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Abstract

We consider the problem of locating a single radiating source from several noisy

measurements using a maximum likelihood (ML) criteria. The resulting optimization

problem is nonconvex and nonsmooth and thus finding its global solution is in principal

a hard task. Exploiting the special structure of the objective function, we introduce

and analyze two iterative schemes for solving this problem. The first algorithm is

a very simple explicit fixed-point-based formula, and the second is based on solving

at each iteration a nonlinear least squares problem which can be solved globally and

efficiently after transforming it into and equivalent quadratic minimization problem

with a single quadratic constraint. We show that the nonsmoothness of the problem

can be avoided by choosing a specific ”good” starting point for both algorithms, and we

prove the convergence of the two schemes to stationary points. We present empirical

results that support the underlying theoretical analysis and suggest that despite of

its nonconvexity, the ML problem can effectively be solved globally using the devised

schemes.
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1 Introduction

1.1 The Source Localization Problem

Consider the problem of locating a single radiating source from noisy range measurements

collected using a network of passive sensors. More precisely, consider an array of m sensors,

and let aj ∈ R
n denote the coordinates of the jth sensor1. Let x ∈ R

n denote the unknown

source’s coordinate vector, and let dj > 0 be a noisy observation of the range between the

source and the jth sensor:

dj = ‖x − aj‖ + εj, j = 1, . . . ,m, (1.1)

where ε = (ε1, . . . , εm)T denotes the unknown noise vector. Such observations can be ob-

tained for example from the time-of-arrival (TOA) measurements in a constant-velocity

propagation medium. The source localization problem is the following:

The Source Localization Problem: Given the observed range measurements

dj > 0, find a ”good” approximation of the source x satisfying the equations in

(1.1).

The source localization problem has received significant attention in the signal processing

literature and specifically in the field of mobile phones localization [12, 5, 13]. It is also

worth mentioning that the interest in wireless localization problems have increased since the

first ruling of the Federal Communications Commission for detection of emergency calls in

the United States in 19962. Currently, a high percentage of E911 calls originate from mobile

phones. Due to the unknown location of the wireless E911 calls, these calls do not receive the

same quality of emergency assistance that fixed-network 911 calls enjoy. To deal with this

problem, the FCC issued an order on 12 July 1996, requiring all wireless service providers

to report accurate mobile station (MS) location information to the E911 operator.

In addition to emergency management, mobile position information is also useful in mo-

bile advertising, asset tracking, fleet management, location-sensitive billing, [12] interactive

map consultation, and monitoring of the mentally impaired [5].

1.2 The Maximum Likelihood Criteria

In this paper we adopt the maximum-likelihood approach for solving the source localization

problem (1.1), see e.g., [4]. When ε follows a Gaussian distribution with a covariance matrix

proportional to the identity matrix, the source x is the maximum likelihood (ML) estimate

that is solution of the problem:

(ML): min
x∈Rn

{

f(x) ≡
m

∑

j=1

(‖x − aj‖ − dj)
2

}

. (1.2)

Note that in addition to the statistical interpretation, the latter problem is a least squares

problem, in the sense that it minimizes the squared sum of the errors.

1in practical applications n = 2 or 3.
2See http://www.fcc.gov/911/enhanced/
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An alternative approach for estimating the source location x is by solving the following

least squares (LS) problem in the squared domain:

(LS): min
x∈Rn

m
∑

j=1

(‖x − aj‖2 − d2
j)

2. (1.3)

Despite of its nonconvexity, the LS problem can be solved globally and efficiently by trans-

forming it into a problem of minimizing a quadratic function subject to a single quadratic

constraint [1] (more details will be given in Section 3.2). However, the LS approach has

two major disadvantages compared to the ML approach: First, the LS formulation lacks

the statistical interpretation of the ML problem. Second, as demonstrated by the numerical

simulations in Section 4, the LS estimate provides less accurate solutions than those provided

by the the ML approach.

The ML problem, like the LS problem, is nonconvex. However, as opposed to the LS

problem for which a global solution can be computed efficiently [1], the ML problem seems to

be a difficult problem to solve efficiently. A possible reason for the increased difficulty of the

ML problem is its nonsmoothness. One approach for approximating the solution of the ML

problem is via semidefinite relaxation (SDR) [4, 1]. We also note that the source localization

problem formulated as (ML) can be viewed as a special instance of sensor network localization

problems in which several sources are present, see for example the recent work [3]; for this

class of problems, semidefinite programming based algorithms have been developed.

In this paper we depart from the SDR techniques and seek other efficient approaches to

solve the ML problem. This is achieved by exploiting the special structure of the objective

function which allows us to devise fixed-point based iterative schemes for solving the non-

smooth and nonconvex ML problem (1.2). The first scheme admits a very simple explicit

iteration formula given by

xk+1 = M1(x
k, a), (where a ≡ (a1, . . . , am)),

while the second iterative scheme is of the form

xk+1 ∈ argmin
x

M2(x,xk, a),

and requires the solution of an additional subproblem which will be shown to be efficiently

solved. The main goals of this paper are to introduce the building mechanism of these

two schemes, to develop and analyze their convergence properties, and to demonstrate their

computational viability for solving the ML problem (1.2), as well as their effectiveness when

compared with the LS and SDR approaches.

1.3 Paper Layout

In the next section, we present and analyze the first scheme which is a simple fixed point

based method. The second algorithm, which is based on solving a sequence of least squares

problems of a similar structure to that of (1.3), is presented and analyzed in Section 3.
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The construction of both methods is motivated by two different interpretations of the well

known Weiszfeld method for the Fermat-Weber location problem [16]. For both schemes, we

show that the nonsmoothness of the problem can be avoided by choosing a specific ”good”

starting point. Empirical results presented in Section 4 provide a comparison between the

two devised algorithms, as well as comparison to different approaches such as LS and SDR.

In particular, the numerical results suggest that despite of its nonconvexity, the ML problem

can, for all practical purposes, be globally solved using the devised methods.

1.4 Notation

Throughout the paper, the following notation is used: vectors are denoted by boldface lower-

case letters, e.g., y, and matrices by boldface uppercase letters e.g., A. The ith component

of a vector y is written as yi. Given two matrices A and B, A ≻ B (A º B) means that

A−B is positive definite (semidefinite). The directional derivative of a function f : R
n → R

at x̄ in the direction v is defined (if it exists) by

f ′(x;v) ≡ lim
t→0+

f(x̄ + tv) − f(x̄)

t
. (1.4)

The α-level set of a function f : R
n → R is defined by Lev(f, α) = {x ∈ R

n : f(x) ≤ α}.
The collection of m sensors {a1, . . . , am} is denoted by A.

2 A Simple Fixed Point Algorithm

In this section we introduce a simple fixed point algorithm that is designed to solve the

ML problem (1.2). The algorithm is inspired by the celebrated Weiszfeld algorithm for the

Fermat-Weber problem which is briefly recalled in Section 2.1. In Section 2.2 we introduce

and analyze the fixed point scheme designed to solve the ML problem.

2.1 A Small Detour: Weiszfeld Algorithm for the Fermat-Weber

Problem

As was already mentioned, the ML problem (1.2) is nonconvex and nonsmooth and thus

finding its exact solution is in principle a difficult task. We propose a fixed point scheme

motivated by the celebrated Weiszfeld algorithm [16, 7] for solving the Fermat-Weber location

problem:

min
x

{

s(x) ≡
m

∑

j=1

ωj‖x − aj‖
}

, (2.1)

where ωj > 0 and aj ∈ R
n for j = 1, . . . ,m. Of course, the Fermat-Weber problem is

much easier to analyze and solve than the ML problem (1.2) since it is a well structured

nonsmooth convex minimization problem. This problem has been extensively studied in the

location theory literature, see for instance [11]. Our objective here is to mimic Weiszfeld

algorithm [16] to obtain an algorithm for solving the nonsmooth and nonconvex ML problem
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(1.2). Weiszfeld method is a very simple fixed point scheme that is designed to solve the

Fermat-Weber problem. One way to derive it is to write the first order global optimality

conditions for the convex problem (2.1):

∇s(x) =
m

∑

j=1

ωj

x − aj

‖x − aj‖
= 0, ∀x /∈ A,

that can be written as:

x =

∑m

j=1 ωj
aj

‖x−aj‖
∑m

j=1
ωj

‖x−aj‖

,

which naturally calls for the iterative scheme:

xk+1 =

∑m

j=1 ωj
aj

‖xk−aj‖
∑m

j=1
ωj

‖xk−aj‖

. (2.2)

For convergence analysis of the Weiszfeld algorithm (2.2) and modified versions of the algo-

rithm, see e.g., [10, 15] and references therein.

2.2 The Simple Fixed Point Algorithm: Definition and Analysis

Similarly to Weiszfeld method, our starting point for constructing a fixed point algorithm

to solve the ML problem is by writing the optimality conditions. Assuming that x /∈ A we

have that x is a stationary point for problem (ML) if and only if

∇f(x) = 2
m

∑

j=1

(‖x − aj‖ − dj)
x − aj

‖x − aj‖
= 0, (2.3)

which can be written as

x =
1

m

{

m
∑

j=1

aj +
m

∑

j=1

dj

x − aj

‖x − aj‖

}

.

The latter relation calls for the following fixed point algorithm which we term the standard

fixed point (SFP) scheme:

Algorithm SFP:

xk+1 =
1

m

{

m
∑

j=1

aj +
m

∑

j=1

dj

xk − aj

‖xk − aj‖

}

, k ≥ 0. (2.4)

Like in the Weiszfeld algorithm, the SFP scheme is not well defined if xk ∈ A for some k.

In the sequel we will show that by carefully selecting the initial vector x0 we can guarantee

that the iterates are not in the sensors set A, therefore establishing the well definiteness

of the method. At this juncture, it is interesting to notice that the approach we suggest

here for dealing with the points of nonsmoothness that occur at xk ∈ A is quite different
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from the common approaches handling the nonsmoothness. For example, in order to avoid

the nondifferentiable points of the Fermat-Weber objective function, several modifications

of Weiszfeld method were proposed, see e.g., [10, 15] and references therein. However, there

does not seem to have been any attempts in the literature to choose ”good” initial starting

points to avoid the nonsmoothness difficulty. A constructive procedure for choosing a good

starting point for the SFP method will be given at the end of this section.

Before proceeding with the analysis of the SFP method, we record the fact that, much like

the Weiszfeld algorithm ([7]), the scheme SFP is a gradient method with a fixed step size.

Proposition 2.1 Let {xk} be the sequence generated by the SFP method (2.4) and suppose

that xk /∈ A for all k ≥ 0. Then

xk+1 = xk − 1

2m
∇f(xk). (2.5)

Proof. Follows by a straightforward calculation, using the gradient of f computed in (2.3).

2

A gradient method does not necessarily converge without additional assumptions (e.g., as-

suming that ∇f is Lipschitz continuous and/or using a line search, [2]). Nevertheless, we

show below that scheme (2.4) does converge.

By Proposition 2.1 the SFP method can be compactly written as

xk+1 = T (xk), (2.6)

where T : R
n \ A → R

n is the operator defined by

T (x) = x − 1

2m
∇f(x). (2.7)

In the convergence analysis of the SFP method we will also make use of the auxiliary function:

h(x,y) ≡
m

∑

j=1

‖x − aj − djrj(y)‖2, ∀x ∈ R
n,y ∈ R

n \ A, (2.8)

where

rj(y) ≡ y − aj

‖y − aj‖
, j = 1, . . . ,m.

Note that for every y /∈ A, the following relations hold for every j = 1, . . . ,m:

‖rj(y)‖ = 1, (2.9)

(y − aj)
T rj(y) = ‖y − aj‖. (2.10)

In Lemma 2.1 below, we prove several key properties of the auxiliary function h defined in

(2.8).

Lemma 2.1 (a) h(x,x) = f(x) for every x /∈ A.
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(b) h(x,y) ≥ f(x) for every x ∈ R
n,y ∈ R

n \ A.

(c) If y /∈ A then

T (y) = argmin
x∈Rn

h(x,y). (2.11)

Proof. (a) For every x /∈ A,

f(x) =
m

∑

j=1

(‖x − aj‖ − dj)
2

=
m

∑

j=1

(‖x − aj‖2 − 2dj‖x − aj‖ + d2
j)

(2.9),(2.10)
=

m
∑

j=1

(‖x − aj‖2 − 2dj(x − aj)
T rj(x) + d2

j‖rj(x)‖2) = h(x,x),

where the last equation follows from (2.8).

(b) Using the definition of f and h given respectively in (1.2),(2.8), and the fact (2.9), a

short computation shows that for every x ∈ R
n,y ∈ R

n \ A,

h(x,y) − f(x) = 2
m

∑

j=1

dj

(

‖x − aj‖ − (x − aj)
T rj(y)

)

≥ 0,

where the last inequality follows from Cauchy-Schwartz inequality and using again (2.9).

(c) For any y ∈ R
n\A, the function x 7→ h(x,y) is strictly convex on R

n, and consequently

admits a unique minimizer x∗ satisfying

∇xh(x∗,y) = 0.

Using the definition of h given in (2.8), the latter identity can be explicitly written as

m
∑

j=1

(x∗ − aj − djrj(y)) = 0,

which by simple algebraic manipulation can be shown to be equivalent to x∗ = y− 1
2m

∇f(y),

establishing that x∗ = T (y). 2

Using Lemma 2.1 we are now able to prove the monotonicity property of the operator T

with respect to f .

Lemma 2.2 Let y /∈ A. Then

f(T (y)) ≤ f(y)

and equality holds if and only if T (y) = y.
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Proof. By (2.11) and the strict convexity of the function x 7→ h(x,y), one has

h(T (y),y) < h(x,y) for every x 6= T (y).

In particular, if T (y) 6= y then

h(T (y),y) < h(y,y) = f(y), (2.12)

where the last equality follows from Lemma 2.1(a). By Lemma 2.1(b), h(T (y),y) ≥ f(T (y)),

which combined with (2.12), establishes the desired strict monotonicity. 2

Theorem 2.1 given below states the basic convergence results for the SFP method. In the

proof we exploit the boundedness of the level sets of the objective function f , which is stated

and proved in the following lemma.

Lemma 2.3 The level sets of f are bounded.

Proof. Let α ∈ R. We will show that Lev(f, α) = {x : f(x) ≤ α} is bounded. Indeed,

‖x‖ = ‖x − aj + aj‖ ≤ ‖x − aj‖ + ‖aj‖. Therefore,

m‖x‖ −
m

∑

j=1

dj ≤
m

∑

j=1

(‖x − aj‖ − dj) +
m

∑

j=1

‖aj‖

≤ 1

2

m
∑

j=1

(‖x − aj‖ − dj)
2 +

m

2
+

m
∑

j=1

‖aj‖ ≤ α

2
+

m

2
+

m
∑

j=1

‖aj‖

where the second inequality follows from using the inequality z ≤ 1+z2

2
for every z ∈ R, and

hence the desired result follows. 2

Theorem 2.1 (Convergence of the SFP Method) Let {xk} be generated by (2.4) such

that x0 satisfies

f(x0) < min
j=1,...,m

f(aj). (2.13)

Then,

(a) xk /∈ A for every k ≥ 0.

(b) For every k ≥ 0, f(xk+1) ≤ f(xk) and equality is satisfied if and only if xk+1 = xk.

(c) The sequence of function values {f(xk)} converges.

(d) The sequence {xk} is bounded.

(e) Every convergent subsequence {xkl} satisfies xkl+1 − xkl → 0.

(f) Any limit point of {xk} is a stationary point of f .
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Proof. (a) and (b) follow by induction on k using Lemma 2.2.

(c) Readily follows from the monotonicity and lower boundedness (by zero) of the sequence

{f(xk)}.
(d) By part (b) all the iterates xk are in the level set Lev(f, f(x0)) which, by Lemma 2.3,

establishes the boundedness of the sequence {xk}.
(e) and (f) Let {xkl} be a convergent subsequence of {xk} with limit point x∗. Since f(xkl) ≤
f(x0) < min

j=1,...,m
f(aj), it follows by the continuity of f that f(x∗) ≤ f(x0) < min

j=1,...,m
f(aj),

proving that x∗ /∈ A. By (2.6):

xkl+1 = T (xkl). (2.14)

Therefore, since the subsequence {xkl} and its limit point x∗ are not in A, by the continuity

of ∇f on R
n\A, we conclude that the subsequence {xkl+1} converges to a vector x̄ satisfying

x̄ = T (x∗). (2.15)

To prove (e), we need to show that x̄ = x∗. Since both x∗ and x̄ are limit points of {xk} and

since the sequence of function values converges (by part (c)), then the continuity of f over

R
n implies f(x∗) = f(x̄). Invoking Lemma 2.2 for y = x∗, we conclude that x̄ = x∗, proving

claim (e). Part (f) follows from the observation that the equality x∗ = T (x∗) is equivalent

(by the definition of T ) to ∇f(x∗) = 0. 2

Remark 2.1 It is easy to find a vector x0 satisfying the condition (2.13). For example,

procedure INIT that will be described at the end of this section produces a point satisfying

(2.13).

Combining Claims (c) and (f) of Theorem 2.1 we immediately obtain convergence of the

sequence of function values.

Corollary 2.1 Let {xk} be the sequence generated by the SFP algorithm satisfying (2.13).

Then f(xk) → f ∗, where f ∗ is the function value at a stationary point of f .

We were able to prove the convergence of the function values of the sequence. The

situation is more complicated for the sequence itself where we were only able to show that

all limit points are stationary points. We can prove convergence of the sequence itself if we

assume that all stationary points of the objective function are isolated3. The proof of this

claim strongly relies on the following Lemma from [9].

Lemma 2.4 ([9, Lemma 4.10]) Let x∗ be an isolated limit point of a sequence {xk} in

R
n. If {xk} does not converge then there is a subsequence {xkl} which converges to x∗ and

an ǫ > 0 such that ‖xkl+1 − xkl‖ ≥ ǫ.

We can now use the above lemma to prove a convergence result under the assumption

that all stationary points of f are isolated.

3We say that x
∗ is an isolated stationary point of f , if there are no other stationary points in some

neighborhood of x
∗.
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Theorem 2.2 (Convergence of the Sequence) Let {xk} be generated by (2.4) such that

x0 satisfies (2.13). Suppose further that all stationary point of f are isolated. Then the

sequence {xk} converges to a stationary point.

Proof. Let x∗ be a limit point of {xk} (its existence follows from the boundedness of the

sequence proved in Theorem 2.1(d)). By our assumption x∗ is an isolated point. Suppose

in contradiction that the sequence does not converge. Then by Lemma 2.4 there exists

a subsequence {xkl} that converges to x∗ satisfying ‖xkl+1 − xkl‖ ≥ ǫ. However, this is

in contradiction to part (e) of Theorem 2.1. We thus conclude that {xk} converges to a

stationary point. 2

The analysis of the SFP method relies on the validity of condition (2.13) on the starting

point x0. We will now show that thanks to the special structure of the objective func-

tion (ML) we can compute such a point through a simple procedure. This is achieved by

establishing the following result.

Lemma 2.5 Let A ≡ {a1, . . . , am} be the given set of m sensors and let

gj(x) =
m

∑

i=1,i6=j

(‖x − ai‖ − di)
2, j = 1, . . . ,m.

Then for every j = 1, . . . ,m

(i) If ∇gj(aj) 6= 0 then f ′(aj;−∇gj(aj)) < 0. Otherwise, if ∇gj(aj) = 0, then f ′(aj;v) <

0 for every v 6= 0. In particular, there exists a descent direction from every sensor

point.

(ii) Every x̄ ∈ A is not a local optimum for the ML problem (1.2).

Proof. (i). For convenience, for every j = 1, . . . ,m we denote

fj(x) = (‖x − aj‖ − dj)
2 (2.16)

so that the objective function of problem (ML) can be written as

f(x) = fj(x) + gj(x) (2.17)

for every x ∈ R
n and j = 1, . . . ,m. Note that f is not differentiable for every x ∈ A.

Nonetheless, the directional derivative of f at x in the direction v ∈ R
n always exist and is

given by

f ′(x̄;v) =

{

∇f(x̄)Tv x̄ /∈ A,

∇gj(aj)
Tv − 2dj‖v‖ x̄ = aj.

(2.18)

Indeed, the above formula for x̄ /∈ A is obvious. In the other case, suppose then that x̄ = aj

for some j ∈ {1, . . . ,m}. Noting that gj is differentiable at aj we have g′
j(aj;v) = ∇gj(aj)

Tv,

and using the definition (2.16) for fj, we get f ′
j(aj;v) = −2dj‖v‖, and hence with (2.17), we
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obtain the desired formula (2.18) for f ′(aj;v). Finally, if ∇gj(aj) 6= 0, then using (2.18) we

have

f ′(aj;−∇gj(aj)) = −‖∇gj(aj)‖2 − 2dj‖∇gj(aj)‖ < 0.

Otherwise, if ∇gj(aj) = 0 then for every v 6= 0:

f ′(aj;v) = −2dj‖v‖ < 0.

(ii) By part (i) there exists a descent direction from every sensor point x̄ ∈ A. Therefore,

any of the sensor points cannot be a local optimum for problem (ML). 2

Using the descent directions provided by Lemma 2.5, we can compute a point x̄ satisfying

f(x̄) < min
j=1,...,m

f(aj)

by the following procedure:

Procedure INIT

1. t = 1.

2. Set k to be an index for which f(ak) = min
j=1,...,m

f(aj).

3. Set

v0 =

{

−∇gk(ak) ∇gk(ak) 6= 0,

e ∇gk(ak) = 0,
(2.19)

where e is the vectors of all ones4.

4. While f(ak + tv0) ≥ f(ak) set t = t/2. End

5. The output of the algorithm is ak + tv0.

The validity of this procedure stems from the fact that by Lemma 2.5, the direction v0

defined in (2.19) is always a descent direction.

One of the advantages of the SFP scheme is its simplicity. However, the SFP method,

being a gradient method, does have the tendency to converge to local minima. In the next

section we will present a second and more involved algorithm to solve the ML problem. As

we shall see in the numerical examples presented in Section 4, the empirical performance of

this second iterative scheme is significantly better than that of the SFP both with respect

to the number of required iterations, and with respect to the probability of getting stuck in

a local/non-global point.

4We could have chosen any other nonzero vector.
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3 A Sequential Weighted Least Squares Algorithm

In this section we study a different method for solving the ML problem (1.2) which we call the

sequential weighted least squares (SWLS) algorithm. The SWLS algorithm is also motivated

by the construction of Weiszfeld method, but from a different viewpoint, see Section 3.1.

Each iteration of the method consists of solving a nonlinear least squares problem whose

solution is found by the approach discussed in Section 3.2. The convergence analysis the

SWLS algorithm is given in Section 3.3.

3.1 The SWLS Algorithm

To motivate the SWLS algorithm, let us first go back to the Weiszfeld scheme for solving

the classical Fermat-Weber location problem, whereby we rewrite the iterative scheme (2.2)

in the following equivalent but different way:

xk+1 = argmin
x∈Rn

{

m
∑

j=1

ωj

‖x − aj‖2

‖xk − aj‖

}

. (3.1)

The strong convexity of the objective function in (3.1) implies that xk+1 is uniquely

defined as a function of xk. Therefore, Weiszfeld method (2.2) for solving problem (2.1) can

also be written as

xk+1 = argmin
x∈Rn

q(x,xk),

where

q(x,y) ≡
m

∑

j=1

ωj

‖x − aj‖2

‖y − aj‖
for every x ∈ R

n,y ∈ R
n \ A.

The auxiliary function q was essentially constructed from the objective function s of the

Fermat-Weber location problem, by replacing the norm terms ‖x − aj‖ with
‖x−aj‖

2

‖y−aj‖
, i.e.,

with s(x) = q(x,x). Mimicking this observation for the ML problem under study, we will

use an auxiliary function in which each norm term ‖x − aj‖ in the objective function (1.2)

is replaced with
‖x−aj‖

2

‖y−aj‖
, resulting in the following auxiliary function:

g(x,y) ≡
m

∑

i=1

(‖x − ai‖2

‖y − ai‖
− di

)2

, x ∈ R
n,y ∈ R

n \ A. (3.2)

The general step of the algorithm for solving problem (ML), termed the sequential

weighted least squares (SWLS) method, is now given by

xk+1 ∈ argmin
x∈Rn

g(x,xk).

or more explicitly by

Algorithm SWLS:

xk+1 ∈ argmin
x∈Rn

m
∑

j=1

(‖x − aj‖2

‖xk − aj‖
− dj

)2

. (3.3)

12



The above minimization problem might have several global minima; in these cases xk+1

is arbitrary chosen as one of the global minima.

The name SWLS stems from the fact that at each iteration k we are required to solve

the following weighted version of the LS problem (1.3):

(WLS): min
x

m
∑

j=1

ωk
j (‖x − cj‖2 − βk

j )2, (3.4)

with

cj = aj, β
k
j = dj‖xk − aj‖, ωk

j =
1

‖xk − aj‖2
. (3.5)

Note that the SWLS algorithm as presented above is not defined for iterations in which

xk ∈ A. In our random numerical experiments (c.f., Section 4) this situation never occurred,

i.e., xk did not belong to A for every k. However, from a theoretical point of view this issue

must be resolved. Similarly to the methodology advocated in the convergence analysis of the

SFP method, our approach for avoiding the sensor points A is by choosing a ”good enough”

initial vector. In Section 3.3, we introduce a simple condition on the initial vector x0 under

which the algorithm is well defined and proven to converge.

3.2 Solving the WLS Subproblem

We will now show how the WLS subproblem (3.4) can be solved globally and efficiently

by transforming it into a problem of minimizing a quadratic function subject to a single

quadratic constraint. This derivation is a straightforward extension of the solution technique

devised in [1] and is briefly described here for completeness.

For a given fixed k (for simplicity we omit the index k below), we first transform (3.4) into

a constrained minimization problem:

min
x∈Rn,α∈R

{

m
∑

j=1

ωj(α − 2cT
j x + ‖cj‖2 − βj)

2 : ‖x‖2 = α

}

, (3.6)

which can also be written as (using the substitution y = (xT , α)T )

min
y∈Rn+1

{

‖Ay − b‖2 : yTDy + 2fTy = 0
}

, (3.7)

where

A =







−2
√

ω1c
T
1

√
ω1

...
...

−2
√

ωmcT
m

√
ωm






,b =







√
ω1(β1 − ‖c1‖2)

...√
ωm(βm − ‖cm‖2)







and

D =

(

In 0n×1

01×n 0

)

, f =

(

0

−0.5

)

.

Note that (3.7) belongs to the class of problems consisting of minimizing a quadratic

function subject to a single quadratic constraint. Problems of this type are called gener-

alized trust region subproblems (GTRS). GTRS problems possess necessary and sufficient

optimality conditions from which efficient solution methods can be derived, see e.g., [6, 8].
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The SWLS scheme is of course more involved than the simpler SFP scheme. However,

as explained above, the additional computations required in SWLS to solve the subproblem

can be done efficiently and are worthwhile, since the SWLS algorithm usually possesses a

much larger region of convergence to the global minimum than the SFP scheme, which in

turn implies that it has the tendency of avoiding local minima, and a greater chance to hit

the global minimum. This will be demonstrated on the numerical examples given in Section

4.

3.3 Convergence Analysis of the SWLS Method

In this section we provide an analysis of the SWLS method. We begin by presenting our

underlying assumptions in Section 3.3.1 and in Section 3.3.2 we prove convergence results of

the method.

3.3.1 Underlying Assumptions

The following assumption will be made throughout this section

Assumption 1 The matrix

A =











1 aT
1

1 aT
2

...
...

1 aT
m











is of full column rank.

This assumption is equivalent to saying that a1, . . . , am do not reside in a lower dimen-

sional affine space (i.e., a line if n = 2 and a plane if n = 3).

To guarantee the well definiteness of the SWLS algorithm (i.e., xk /∈ A for all k) we will

make the following assumption on the initial vector x0:

Assumption 2 x0 ∈ R where

R :=

{

x ∈ R
n : f(x) <

minj{dj}2

4

}

. (3.8)

A similar assumption was made for the SFP (see condition (2.13)). Note that for the

true source location xtrue one has f(xtrue) =
∑m

j=1 ε2
j . Therefore, xtrue satisfies Assumption

2 if the errors εj are smaller in some sense from the range measurements dj. This is a very

reasonable assumption since in real applications the errors εi are often smaller in an order

of magnitude than di. Now, if the initial point x0 is ”good enough” in the sense that it close

to the true source location, then Assumption 2 will be satisfied. We have observed through

numerical experiments that the solution to the LS problem (1.3) often satisfies Assumption

2 as the following example demonstrates.
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Example 3.1 Consider the source localization problem with m = 5, n = 2. We performed

Monte-Carlo runs where in each run the sensor locations aj and the source location x were

randomly generated from a uniform distribution over the square [−20, 20] × [−20, 20]. The

observed distances dj are given by (1.1) with εj being independently generated from a normal

distribution with mean zero and standard deviation σ. In our experiments σ takes on four

different values: 1, 10−1, 10−2, and 10−3. For each σ, Nσ denotes the number of runs for

which the condition f(xLS) <
minj d2

j

4
holds, and is given in the following table. Clearly, the

Assumption 2 fails only for high noise levels.

σ 1e-3 1e-2 1e-1 1e+0

Nσ 10000 10000 9927 6281

Table 1: Number of runs (out of 10000) for which Assumption 2 is satisfied for x
0 = xLS

The following simple and important property will be used in our analysis.

Lemma 3.1 Let x ∈ R. Then

‖x − aj‖ > dj/2, j = 1, . . . ,m. (3.9)

Proof. Suppose in contradiction that there exists j0 for which ‖x − aj0‖ ≤ dj0/2. Then

f(x) =
m

∑

j=1

(‖x − aj‖ − dj)
2 ≥ (‖x − aj0‖ − dj0)

2 ≥
d2

j0

4
≥ min{dj}2

4
,

which contradicts x ∈ R. 2

A direct consequence of the Lemma 3.1 is that any element in R cannot be one of the

sensors.

Corollary 3.1 If x ∈ R then x /∈ A.

3.3.2 Convergence Analysis of the SWLS method

We begin with the following result which plays a key role in the forthcoming analysis.

Lemma 3.2 Let δ be a positive number and let t > δ/2. Then

(

s2

t
− δ

)2

≥ 2(s − δ)2 − (t − δ)2 (3.10)

for every s >
√

δt
2
, and equality is satisfied if and only if s = t.
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Proof. Rearranging (3.10) one has to prove

A(s, t) ≡
(

s2

t
− δ

)2

− 2(s − δ)2 + (t − δ)2 ≥ 0.

Some algebra shows that the expression A(s, t) can be written as follows:

A(s, t) =
1

t
(s − t)2

(

(

s√
t

+
√

t

)2

− 2δ

)

. (3.11)

Using the conditions t > δ/2 and s >
√

δt
2

we obtain

(

s√
t

+
√

t

)2

− 2δ >

(
√

δ

2
+

√

δ

2

)2

− 2δ = 0. (3.12)

Therefore, from (3.11) and (3.12) it readily follows that A(s, t) ≥ 0 and that equality holds

if and only if s = t. 2

Thanks to Lemma 3.2, we establish the next result which is essential in proving the

monotonicity of the SWLS method.

Lemma 3.3 Let y ∈ R. Then, the function g(x,y) given in (3.2) is well defined on R
n×R,

and with

z ∈ argmin
x∈Rn

g(x,y), (3.13)

the following properties hold:

(a) f(z) ≤ f(y), and the equality is satisfied if and only if z = y.

(b) z ∈ R.

Proof. By Corollary 3.1, any y ∈ R implies y /∈ A, and hence the function g given by (cf.

(3.2))

g(x,y) =
m

∑

i=1

(‖x − ai‖2

‖y − ai‖
− di

)2

,

is well defined on R
n ×R. Now, by (3.13) and y ∈ R we have

g(z,y) ≤ g(y,y) = f(y) <
min{dj}2

4
. (3.14)

In particular,
(‖z − aj‖2

‖y − aj‖
− dj

)2

<
d2

j

4
, j = 1, . . . ,m

from which it follows that

‖z − aj‖2

‖y − aj‖
≥ dj

2
, j = 1, . . . ,m. (3.15)
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Invoking Lemma 3.2, whose conditions are satisfied by (3.15) and Lemma 3.1 we obtain

(‖z − aj‖2

‖y − aj‖
− dj

)2

≥ 2(‖z − aj‖ − dj)
2 − (‖y − aj‖ − dj)

2.

Summing over j = 1, . . . ,m we obtain

m
∑

j=1

(‖z − aj‖2

‖y − aj‖
− dj

)2

≥ 2
m

∑

j=1

(‖z − aj‖ − dj)
2 −

m
∑

j=1

(‖y − aj‖ − dj)
2.

Therefore, together with (3.14), we get

f(y) ≥ g(z,y) ≥ 2f(z) − f(y),

showing that f(z) ≤ f(y). Now, assume that f(y) = f(z). Then by Lemma 3.2 it follows

that the following set of equalities is satisfied:

‖y − aj‖ = ‖z − aj‖, j = 1, . . . ,m, (3.16)

which after squaring and rearranging reads as

(‖y‖2 − ‖z‖2) − 2aT
j (y − z) = 0, j = 1, . . . ,m.

Therefore,










1 aT
1

1 aT
2

...
...

1 aT
m











(

‖y‖2 − ‖z‖2

−2(y − z).

)

= 0

Thus, by Assumption 1, z = y, and the proof of (a) is completed. To prove (b), using (a)

and (3.14), we get

f(z) ≤ f(y) < min
j=1,...,m

d2
j

4
,

proving that z ∈ R. 2

We are now ready to prove the main convergence results for the SWLS method.

Theorem 3.1 (Convergence of the SWLS Method) Let {xk} be the sequence gener-

ated by the SWLS method. Suppose that Assumptions 1 and 2 hold true. Then

(a) xk ∈ R for k ≥ 0.

(b) For every k ≥ 0, f(xk+1) ≤ f(xk) and equality holds if and only if xk+1 = xk.

(c) The sequence of function values {f(xk)} converges.

(d) The sequence {xk} is bounded.

(e) Every convergent subsequence {xkl} satisfies xkl+1 − xkl → 0

17



(f) Any limit point of {xk} is a stationary point of f .

Proof. (a) and (b) follow by induction on k using Lemma 3.3.

(c) Follows from the fact that {f(xk)} is bounded below (by zero) and a nonincreasing

sequence.

(d) By part (b) all the iterates xk are in the level set Lev(f, f(x0)) which, by Lemma 2.3,

establishes the boundedness of the sequence {xk}.
(e) Let {xkl} be a convergent subsequence and denote its limit by x∗. By claims (a) and (b)

we have for every k

f(xk) ≤ f(x0) < min
j=1,...,m

d2
j

4
,

which combined with the continuity of f imply x∗ ∈ R and hence x∗ /∈ A, by Corollary 3.1.

Now, recall that

xkl+1 ∈ argmin g(x,xkl).

To prove the convergence of {xkl+1} to x∗, we will show that every subsequence converges

to x∗. Let {xklp+1} be a convergent subsequence and denote its limit by y∗. Since

xklp+1 ∈ argmin
x∈Rn

g(x,xklp ),

the following holds:

g(x,xklp ) ≥ g(xklp+1,xklp ) for every x ∈ R
n.

Taking the limits of both sides in the last inequality and using the continuity of the function

f we have

g(x,x∗) ≥ g(y∗,x∗) for every x ∈ R
n,

and hence,

y∗ ∈ argmin
x∈Rn

g(x,x∗). (3.17)

Since the sequence of function values converges, it follows that f(x∗) = f(y∗). Invoking

Lemma 3.3 with y = x∗ and z = y∗ we obtain x∗ = y∗, establishing claim (e).

(f) To prove the claim, note that (3.17) and x∗ = y∗ imply

x∗ ∈ argmin
x∈Rn

g(x,x∗).

Thus, by the first order optimality conditions we obtain:

0 = ∇xg(x,x∗)|x=x∗ = 4
m

∑

j=1

(‖x∗ − aj‖ − dj)
x∗ − aj

‖x∗ − aj‖
= 2∇f(x∗).

2

As a direct consequence of Theorem 3.1 we obtain convergence in function values.
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Corollary 3.2 Let {xk} be the sequence generated by the algorithm. Then f(xk) → f ∗,

where f ∗ is the function value at some stationary point x∗ of f .

As was shown for the SFP algorithm, global convergence of the sequence generated by

the SWLS algorithm can also be established under the same condition i.e., assuming that f

admits isolated stationary points.

Theorem 3.2 (Convergence of the Sequence) Let {xk} be generated by (3.3) such that

Assumptions 1 and 2 hold. Suppose further that all stationary point of f are isolated. Then

the sequence {xk} converges to a stationary point.

Proof. The same as the proof of Theorem 2.2. 2

4 Numerical Examples

In this section we present numerical simulations illustrating the performance of the SFP and

SWLS schemes, as well as numerical comparisons with the Least Squares approach, and with

the semidefinite relaxation (SDR) of the ML problem. The simulations were performed in

MATLAB and the semidefine programs were solved by SeDuMi [14].

Before describing the numerical results, for the reader’s convenience we first recall the

semidefinite relaxation (SDR) proposed in [4], and which will be used in our numerical

experiments comparisons. The first stage is to rewrite problem (ML) given in (1.2) as

minx,g

∑m

j=1(gj − dj)
2

s.t. g2
j = ‖x − aj‖2, j = 1, . . . ,m.

Making the change of variables

G =

(

g

1

)

(

gT 1
)

,X =

(

x

1

)

(

xT 1
)

,

problem (1.2) becomes

minX,G

∑m

j=1(Gjj − 2djGm+1,j + d2
j)

s.t. Gjj = Tr(CjX), j = 1, . . . ,m,

G º 0,X º 0,

Gm+1,m+1 = Xn+1,n+1 = 1,

rank(X) = rank(G) = 1,

where

Cj =

(

I −aj

−aT
j ‖aj‖2

)

, j = 1, . . . ,m.

Dropping the rank constraints in the above problem, we obtain the desired SDR of problem

(1.2). The SDR is not guaranteed to provide an accurate solution to the ML problem, but

it can always be considered as an approximation of the ML problem.
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In the first example, we show that the SWLS scheme usually possesses a larger region

of convergence to the global minimum than the scheme SFP. This last property is further

demonstrated in the second example which compares the SFP and SWLS methods, and

also demonstrates the superiority of the SWLS scheme. The last example illustrates the

attractiveness of the solution obtained by the SWLS method over the SDR and the LS

approaches.

Example 4.1 (Region of Convergence of the SFP and SWLS methods) In this

example we show a typical behavior of the SFP and SWLS methods. Consider an instance

of the source localization problem in the plane (n = 2) with three sensors (m = 3). Figure 1

and Figure 2 describe the results produced by the iterative schemes SFP and SWLS for three

initial trial points. The global minimum is (0.4285, 0.9355) and there exists one additional

local minimum at (0.1244, 0.3284). As demonstrated in Figure (2), the SWLS method might

converge to a local minimum; however, it seems to have a greater chance than the SFP

algorithm to avoid local minima; for example the SWLS converged to the (relatively far)

global minimum from the initial starting point (0.5,0.1), while the SFP converged to the

local minimum. The region of convergence to the local minima of both methods is denoted

by red points in Figures 3 and 4. Obviously, the SWLS method has a much wider region

of convergence to the global minimum. This was our observation in many other examples

that we ran, and which suggest that the SWLS has the tendency to converge to the global

minimum.

Remark 4.1 As shown in Proposition 2.1, the SFP scheme is just a gradient method with

a fixed step size. Thanks to Lemma 2.5, which as shown in Section 2.2 can be used in order

to avoid the nonsmoothness, we can of course use more sophisticated smooth unconstrained

minimization methods. Indeed, we also tested a gradient method with an Armijo stepsize

rule, and a trust region method [9], which uses second order information. Our observation

was that while these methods usually posses an improved rate of convergence in comparison to

the SFP method, they essentially have the same region of convergence to the global minimum

as the SFP algorithm.

Example 4.2 (Comparison of the SFP and SWLS Methods) We performed Monte-

Carlo runs where in each run the sensor locations aj and the true source location were ran-

domly generated from a uniform distribution over the square [−1000, 1000]× [−1000, 1000].

The observed distances dj are given by (1.1) with εj being generated from a normal distri-

bution with mean zero and standard deviation 20. Both the SFP and SWLS methods were

employed with (the same) initial point which was also uniformly randomly generated from

the square [−1000, 1000] × [−1000, 1000]. The stopping rule for both the SWLS and SFP

methods was ‖∇f(xk)‖ < 10−5.

The results of the runs are summarized in Table 5 below. For each value of m, 1000

realizations were generated. The numbers in the first column are the number of sensors,

and in the second column we give the number of runs out of 1000 in which the SDR of

the ML problem was tight. The third column contains the number of runs out of 1000 in
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Fig. 1: The SFP method for three initial

points.
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Fig. 2: The SWLS method for three initial

points.
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Fig. 3: Region of convergence to the local min-

imum marked by red points for SFP.
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Fig. 4: Region of convergence to the local min-

imum marked by red points for SWLS.
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which the solution produced by the SFP method was worse than the SWLS method. In all

the remaining runs the two methods converge to the same point; thus, there were no runs

in which the SWLS produced worse results. The last two columns contain the mean and

standard deviation of the number of iterations of each of the method in the form ”mean

(standard deviation)”.

m #tight #(f(x̂SFP) > f(x̂SWLS)) Iter – SFP Iter – SWLS

3 314 152 207(500.2) 26.2 (5)

4 325 96 124(192.6) 29.9(1.8)

5 259 83 93.6(96.2) 30.9(3.1)

10 278 23 66.5 (35.3) 31.6 (1.3)

Table 5: Comparison between the SFP and SWLS methods

As can be clearly seen from the table, the SWLS method requires much less iterations

than the SFP method and in addition it is more robust in the sense that the number of

iterations are more or less constant. In contrast, the standard deviations of the number of

iterations of the SFP method are quite large. For example, the huge standard deviation 500.2

in the first row stems from the fact that in some of the runs the SFP algorithm required

thousands of iterations!

From the above examples we conclude that the SWLS method does tend to converge to

the global minimum. Of course, we can always construct an example in which the method

converges to a local minimum (as was demonstrated in Example 4.1), but it seems that for

random instances this convergence to a non-global solution is not likely.

We should also note that we also compared the SFP and SWLS methods with initial point

chosen as the solution of the LS problem (1.3). For this choice of initial point, the SFP

and SWLS always converged to the same point (which is probably the global minimum);

however, with respect to the number of iterations, the SWLS method was still significantly

superior than the SFP algorithm. We have also compared the SWLS solution with the SDR

solution for the runs in which the SDR solution is tight (about a quarter of the runs, (cf.

column 1 in Table 5)). In all of these runs, the SWLS and SDR solutions coincided, i.e., the

SWLS method produced the exact ML solution.

The last example shows the attractiveness of SWLS over the LS and SDR approaches.

Example 4.3 (Comparison with the LS and SDR Estimates) Here we compare the

solution of (1.3) and the solution of SDR with the SWLS solution. The stopping rule for

the SWLS method was ‖∇f(xk)‖ < 10−5. We generated 100 random instances of the

source localization problem with five sensors where in each run the sensor locations aj and

the source location x were randomly generated from a uniform distribution over the square

[−10, 10]×[−10, 10]. The observed distances dj are given by (1.1) with εj being independently

generated from a normal distribution with mean zero and standard deviation σ. In our

experiments σ takes four different values: 1, 10−1, 10−2 and 10−3. The numbers in the three

right columns of Table 6 are the average of the squared position error ‖x̂ − x‖2 over 100
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realizations, where x̂ is the solution by the corresponding method. The best result for each

possible value of σ is marked by boldface. From the table below, it is clear that the SWLS

algorithm outperforms the LS and SDR methods for all four values of σ.

σ SDR LS SWLS

1e-3 2.4e-6 2.7e-6 1.5e-6

1e-2 2.2e-4 1.6e-4 1.3e-4

1e-1 2.2e-2 1.9e-2 1.3e-2

1e+0 2.2e+0 2.7e+0 2.0e+0

Table 6: Mean squared position error of the SDR, LS and SWLS methods
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