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Abstract. We settle the computational complexity of fundamental
questions related to multicriteria integer linear programs, when the di-
mensions of the strategy space and of the outcome space are considered
fixed constants. In particular we construct:

1. polynomial-time algorithms to exactly determine the number of
Pareto optima and Pareto strategies;

2. a polynomial-space polynomial-delay prescribed-order enumera-
tion algorithm for arbitrary projections of the Pareto set;

3. an algorithm to minimize the distance of a Pareto optimum from a
prescribed comparison point with respect to arbitrary polyhedral
norms;

4. a fully polynomial-time approximation scheme for the problem of
minimizing the distance of a Pareto optimum from a prescribed
comparison point with respect to the Euclidean norm.

1. Introduction

Let A = (aij) be an integral m × n-matrix and b ∈ Zm such that the
convex polyhedron P = {u ∈ Rn : Au ≤ b } is bounded. Given k linear
functionals f1, f2, . . . , fk ∈ Zn, we consider the multicriterion integer linear
programming problem

vmin
(
f1(u), f2(u), . . . , fk(u)

)
subject to Au ≤ b

u ∈ Zn

(1)

where vmin is defined as the problem of finding all Pareto optima and a
corresponding Pareto strategy. For a lattice point u the vector f(u) =(
f1(u), . . . , fk(u)

)
is called an outcome vector. Such an outcome vector is a

Pareto optimum for the above problem if and only if there is no other point ũ
in the feasible set such that fi(ũ) ≤ fi(u) for all i and fj(ũ) < fj(u) for
at least one index j. The corresponding feasible point u is called a Pareto
strategy. Thus a feasible vector is a Pareto strategy if no feasible vector
can decrease some criterion without causing a simultaneous increase in at
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least one other criterion. For general information about the multicriteria
problems see, e.g., [8, 12].

In general multiobjective problems the number of Pareto optimal solu-
tions may be infinite, but in our situation the number of Pareto optima
and strategies is finite. There are several well-known techniques to gen-
erate Pareto optima. Some popular methods used to solve such problems
include, e.g., weighting the objectives or using a so-called global criterion
approach (see [6]). In abnormally nice situations, such as multicriteria lin-
ear programs [9], one knows a way to generate all Pareto optima, but most
techniques reach only some of the Pareto optima.

The purpose of this article is to study the sets of all Pareto optima and
strategies of a multicriterion integer linear program using the algebraic struc-
tures of generating functions. The set of Pareto points can be described as
the formal sum of monomials∑{

zv : u ∈ P ∩ Zn and v = f(u) ∈ Zk is a Pareto optimum
}
. (2)

Our main theoretical result states that, under the assumption that the num-
ber of variables is fixed, we can compute in polynomial time a compact ex-
pression for the huge polynomial above, thus all its Pareto optima can in
fact be counted exactly. The same can be done for the corresponding Pareto
strategies when written in the form∑{

xu : u ∈ P ∩ Zn and f(u) is a Pareto optimum
}
. (3)

Theorem 1. Let A ∈ Zm×n, a d-vector b, and linear functions f1, . . . , fk ∈
Zn be given. There are algorithms to perform the following tasks:

(i) Compute the generating function (2) of all the Pareto optima as a sum
of rational functions. In particular we can count how many Pareto
optima are there. If we assume k and n are fixed, the algorithm runs
in time polynomial in the size of the input data.

(ii) Compute the generating function (3) of all the Pareto strategies as a
sum of rational functions. In particular we can count how many Pareto
strategies are there in P . If we assume k and n are fixed, the algorithm
runs in time polynomial in the size of the input data.

(iii) Generate the full sequence of Pareto optima ordered lexicographically
or by any other term ordering. If we assume k and n are fixed, the
algorithm runs in polynomial time on the input size and the num-
ber of Pareto optima. (More strongly, there exists a polynomial-space
polynomial-delay prescribed-order enumeration algorithm.)

In contrast it is known that for non-fixed dimension it is #P-hard to
enumerate Pareto optima and NP-hard to find them [7, 13]. The proof of
Theorem 1 parts (i) and (ii) will be given in section 2. It is based on the
theory of rational generating functions as developed in [1, 2]. Part (iii) of
Theorem 1 will be proved in section 3.



MULTICRITERIA INTEGER LINEAR PROGRAMS 3

For a user that knows some or all of the Pareto optima or strategies, a goal
is to select the “best” member of the family. One is interested in selecting one
Pareto optimum that realizes the “best” compromise between the individual
objective functions. The quality of the compromise is often measured by the
distance of a Pareto optimum v from a user-defined comparison point v̂. For
example, often users take as a good comparison point the so-called ideal point
videal ∈ Zk of the multicriterion problem, which is defined as

videal
i = min{ fi(u) : u ∈ P ∩ Zn }.

The criteria of comparison with the point v̂ are quite diverse, but some
popular ones include computing the minimum over the possible sums of
absolute differences of the individual objective functions, evaluated at the
different Pareto strategies, from the comparison point v̂, i.e.,

f(u) = |f1(u)− v̂1|+ · · ·+ |fk(u)− v̂k|, (4a)

or the maximum of the absolute differences,

f(u) = max
{
|f1(u)− v̂1|, . . . , |fk(u)− v̂k|

}
, (4b)

over all Pareto optima (f1(u), . . . , fk(u)). Another popular criterion, some-
times called the global criterion, is to minimize the sum of relative distances
of the individual objectives from their known minimal values, i.e.,

f(u) =
f1(u)− videal

1

|videal
1 |

+ · · ·+
fk(u)− videal

k

|videal
k |

. (4c)

We stress that if we take any one of these functions as an objective func-
tion of an integer program, the optimal solution will be a non-Pareto solution
of the multicriterion problem (1) in general. In contrast, we show in this
paper that by encoding Pareto optima and strategies as a rational function
we avoid this problem, since we evaluate the objective functions directly on
the space of Pareto optima.

All of the above criteria (4) measure the distance from a prescribed point
with respect to a polyhedral norm. In section 4, we prove:

Theorem 2. Let the dimension n and the number k of objective functions
be fixed. Let a multicriterion integer linear program (1) be given. Let a
polyhedral norm ‖·‖Q be given by the vertex or inequality description of its
unit ball Q ⊆ Rk. Finally, let a prescribed point v̂ ∈ Zk be given.

(i) There exists a polynomial-time algorithm to find a Pareto optimum v
of (1) that minimizes the distance ‖v− v̂‖Q from the prescribed point.

(ii) There exists a polynomial-space polynomial-delay enumeration algo-
rithm for enumerating the Pareto optima of (1) in the order of in-
creasing distances from the prescribed point v̂.

Often users are actually interested in finding a Pareto optimum that min-
imizes the Euclidean distance from a prescribed comparison point v̂,

f(u) =
√
|f1(u)− v̂1|2 + · · ·+ |fk(u)− v̂k|2, (5)



4 J. A. DE LOERA, R. HEMMECKE, AND M. KÖPPE

but to our knowledge no method of the literature gives a satisfactory solution
to that problem. In section 4, however, we prove the following theorem,
which gives a very strong approximation result.

Theorem 3. Let the dimension n and the number k of objective functions
be fixed. There exists a fully polynomial-time approximation scheme for the
problem of minimizing the Euclidean distance of a Pareto optimum of (1)
from a prescribed comparison point v̂ ∈ Zk.

We actually prove this theorem in a somewhat more general setting, us-
ing an arbitrary norm whose unit ball is representable by a homogeneous
polynomial inequality.

2. The rational function encoding of all Pareto optima

We give a very brief overview of the theory of rational generating functions
necessary to establish Theorem 1. For full details we recommend [1, 2, 3, 5]
and the references therein. In 1994 Barvinok gave an algorithm for counting
the lattice points in P = {u ∈ Rn : Au ≤ b } in polynomial time when
the dimension n of the feasible polyhedron is a constant [1]. The input for
Barvinok’s algorithm is the binary encoding of the integers aij and bi, and
the output is a formula for the multivariate generating function

g(P ;x) =
∑

u∈P∩Zn

xu

where xu is an abbreviation of xu1
1 xu2

2 . . . xun
n . This long polynomial with

exponentially many monomials is encoded as a much shorter sum of rational
functions of the form

g(P ;x) =
∑
i∈I

γi
xci

(1− xdi1)(1− xdi2) . . . (1− xdin)
. (6)

Barvinok and Woods in 2003 further developed a set of powerful manipula-
tion rules for using these short rational functions in Boolean constructions
on various sets of lattice points.

Throughout the paper we assume that the polyhedron P = {u ∈ Rn :
Au ≤ b } is bounded. We begin by recalling some useful results of Barvinok
and Woods (2003):

Theorem 4 (Intersection Lemma; Theorem 3.6 in [3]). Let ` be a fixed in-
teger. Let S1, S2 be finite subsets of Zn. Let g(S1;x) and g(S2;x) be their
generating functions, given as short rational functions with at most ` bino-
mials in each denominator. Then there exists a polynomial time algorithm,
which computes

g(S1 ∩ S2;x) =
∑
i∈I

γi
xci

(1− xdi1) . . . (1− xdis)

with s ≤ 2`, where the γi are rational numbers, ci,dij are nonzero integer
vectors, and I is a polynomial-size index set.
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The following theorem was proved by Barvinok and Woods using Theo-
rem 4:

Theorem 5 (Boolean Operations Lemma; Corollary 3.7 in [3]). Let m and
` be fixed integers. Let S1, S2, . . . , Sm be finite subsets of Zn. Let g(Si;x) for
i = 1, . . . ,m be their generating functions, given as short rational functions
with at most ` binomials in each denominator. Let a set S ⊆ Zn be defined
as a Boolean combination of S1, . . . , Sm (i.e., using any of the operations ∪,
∩, \). Then there exists a polynomial time algorithm, which computes

g(S;x) =
∑
i∈I

γi
xci

(1− xdi1) . . . (1− xdis)

where s = s(`,m) is a constant, the γi are rational numbers, ci,dij are
nonzero integer vectors, and I is a polynomial-size index set.

We will use the Intersection Lemma and the Boolean Operations Lemma
to extract special monomials present in the expansion of a generating func-
tion. The essential step in the intersection algorithm is the use of the
Hadamard product [3, Definition 3.2] and a special monomial substitution.
The Hadamard product is a bilinear operation on rational functions (we
denote it by ∗). The computation is carried out for pairs of summands as
in (6). Note that the Hadamard product m1 ∗m2 of two monomials m1,m2

is zero unless m1 = m2.
Another key subroutine introduced by Barvinok and Woods is the follow-

ing Projection Theorem.

Theorem 6 (Projection Theorem; Theorem 1.7 in [3]). Assume the dimen-
sion n is a fixed constant. Consider a rational polytope P ⊂ Rn and a linear
map T : Zn → Zk. There is a polynomial time algorithm which computes a
short representation of the generating function f

(
T (P ∩ Zn);x

)
.

One has to be careful when using earlier Lemmas (especially the Projec-
tion Theorem) that the sets in question are finite. The proof of Theorem 1
will require us to project and intersect sets of lattice points represented by
rational functions. We cannot, in principle, do those operations for infinite
sets of lattice points. Fortunately, in our setting it is possible to restrict our
attention to finite sets.

Finally, one important comment. If we want to count the points of a
lattice point set S, such as the set of Pareto optima, it would apparently
suffice to substitute 1 for all the variables xi of the generating function

g(S;x) =
∑
u∈S

xu =
∑
i∈I

γi
xci

(1− xdi1)(1− xdi2) . . . (1− xdin)

to get the specialization |S| = g(S;x=1). But this cannot be done directly
due to the singularities in the rational function representation. Instead,
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choose a generic vector λ = (λ1, . . . , λn) and substitute each of the vari-
ables xi by etλi . Then we get

g(S, etλ) =
∑
i∈I

γi
et〈λ,ci〉

(1− et〈λ,di1〉)(1− et〈λ,di2〉) . . . (1− et〈λ,din〉)
.

Counting the number of lattice points is the same as computing the constant
terms of the Laurent series for each summand and adding them up. This
can be done using elementary complex residue techniques (see [2]).

Proof of Theorem 1, part (i) and (ii). The proof of part (i) has three steps:
Step 1. For i = 1, . . . , k let v̄i ∈ Z be an upper bound of polynomial
encoding size for the value of fi over P . Such a bound exists because of
the boundedness of P , and it can be computed in polynomial time by linear
programming. We will denote the vector of upper bounds by v̄ ∈ Zk. We
consider the truncated multi-epigraph of the objective functions f1, . . . , fk

over the linear relaxation of the feasible region P ,

P≥
f1,...,fk

=
{

(u,v) ∈ Rn × Rk : u ∈ P,

v̄i ≥ vi ≥ fi(u) for i = 1, . . . , k
}
,

(7)

which is a rational convex polytope in Rn × Rk. Let V ≥ ⊆ Zk denote the
integer projection of P≥

f1,...,fk
on the v variables, i.e., the set

V ≥ =
{
v ∈ Zk : ∃u ∈ Zn with (u,v) ∈ P≥

f1,...,fk
∩ (Zn × Zk)

}
. (8)

Clearly, the vectors in V ≥ are all integer vectors in the outcome space which
are weakly dominated by some outcome vector

(
f1(u), f2(u), . . . , fk(u)

)
for

a feasible solution x in P ∩Zn; however, we have truncated away all outcome
vectors which weakly dominate the computed bound v̄. Let us consider the
generating function of V ≥, the multivariate polynomial

g(V ≥; z) =
∑{

zv : v ∈ V ≥ }
.

In the terminology of polynomial ideals, the monomials in g(V ≥; z) form a
truncated ideal generated by the Pareto optima. By the Projection Theorem
(our Theorem 6), we can compute g(V ≥; z) in the form of a polynomial-size
rational function in polynomial time.
Step 2. Let V Pareto ⊆ Zk denote the set of Pareto optima. Clearly we have

V Pareto =
(
V ≥ \ (e1 + V ≥)

)
∩ · · · ∩

(
V ≥ \ (ek + V ≥)

)
,

where ei ∈ Zk denotes the i-th unit vector and

ei + V ≥ = { ei + v : v ∈ V ≥ }.
The generating function g(V Pareto; z) can be computed by the Boolean Op-
erations Lemma (Theorem 5) in polynomial time from g(V ≥; z) as

g(V Pareto; z) =
(
g(V ≥; z)− g(V ≥; z) ∗ z1g(V ≥; z)

)
∗ · · · ∗

(
g(V ≥; z)− g(V ≥; z) ∗ zkg(V ≥; z)

)
,

(9)
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where ∗ denotes taking the Hadamard product of the rational functions.
Step 3. To obtain the number of Pareto optima, we compute the special-
ization g(V Pareto; z=1). This is possible in polynomial time using residue
techniques as outlined before the beginning of the proof.

Proof of part (ii). Now we recover the Pareto strategies that gave rise to the
Pareto optima, i.e., we compute a generating function for the set

UPareto =
{
u ∈ Zn : u ∈ P ∩ Zn and f(u) is a Pareto optimum

}
.

To this end, we first compute the generating function for the set

SPareto =
{

(u,v) ∈ Zn × Zk : v is a Pareto point with Pareto strategy u
}
.

For this purpose, we consider the multi-graph of the objective functions
f1, . . . , fk over P ,

P=
f1,...,fk

=
{

(u,v) ∈ Rn × Rk : u ∈ P,

vi = fi(u) for i = 1, . . . , k
}
.

(10)

Using Barvinok’s theorem, we can compute in polynomial time the generat-
ing function for the integer points in P ,

g(P ;x) =
∑{

xu : u ∈ P ∩ Zn
}
,

and also, using the monomial substitution xj → xjz
f1(ej)
1 · · · zfk(ej)

k for all j,
the generating function is transformed into

g(P=
f1,...,fk

;x, z) =
∑{

xuzv : (u,v) ∈ P=
f1,...,fk

∩ (Zn × Zk)
}
,

where the variables x carry on the monomial exponents the information of
the u-coordinates of P=

f1,...,fk
and the z variables of the generating function

carry the v-coordinates of lattice points in P=
f1,...,fk

. Now

g(SPareto;x, z) =
(
g(P ;x) g(V Pareto; z)

)
∗ g(P=

f1,...,fk
;x, z), (11)

which can be computed in polynomial time for fixed dimension by the the-
orems outlined early on this section. Finally, to obtain the generating func-
tion g(UPareto;x) of the Pareto strategies, we need to compute the projection
of SPareto into the space of the strategy variables u. Since the projection is
one-to-one, it suffices to compute the specialization

g(UPareto;x) = g(SPareto;x, z=1),

which can be done in polynomial time. �

3. Efficiently listing all Pareto optima

The Pareto optimum that corresponds to the “best” compromise between
the individual objective functions is often chosen in an interactive mode,
where a visualization of the Pareto optima is presented to the user, who
then chooses a Pareto optimum. Since the outcome space frequently is of a
too large dimension for visualization, an important task is to list (explicitly
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enumerate) the elements of the projection of the Pareto set into some lower-
dimensional linear space.

It is clear that the set of Pareto optima (and thus also any projection) is
of exponential size in general, ruling out the existence of a polynomial-time
enumeration algorithm. In order to analyze the running time of an enumer-
ation algorithm, we must turn to output-sensitive complexity analysis.

Various notions of output-sensitive efficiency have appeared in the lit-
erature; we follow the discussion of [10]. Let W ⊆ Zp be a finite set to
be enumerated. An enumeration algorithm is said to run in polynomial
total time if its running time is bounded by a polynomial in the encod-
ing size of the input and the output. A stronger notion is that of in-
cremental polynomial time: Such an algorithm receives a list of solutions
w1, . . . ,wN ∈ W as an additional input. In polynomial time, it outputs
one solution w ∈ W \ {w1, . . . ,wN} or asserts that there are no more so-
lutions. An even stronger notion is that of a polynomial-delay algorithm,
which takes only polynomial time (in the encoding size of the input) before
the first solution is output, between successive outputs of solutions, and af-
ter the last solution is output to the termination of the algorithm. Since
the algorithm could take exponential time to output all solutions, it could
also build exponential-size data structures in the course of the enumera-
tion. This observation gives rise to an even stronger notion of efficiency, a
polynomial-space polynomial-delay enumeration algorithm.

We also wish to prescribe an order, like the lexicographic order, in which
the elements are to be enumerated. We consider term orders ≺R on mono-
mials yw that are defined as in [11] by a non-negative integral p× p-matrix
R of full rank. Two monomials satisfy yw1 ≺R yw2 if and only if Rw1

is lexicographically smaller than Rw2. In other words, if r1, . . . , rn denote
the rows of R, there is some j ∈ {1, . . . , n} such that 〈ri,w1〉 = 〈ri,w2〉
for i < j, and 〈rj ,w1〉 < 〈rj ,w2〉. For example, the unit matrix R = In

describes the lexicographic term ordering.
We prove the existence of a polynomial-space polynomial-delay prescribed-

order enumeration algorithm in a general setting, where the set W to be enu-
merated is given as the projection of a set presented by a rational generating
function.

Theorem 7. Let the dimension k and the maximum number ` of binomials
in the denominator be fixed.

Let V ⊆ Zk be a bounded set of lattice points with V ⊆ [−M,M ]k, given
only by the bound M ∈ Z+ and its rational generating function encoding
g(V ; z) with at most ` binomials in each denominator. Let

W = {w ∈ Zp : ∃t ∈ Zk−p such that (t,w) ∈ V }
denote the projection of V onto the last p components. Let ≺R be the term
order on monomials in y1, . . . , yp induced by a given matrix R ∈ Np×p.

There exists a polynomial-space polynomial-delay enumeration algorithm
for the points in the projection W , which outputs the points of W in the
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order given by ≺R. The algorithm can be implemented without using the
Projection Lemma.

We remark that Theorem 7 is a stronger result than what can be ob-
tained by the repeated application of the monomial-extraction technique of
Lemma 7 from [4], which would only give an incremental polynomial time
enumeration algorithm.

Proof. We give a simple recursive algorithm that is based on the iterative
bisection of intervals.

Input: Lower and upper bound vectors l,u ∈ Zp.
Output: All vectors w in W with l ≤ Rw ≤ u, sorted in the
order �R.

1. If the set W ∩ {w : l ≤ Rw ≤ u } is empty, do nothing.
2. Otherwise, if l = u, compute the unique point w ∈ Zk

with Rw = l = u and output w.
3. Otherwise, let j be the smallest index with lj 6= uj .

We bisect the integer interval {lj , . . . , uj} evenly into

{lj , . . . ,mj} and {mj + 1, . . . , uj}, where mj =
⌊

lj+uj

2

⌋
.

We invoke the algorithm recursively on the first part,
then on the second part, using the corresponding lower
and upper bound vectors.

We first need to compute appropriate lower and upper bound vectors l,u
to start the algorithm. To this end, let N be the largest number in the
matrix R and let l = −pMN1 and u = pMN1. Then l ≤ Rw ≤ u holds for
all w ∈ W . Clearly the encoding length of l and u is bounded polynomially
in the input data.

In step 1 of the algorithm, to determine whether

W ∩ {w : l ≤ Rw ≤ u } = ∅, (12)

we consider the polytope

Ql,u = [−M,M ]k−p × {w ∈ Rp : l ≤ Rw ≤ u } ⊆ Rk, (13)

a parallelelepiped in Rk. Since W is the projection of V and since V ⊆
[−M,M ]k, we have (12) if and only if V ∩ Ql,u = ∅. The rational gen-
erating function g(Ql,u; z) can be computed in polynomial time. By us-
ing the Intersection Lemma, we can compute the rational generating func-
tion g(V ∩Ql,u; z) in polynomial time. The specialization g(V ∩Ql,u; z = 1)
can also be computed in polynomial time. It gives the number of lattice
points in V ∩Ql,u; in particular, we can decide whether V ∩Ql,u = ∅.

It is clear that the algorithm outputs the elements of W in the order given
by ≺R. We next show that the algorithm is a polynomial-space polynomial-
delay enumeration algorithm. The subproblem in step 1 only depends on
the input data as stated in the theorem and on the vectors l and u, whose
encoding length only decreases in recursive invocations. Therefore each of
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the subproblems can be solved in polynomial time (thus also in polynomial
space).

The recursion of the algorithm corresponds to a binary tree whose nodes
are labeled by the bound vectors l and u. There are two types of leaves in
the tree, one corresponding to the “empty-box” situation (12) in step 1, and
one corresponding to the “solution-output” situation in step 2. Inner nodes
of the tree correspond to the recursive invocation of the algorithm in step 3.
It is clear that the depth of the recursion is O(p log(pMN)), because the
integer intervals are bisected evenly. Thus the stack space of the algorithm
is polynomially bounded. Since the algorithm does not maintain any global
data structures, the whole algorithm uses polynomial space only.

Let wi ∈ W be an arbitrary solution and let wi+1 be its direct successor
in the order ≺R. We shall show that the algorithm only spends polynomial
time between the output of wi and the output of wi+1. The key property
of the recursion tree of the algorithm is the following:

Every inner node is the root of a subtree that contains at
least one solution-output leaf. (14)

The reason for that property is the test for situation (12) in step 1 of the
algorithm. Therefore, the algorithm can visit only O(p log(pMN)) inner
nodes and empty-box leaves between the solution-output leaves for wi and
wi+1. For the same reason, also the time before the first solution is output
and the time after the last solution is output are polynomially bounded. �

The following corollary, which is a stronger formulation of Theorem 1 (iii),
is immediate.

Corollary 8. Let n and k be fixed integers. There exist polynomial-space
polynomial-delay enumeration algorithms to enumerate the set of Pareto op-
tima of the multicriterion integer linear program (1), the set of Pareto strate-
gies, or arbitrary projections thereof in lexicographic order (or an arbitrary
term order).

Remark 9. We remark that Theorem 7 is of general interest. For in-
stance, it also implies the existence of a polynomial-space polynomial-delay
prescribed-order enumeration algorithm for Hilbert bases of rational poly-
hedral cones in fixed dimension.

Indeed, fix the dimension d and let C = cone{b1, . . . ,bn} ⊆ Rd be a
pointed rational polyhedral cone. The Hilbert basis of C is defined as the
inclusion-minimal set H ⊆ C ∩Zd which generates C ∩Zd as a monoid. For
simplicial cones C (where b1, . . . ,bn are linearly independent), Barvinok
and Woods [3] proved that one can compute the rational generating function
g(H; z) (having a constant number of binomials in the denominators) of the
Hilbert basis of C ∩ Zd using the Projection Theorem. The same technique
works for non-simplicial pointed cones. Now Theorem 7 gives a polynomial-
space polynomial-delay prescribed-order enumeration algorithm.
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4. Selecting a Pareto optimum using global criteria

Now that we know that all Pareto optima of a multicriteria integer linear
programs can be encoded in a rational generating function, and that they can
be listed efficiently on the output size, we can aim to apply selection criteria
stated by a user. The advantage of our setup is that when we optimize a
global objective function it guarantees to return a Pareto optimum, because
we evaluate the global criterion only on the Pareto optima. Let us start
with the simplest global criterion which generalizes the use of the `1 norm
distance function:

Theorem 10. Let the dimension k and the maximum number ` of binomials
in the denominator be fixed.

Let V ⊆ Zk be a bounded set of lattice points with V ⊆ [−M,M ]n+k, given
only by the bound M ∈ Z+ and its rational generating function encoding
g(V ; z) with at most ` binomials in the denominators.

Let Q ⊆ Rk be a rational convex central-symmetric polytope with 0 ∈
intQ, given by its vertex or inequality description. Let the polyhedral norm
‖·‖Q be defined using the Minkowski functional

‖y‖Q = inf{λ ≥ 0 : y ∈ λQ }. (15)

Finally, let a prescribed point v̂ ∈ Zk be given.
(i) There exists a polynomial-time algorithm to find a point v ∈ V that

minimizes the distance dQ(v, v̂) = ‖v− v̂‖Q from the prescribed point.
(ii) There exists a polynomial-space polynomial-delay enumeration algo-

rithm for enumerating the points of V in the order of increasing dis-
tances dQ from the prescribed point v̂, refined by an arbitrary term
order ≺R given by a matrix R ∈ Nk×k.

Theorem 2, as stated in the introduction, is an immediate corollary of
this theorem.

Proof. Since the dimension k is fixed, we can compute an inequality descrip-
tion

Q = {y ∈ Rk : Ay ≤ b }
of Q with A ∈ Zm×k and b ∈ Zk in polynomial time, if Q is not already
given by an inequality description. Let v ∈ V be arbitrary; then

dQ(v̂,v) = ‖v − v̂‖Q

= inf
{

λ ≥ 0 : v − v̂ ∈ λQ
}

= min
{

λ ≥ 0 : λb ≥ A(v − v̂)
}
.

Thus there exists an index i ∈ {1, . . . ,m} such that

dQ(v̂,v) =
(Av)i − (Av̂)i

bi
;



12 J. A. DE LOERA, R. HEMMECKE, AND M. KÖPPE

so dQ(v̂,v) is an integer multiple of 1/bi. Hence for every v ∈ V , we have
that

dQ(v̂,v) ∈ 1
lcm(b1, . . . , bm)

Z+, (16)

where lcm(b1, . . . , bm) clearly is a number of polynomial encoding size. On
the other hand, every v ∈ V certainly satisfies

dQ(v̂,v) ≤ ka
(
M + max{|v̂1| , . . . , |v̂d|}

)
(17)

where a is the largest number in A, which is also a bound of polynomial
encoding size.

Using Barvinok’s algorithm, we can compute the rational generating func-
tion g(v̂ + λQ; z) for any rational λ of polynomial enoding size in polyno-
mial time. We can also compute the rational generating function g(V ∩
(v̂ + λQ); z) using the Intersection Lemma. By computing the specializa-
tion g(V ∩ (v̂ + λQ); z = 1), we can compute the number of points in
V ∩ (v̂ + λQ), thus we can decide whether this set is empty or not.

Hence we can employ binary search for the smallest λ ≥ 0 such that
V ∩ (v̂ + λQ) is nonempty. Because of (16) and (17), it runs in polynomial
time. By using the recursive bisection algorithm of Theorem 7, it is then
possible to construct one Pareto optimum in V ∩ (v̂+λQ) for part (i), or to
construct a sequence of Pareto optima in the desired order for part (ii). �

Now we consider a global criterion using a distance function corresponding
to a non-polyhedral norm like the Euclidean norm ‖·‖2 (or any other `p-norm
for 1 < p < ∞). We are able to prove a very strong type of approximation
result, a so-called fully polynomial-time approximation scheme (FPTAS), in
a somewhat more general setting.

Definition 11 (FPTAS). Consider the optimization problems

max{ f(v) : v ∈ V }, (18a)

min{ f(v) : v ∈ V }. (18b)

A fully polynomial-time approximation scheme (FPTAS) for the maximiza-
tion problem (18a) or the minimization problem (18b), respectively, is a
family {Aε : ε ∈ Q, ε > 0 } of approximation algorithms Aε, each of which
returns an ε-approximation, i.e., a solution vε ∈ V with

f(vε) ≥ (1− ε)f∗ where f∗ = max
v∈V

f(v), (19a)

or, respectively,

f(vε) ≤ (1 + ε)f∗ where f∗ = min
v∈V

f(v), (19b)

such that the algorithms Aε run in time polynomial in the input size and 1
ε .
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Figure 1. A set defining a pseudo-norm with the inscribed
and circumscribed cubes αB∞ and βB∞ (dashed).

Remark 12. An FPTAS is based on the notion of ε-approximation (19),
which gives an approximation guarantee relative to the value f∗ of an op-
timal solution. It is clear that this notion is most useful for objective func-
tions f that are non-negative on the feasible region V . Since the approxi-
mation quality of a solution changes when the objective function is changed
by an additive constant, it is non-trivial to convert an FPTAS for a maxi-
mization problem to an FPTAS for a minimization problem.

We shall present an FPTAS for the problem of minimizing the distance of
a Pareto optimum from a prescribed outcome vector v̂ ∈ Zk. We consider
distances d(v̂, ·) induced by a pseudo-norm ‖·‖Q via

d(v̂,v) = ‖v − v̂‖Q (20a)

To this end, let Q ⊆ Rk be a compact basic semialgebraic set with 0 ∈ intQ,
which is described by one polynomial inequality,

Q =
{
y ∈ Rk : q(y) ≤ 1

}
, (20b)

where q ∈ Q[y1, . . . , yk] is a homogeneous polynomial of (even) degree D.
The pseudo-norm ‖·‖Q is now defined using the Minkowski functional

‖y‖Q = inf
{

λ ≥ 0 : y ∈ λQ
}

(20c)

Note that we do not make any assumptions of convexity of Q, which would
make ‖·‖Q a norm. Since Q is compact and 0 ∈ intQ, there exist positive
rational numbers (norm equivalence constants) α, β with

αB∞ ⊆ Q ⊆ βB∞ where B∞ =
{
y ∈ Rk : ‖y‖∞ ≤ 1

}
; (21)

see Figure 1.
Now we can formulate our main theorem, which has Theorem 3, which

we stated in the introduction, as an immediate corollary.

Theorem 13. Let the dimension n and the number k of objective functions
be fixed. Moreover, let a degree D and two rational numbers 0 < α ≤ β
be fixed. Then there exists a fully polynomial-time approximation scheme
for the problem of minimizing the distance dQ(v̂,v), defined via (20) by a
homogeneous polynomial q ∈ Q[y1, . . . , yk] of degree D satisfying (21), whose
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coefficients are encoded in binary and whose exponent vectors are encoded in
unary, of a Pareto optimum of (1) from a prescribed outcome vector v̂ ∈ Zk.

The proof is based on the following result, which is a more general for-
mulation of Theorem 1.1 from [5].

Theorem 14 (FPTAS for maximizing non-negative polynomials over finite
lattice point sets). For all fixed integers k (dimension) and s (maximum
number of binomials in the denominator), there exists an algorithm with
running time polynomial in the encoding size of the problem and 1

ε for the
following problem.

Input: Let V ⊆ Zk be a finite set, given by a rational generating function
in the form

g(V ;x) =
∑
i∈I

γi
xci

(1− xdi1) . . . (1− xdisi )

where the the numbers si of binomials in the denominators are at most s.
Furthermore, let two vectors vL, vU ∈ Zk be given such that V is contained
in the box {v : vL ≤ v ≤ vU }.

Let f ∈ Q[v1, . . . , vk] be a polynomial with rational coefficients that is
non-negative on V , given by a list of its monomials, whose coefficients are
encoded in binary and whose exponents are encoded in unary.

Finally, let ε ∈ Q.
Output: Compute a point vε ∈ V that satisfies

f(vε) ≥ (1− ε)f∗ where f∗ = max
v∈V

f(v).

In [5] the above result was stated and proved only for sets V that consist
of the lattice points of a rational polytope; however, the same proof yields
the result above.

Proof of Theorem 13. Using Theorem 1, we first compute the rational gener-
ating function g(V Pareto; z) of the Pareto optima. With binary search using
the Intersection Lemma with generating functions of cubes as in section 3,
we can find the smallest non-negative integer γ such that

(v̂ + γB∞) ∩ V Pareto 6= ∅. (22)

If γ = 0, then the prescribed outcome vector v̂ itself is a Pareto optimum,
so it is the optimal solution to the problem.

Otherwise, let v0 be an arbitrary outcome vector in (v̂ + γB∞)∩V Pareto.
Then

γ ≥ ‖v0 − v̂‖∞ = inf
{

λ : v0 − v̂ ∈ λB∞
}

≥ inf
{

λ : v0 − v̂ ∈ λ 1
αQ

}
= α ‖v0 − v̂‖Q ,
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thus ‖v0 − v̂‖Q ≤ γ/α. Let δ = βγ/α. Then, for every v1 ∈ Rk with
‖v1 − v̂‖∞ ≥ δ we have

δ ≤ ‖v1 − v̂‖∞ = inf
{

λ : v1 − v̂ ∈ λB∞
}

≤ inf
{

λ : v1 − v̂ ∈ λ 1
β Q

}
= β ‖v1 − v̂‖Q ,

thus
‖v1 − v̂‖Q ≥ δ/β = γ/α ≥ ‖v0 − v̂‖Q .

Therefore, a Pareto optimum v∗ ∈ V Pareto minimizing the distance dQ from
the prescribed outcome vector v̂ is contained in the cube v̂+δB∞. Moreover,
for all points v ∈ v̂ + δB∞ we have

‖v0 − v̂‖Q ≤ δ/α = βγ/α2.

We define a function f by

f(v) =
(
βγ/α2

)D − ‖v − v̂‖D
Q , (23)

which is non-negative over the cube v̂ + δB∞. Since q is a homogeneous
polynomial of degree D, we obtain

f(v) =
(
βγ/α2

)D − q(v − v̂) (24)

so f is a polynomial.
We next compute the rational generating function

g(V Pareto ∩ (v̂ + δB∞); z)

from g(V Pareto; z) using the Intersection Lemma. Let ε′ > 0 be a rational
number, which we will determine later. By Theorem 14, we compute a
solution vε′ ∈ V Pareto with

f(vε′) ≥ (1− ε′)f(v∗),

or, equivalently,
f(v∗)− f(vε′) ≤ ε′ f(v∗).

Thus,

[dQ(v̂,vε′)]D − [dQ(v̂,v∗)]D = ‖vε′ − v̂‖D
Q − ‖v∗ − v̂‖D

Q

= f(v∗)− f(vε′)

≤ ε′ f(v∗)

= ε′
((

βγ/α2
)D − ‖v∗ − v̂‖D

Q

)
.

Since γ is the smallest integer with (22) and also ‖v∗ − v̂‖∞ is an integer,
we have

γ ≤ ‖v∗ − v̂‖∞ ≤ β ‖v∗ − v̂‖Q .

Thus,

[dQ(v̂,vε′)]D − [dQ(v̂,v∗)]D ≤ ε′

[(
β

α

)2D

− 1

]
‖v∗ − v̂‖D

Q .
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An elementary calculation yields

dQ(v̂,vε′)− dQ(v̂,v∗) ≤ ε′

D

[(
β

α

)2D

− 1

]
dQ(v̂,v∗).

Thus we can choose

ε′ = ε D

[(
β

α

)2D

− 1

]−1

(25)

to get the desired estimate. Since α, β and D are fixed constants, we have
ε′ = Θ(ε). Thus the computation of vε′ ∈ V Pareto by Theorem 14 runs in
time polynomial in the input encoding size and 1

ε . �

Remark 15. It is straightforward to extend this result to also include the `p

norms for odd integers p, by solving the approximation problem separately
for all of the 2k = O(1) shifted orthants v̂ + Oσ = {v : σi(vi − v̂i) ≥ 0 },
where σ ∈ {±1}k. On each of the orthants, the `p-norm has a representation
by a polynomial as required by Theorem 13.
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