrix, call W (T ) =
∑t

k=1 wskk the weight of the

t-composition T . We show that finding a minimum weight t-composition of p

reduces to the determination of a shortest path in a certain digraph with O(tp)

vertices. This study was motivated by a problem arising from the automobile

industry, and the presented result is useful when dealing with huge location

problems.
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1. Introduction and motivation

Location problems consist of selecting among a given set P of points a subset of
cardinality p, so to minimize some cost function. The p-median [7] and the p-center
[8] are classical examples of location problems. These problems are NP -hard and
several heuristic methods have been developed, some of them exploiting the close
relationship with another NP -hard problem designated the dominating set problem
[6, 9, 10]. Since practical location problems have in general a huge dimension, it
is a common procedure to decompose the problem into t smaller location problems
[2], and produce a solution from the outcomes of each sub-problem. Each sub-
problem introduces m new problems, each consists of selecting s = 1, 2, . . . , m

(m ≤ p − (t − 1)) points among a subset of a given t-partition of P . The final
solution results from choosing an outcome of each sub-problem, such that the sum
of the cardinalities equals p. The quality of the solution depends, on one hand,
on the way the problem is splitted into t sub-problems and, on the other hand,
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on which solution, among the different cardinality solutions produced in each sub-
problem, should be chosen to contribute to the final set of p points. In this note
we will address this second issue.

This study was motivated by a problem arising from the automobile industry
called the optimal diversity management problem [1, 2, 3, 4]. For this problem there
is a natural decomposition into several problems such that the optimality depends
entirely on the way the second issue above is addressed. We now briefly describe
this problem.

Cars are purchased with a set of active options (airbags, air conditioned, dvd
player, etc). Cars that have a given active option are prepared with the connections
necessary to have that option activated. A set of active options is called a configu-
ration. For technical reasons, it is not possible to produce a large variety of different
configurations. Therefore, in general, cars are assembled with more active options
than those that the customers have ordered. Since the global cost of adding active
options is considerably high, it is essential to choose a set of, say p, different con-
figurations that minimizes the total cost of the unnecessary options. This problem
was modelled in [1] in the following way. Consider the inclusion relation configura-
tion digraph

−→
G = (V, A), where the vertices are configurations and an arc (i, j) ∈ A

means that the configuration i includes the configuration j (each active option in
configuration j is also active in configuration i). Note that this digraph is acyclic
(that is, has no direct cycles) and it is arc transitive (that is, if (i, j), (j, k) ∈ A,
then (i, k) ∈ A). A spanning star forest (SSF) of

−→
G is spanning subdigraph where

each component is a star. Here, we consider that a star has a center, which is a
vertex with zero in-degree, and all other vertices, if any, have zero out-degree and
one in-degree. An example of an inclusion relation configuration digraph

−→
G and a

SSF of
−→
G are depicted in Fig. 1.
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Figure 1.

An inclusion relation configuration digraph
−→
G and a SSF of

−→
G .

Let cv be the unit production cost of configuration v (i.e, the sum of the costs of
all the active options in configuration v), and let nv denote the expected number of
cars with configuration v that will be sold. To each each arc (i, j) of

−→
G we assign the

weight wij = nj(ci − cj). Notice that, for each arc (i, j), wij > 0 since every active
option has a positive cost, configuration i strictly contains configuration j, and it
is assumed that ni > 0, otherwise configuration i would not be considered. The
optimal diversity management problem with p configurations consists of finding a
minimum weight arc sum SSF with p stars of

−→
G .
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In real applications, the inclusion relation configuration digraph
−→
G has several

connected components
−→
G1, . . . ,

−→
G t. Thus, a minimum weight arc sum SSF of

−→
G

with p stars consists of a minimum weight arc sum SSF with si stars of each
−→
G i,

where si are such that p = s1 + · · · + st. This introduces a new problem which is
how to choose the right si for each

−→
G i. We address this problem in a more general

context in the next section.

2. The minimum weight of a t-composition of p

If p and t are positive integers, with p ≥ t, a t-composition of p is an ordered t-
tuple of positive integers summing p. The tuples (2, 3, 1, 2), (3, 2, 2, 1) and (1, 1, 5, 1)
are examples of distinct 4-compositions of 8. We use T to denote the set of all t-
compositions of p, that is,

T = {(s1, . . . , st) ∈ Nt :
t∑

k=1

sk = p}.

For k = 1, . . . , t, let Wk = {w1k, w2k, . . . , wmkk} be a collection of mk ≤ p−(t−1)
real numbers, and assign to every t-composition T = (s1, s2, . . . , st) ∈ T, with
sk ≤ mk, the weight given by

W (T ) =
t∑

k=1

wskk,

referred as the weight of composition T .
We consider the problem of determining a minimum weight t-composition of p,

that is, finding (s∗1, . . . , s
∗
t ) ∈ T, such that

t∑

k=1

ws∗kk = min
(s1,...,st)∈T

t∑

k=1

wskk.

For simplicity we assume that all collections Wk have cardinality mk = p−(t−1).
In this way Wk can be viewed as the k-column of a p − (t − 1) × t weight matrix
W . Note that there is no loss of generality since large weights can be assigned to
every entry wik of W whenever i > mk.

With respect to the matrix W of Table 1, the weights of the 4-compositions
(2, 3, 1, 2), (3, 2, 2, 1) and (1, 1, 5, 1) are 38, 40 and 39, respectively. Later we will
show that (3, 1, 2, 2) (the 4-composition of 8 highlighted in the table) is of minimum
weight.

1 12 12 13 12
2 9 11 10 8
3 7 8 9 6
4 6 7 6 4
5 4 5 3 2

Table 1. A weight matrix W .
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3. The algorithm

We show that identifying a minimum weight t-composition of p, with respect
to matrix W , is equivalent to determine a shortest path between two vertices of a
(t + 1)-partite weighted digraph

−→
GW constructed as follows.

• The vertex set V (
−→
GW ) is partitioned into the vertex-subsets V0, V1, . . . , Vt,

where V0 and Vt include a single vertex labeled 0 and p, respectively. For
k = 1, 2, . . . t− 1, the vertices of Vk are labeled k, k + 1, . . . , k + p− t.

• For k = 1, 2, . . . , p, there is an arc uv ∈ E(
−→
GW ) connecting vertices u ∈

Vk−1 and v ∈ Vk if and only if u < v. No further arcs exist.
• The weight of each arc uv ∈ E(GW ), with u ∈ Vk−1 and v ∈ Vk, is equal

to the entry w(v−u)k of matrix W .

The 0, t-paths in
−→
GW and the t-compositions of p are in one to one corre-

spondence. The path P = (0, v1, v2, . . . , vt−1, p) corresponds to the k-composition
(v1, v2−v1, . . . , vt−1−vt−2, p−vt−1), and the weight of P is equal to wv11+wv2−v12+
· · ·+ wvt−1−vt−2t−1 + wp−vt−1t. Thus, a shortest 0, p-path of

−→
GW corresponds to a

minimum weighted t-composition of p.
More formally, the algorithm for determining a minimum weight t-composition

of p can be described as follows.

Algorithm (minimum weight t-composition of integer p)
Input: t, p ∈ N, with t ≤ p, and a p− (t− 1)× t matrix W of weights;

1. Construct the (t + 1)-partite digraph
−→
GW as follows:

V0 := {0};
For k = 1 to t− 1 do Vk := {k, k + 1, . . . , k + p− t};
Vt := {p};
V (
−→
GW ) := V0 ∪ V1 ∪ · · · ∪ Vt;

For k = 1 to t do Ek := {uv : u ∈ Vk−1, v ∈ Vk, u < v};
E(
−→
GW ) := E1 ∪ E2 ∪ · · · ∪ Et;

2. Determine a shortest path in
−→
GW , between the vertices 0 and p:

0 = v0 → v1 → · · · → vt−1 → vt = p;
3. For k = 1 to t do s∗k := vk − vk−1;

Return T ∗ = (s∗1, . . . , s
∗
t ).

The minimum weight is W (T ∗) =
∑t

k=1 ws∗kk.

4. A numerical example

Let us use the algorithm of the previous section to determine a minimum weight
4-composition of 8 with respect to the weight matrix W of Table 1.

The 5-partite digraph
−→
GW constructed according to the step 1 of the algorithm

is depicted in Figure 2. The reduced size numbers are the arc weights, and the
remaining numbers are the labels of the vertices.

To perform step 2 we used a specialized version of Dijkstra’s algorithm [5]. Table
2 reports the values produced by that algorithm on the digraph

−→
GW of Figure 2.

Column k records, for every vertex v ∈ Vk, the weight wk
v of a shortest 0, v-path (of

length k), together with the vertex p(v) that precedes v on that path. Note that
4
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Figure 2.

Digraph
−→
GW with edge weights calculated from the matrix W of Table 1

for determining wk
v and p(v) only the values of wk−1

u and p(u), with u ∈ Vk−1 and
uv ∈ E(

−→
GW ), are needed. Hence, a shortest 0, t-path is obtained in O(E(

−→
GW ))

time.

1 2 3 4
vertex v wv p(v) wv p(v) wv p(v) wv p(v)

1 12 0
2 9 0 24 1
3 7 0 21 2 37 2
4 6 0 19 3 34 3
5 4 0 17 2 31 3
6 15 3 29 4
7 27 5
8 37 6

Table 2. Determination of the shortest 0, 8-path of the digraph
of Figure 2, using an adaptation of Dijkstra’s algorithm.

Dijkstra’s algorithm outcomes 37 as the weight of the shortest 0, 8-path 0 →
3 → 4 → 6 → 8. From the above path the algorithm defines the 4-composition
T ∗ = (s∗1, s

∗
2, s

∗
3, s

∗
4) = (3, 1, 2, 2) of 8, which is a minimum 4-composition of 8. Note

that another optimal composition can be derived from the alternative shortest 0, 8-
path 0 → 2 → 3 → 5 → 8.

5. conclusion

Motivated by the optimal diversity management problem from automobile indus-
try, where is very common to deal with a inclusion relation configuration digraph
with t components, the minimum weight t-composition of a positive integer p is
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introduced and it is reduced to the determination of a shortest path between the
vertices 0 and p of a digraph

−→
GW which has (t − 1)(p − (t − 1)) + 2 vertices and

t−2
2 ((p− (t− 1))2 + (p− (t− 1))) + 2(p− (t− 1)) arcs. This result can help in solv-

ing location problems, such as the one described above, putting together solutions
obtained from different sub-problems.

References

[1] A. Agra, D.M. Cardoso, J.O. Cerdeira, M. Miranda and E. Rocha, ”The minimum weight

spanning star forest model of the optimal diversity management problem”, Cadernos de
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